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ABSTRACT

Cyclin E overexpression as a result of CCNE amplification is a critical
driver of genomic instability in gastric cancer, but its clinical implication
is largely unknown. Thus, we integrated genomic, transcriptomic, and im-
mune profiling analysis of 7,083 esophagogastric tumors and investigated
the impact of CCNE amplification on molecular features and treatment
outcomes. We identified CCNE amplification in 6.2% of esophageal ade-
nocarcinoma samples, 7.0% of esophagogastric junction carcinoma, 4.2%
of gastric adenocarcinoma samples, and 0.8% of esophageal squamous
cell carcinoma. Metastatic sites such as lymph node and liver showed an
increased frequency of CCNE amplification relative to primary tumors.
Consistent with a chromosomal instability phenotype, CCNE amplifica-
tion was associated with decreased CDH mutation and increased TP
mutation and ERBB amplification. We observed no differences in im-
mune biomarkers such as PD-L1 expression and tumor mutational burden
comparing CCNE-amplified and nonamplified tumors, although CCNE
amplification was associated with changes in immune populations such

as decreased B cells and increased M1 macrophages from transcriptional
analysis. Real-world survival analysis demonstrated that patients with
CCNE-amplified gastric cancer had worse survival after trastuzumab for
HER2-positive tumors, but better survival after immunotherapy. These
data suggest that CCNE-amplified gastric cancer has a distinct molecular
and immune profile with important therapeutic implications, and therefore
further investigation of CCNE amplification as a predictive biomarker is
warranted.

Significance:Advanced gastric cancer has a relatively dismal outcome with
a 5-year overall survival of less than 10%. Furthermore, while comprehen-
sive molecular analyses have established molecular subtypes within gastric
cancers, biomarkers of clinical relevance in this cancer type are lacking.
Overall, this study demonstrates that CCNE amplification is associated
with a distinct molecular profile in gastric cancer andmay impact response
to therapy, including targeted therapy and/or immunotherapy.

Introduction
Gastric adenocarcinoma is one of the most common cancers worldwide, with
over 1 million new diagnoses and 700,000 deaths annually (1, 2). Compre-
hensive molecular analyses have identified key genetic alterations in gastric
cancer and defined four molecular subtypes: genomically stable (GS), chro-
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mosomal instability (CIN), microsatellite instability (MSI), and Epstein-Barr
virus positive (RRID:SCR_003193). While genomic profiling of patient tu-
mors has become commonplace, clinically actionable biomarkers for gastric
cancer treatment are limited to HER2 positivity/amplification, microsatellite
instability-high (MSI-H) status, and PD-L1 overexpression. Immunotherapy
with PD1 inhibitors such as nivolumab and pembrolizumab are now approved
in combination with first-line chemotherapy, but the benefit is modest andme-
dian survival remains between 1 and 2 years (3–6). Recent data suggest that
the Claudin 18.2 antibody zolbetuximab improves outcomes when added to
chemotherapy in patients with Claudin 18.2-positive tumors (∼30%–40% of
gastric cancers); however, this agent is not yet approved and improves median
overall survival (OS) by less than 3 months (7–9). Therefore, there is a pressing
need to define additional clinically relevant biomarkers in patients with gastric
cancer.

One alteration that may impact therapeutic response is overexpression of the
cell cycle regulator cyclin E, typically through copy-number amplification of
the gene CCNE. Amplification of CCNE has been identified in diverse tu-
mor types including approximately 12% of esophagogastric cancer (EGC) and
20% of high-grade serous ovarian cancers from The Cancer Genome Atlas
(TCGA) analysis (10). CCNE amplification promotes unscheduled S-phase
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entry, DNA replication stress, and CIN (11–14). Previous studies identified a
correlation betweenCCNE amplification and increased livermetastases as well
as poor survival in select cohorts of patients with gastric cancer (15, 16). CCNE
has been found to be commonly coaltered with ERBB amplification/HER2
overexpression, and preclinical and clinical studies suggest that CCNE am-
plification promotes resistance to HER2-targeted therapies (i.e., trastuzumab
and lapatinib; refs. 17, 18). Moreover, immunologically “cold” esophagogastric
(EG) adenocarcinoma with low T-cell abundance demonstrated enrichment of
CCNE amplification, suggesting that CCNE amplification may promote im-
mune resistance (19). However, the clinical impact of CCNE amplification in
a real-world population is unknown. Here, we performed detailed molecular
profiling of CCNE-amplified EGC to understand the genomic and immune
landscape of these tumors and define treatment outcomes.

Materials and Methods
Tissue Acquisition
Tumor tissue from patients diagnosed with esophageal squamous cell carci-
noma (ESCC), esophageal adenocarcinoma (EAC), esophagogastric junction
carcinoma (EJC), or gastric adenocarcinoma were obtained from surgical or
biopsy specimens. Tumors underwent comprehensive molecular analysis at
Caris Life Sciences. This study was conducted in accordance with guidelines
of the Declaration of Helsinki, Belmont report, and U.S. Common rule.

Next-generation Sequencing
Next-generation sequencing (NGS) was performed on genomic DNA isolated
from formalin-fixed paraffin-embedded (FFPE) tumor samples using NextSeq
or NovaSeq (Illumina, Inc.) at Caris Life Sciences. A custom-designed SureSe-
lect XT assay was used to enrich 592whole-gene targets (Agilent Technologies).
Variants were detected with >99% confidence based on allele frequency and
amplicon coverage, with an average sequencing depth of coverage of >500×
and an analytic sensitivity of 5%. For whole-exome sequencing (WES) using
NovaSeq, a hybrid pull-down panel of baits designed to enrich for more than
700 clinically relevant genes at high coverage (>500×) and high read-depthwas
used, along with another panel designed to enrich for an additional >20,000
genes at lower depth (>250×). Prior to molecular profiling, tumor enrichment
was attained by manual microdissection techniques. Genetic variants identi-
fied were interpreted by board-certified molecular geneticists and categorized
according to the American College of Medical Genetics and Genomics stan-
dards. When assessing mutation frequencies of individual genes, “pathogenic,”
and “likely pathogenic” were counted as mutations while “benign,” “likely be-
nign” variants and “variants of unknown significance” were excluded. Tumor
mutational burden (TMB) was measured by totaling somatic mutations per tu-
mor (high >10 mt/Mb). A copy number (CN) cutoff of CN ≥ 6 was used to
define gene amplification. CN gain was defined as CN ≥ 3 and CN < 6. The
CN cutoff of 6 for amplificationwas determined internally at Caris as a standard
(based onMYC/ERBB and validated with IHC).

Whole Transcriptome Sequencing
FFPE specimens underwent pathology review to diagnose percent tumor con-
tent and tumor size; a minimum of 10% of tumor content in the area for
microdissection was required to enable enrichment and extraction of tumor-
specific RNA. Qiagen RNA FFPE tissue extraction kit was used for extraction
to detect fusions and the RNA quality and quantity were determined us-
ing the Agilent TapeStation. Biotinylated RNA baits were hybridized to the

synthesized and purified cDNA targets and the bait–target complexes were
amplified by PCR. The libraries were quantified, normalized and the pooled
libraries were denatured, diluted, and sequenced; the reference genome used
was GRCh37/hg19. Transcripts per million molecules were generated using the
Salmon expression pipeline for transcription counting. Immune cell fraction
was calculated by quanTIseq (20).

IHC and Chromogenic In Situ Hybridization
IHC of PD-L1 via 22C3 antibody; MLH1, M1 antibody; MSH2, G2191129 an-
tibody; MSH6, 44 antibody; PMS2, EPR3947 antibody; and HER2 via 4B5
antibody (Ventana Medical Systems, Inc.) were performed on full FFPE sec-
tions of glass slides. Slideswere stained using automated staining techniques per
the manufacturer’s instructions (Ventana), and were optimized and validated
per Clinical Laboratory Improvement Amendments/The College of Ameri-
can Pathologists (CAP) and International Organization for Standardization
requirements. Staining was scored for intensity (0 = no staining; 1+ = weak
staining; 2+ = moderate staining; 3+ = strong staining) and staining percent-
age (0%–100%). The complete absence of protein expression of any of the four
proteins tested (0+ in 100% of cells) was considered deficient mismatch repair
proficiency (MMR). Combined positive score (CPS) ≥ 1 was deemed positive
for PD-L1 analysis. A subset of tumors was tested for HER2 by chromogenic
in situ hybridization (CISH; INFORM DUAL HER2 ISH Assay, Ventana), and
HER2 status was interpreted following American Society of Clinical Oncol-
ogy/CAP scoring criteria (21). A board-certified pathologist evaluated all IHC
and CISH results independently.

MSI/MMR Status
A combination of multiple test platforms was used to determine the MSI or
MMR status of the tumors profiled, including fragment analysis (FA, Promega),
IHC, and NGS (7,000 target microsatellite loci were examined and compared
with the reference genome hg19 from the University of California, Los Angeles,
CA). The three platforms generated highly concordant results, as reported pre-
viously. In the rare cases of discordant results, the MSI or MMR status of the
tumor was determined in the order of IHC, FA, and NGS (22).

TCGA Database Access
Data fromTCGAwere accessed and utilized as a comparative tool for currently
known and analyzed gene modifications in gastric adenocarcinoma. Accession
was completed using TCGA webpage (RRID:SCR_003193).

CODEai
Real-world OS (rwOS) information was obtained from insurance claims data
and calculated fromfirst of treatment time to last patient contact. Kaplan–Meier
estimates were calculated for molecularly defined patient cohorts across the
time period determined by sample collection or first treatment through last
patient contact.

Statistical Analysis
Statistical significance was determined using the χ2, Fisher exact, or
Mann–Whitney test, as appropriate. The Benjamini–Hochberg method was
implemented to adjust P values for multiple comparisons and a q ≤ 0.05 was
regarded as statistically significant to reduce false discovery rate. rwOS was
compared between groups using the log-rank test.

Ethics Approval
This study was conducted in accordance with the guidelines of the Declara-
tion of Helsinki, Belmont report, and U.S. Common rule. In keeping with 45
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TABLE 1 Patient demographic data and frequency of CCNE1 amplification by EGC subtype

Esophageal adenocarcinoma
Esophageal squamous cell
carcinoma

Esophagogastric junction
carcinoma Gastric adenocarcinoma

Characteristic Amp No Amp Amp No Amp Amp No Amp Amp No Amp

N 142 (6.24) 2,134 (93.8) 6 (0.80) 745 (99.2) 101 (6.97) 1,348 (93) 109 (4.18) 2,498 (95.8)
Age, median (range) 62.5 (23–90) 66 (14–90) 63.5 (59–87) 67 (30–90) 59 (31–84) 66 (19–90) 66 (28–90) 65 (15–90)
Gender

Female 15 (10.6) 282 (13.2) 3 (50) 254 (34.1) 15 (14.9) 254 (18.8) 36 (33) 1,009 (40.4)
Male 127 (89.4) 1,852 (86.8) 3 (50) 491 (65.9) 86 (85.1) 1,094 (81.2) 73 (67) 1,489 (59.6)

Site, N (%)
Primary 79 (55.6) 1418 (66.4) 2 (33.3) 557 (74.8) 40 (39.6) 610 (45.3) 68 (62.4) 1,664 (66.6)
Metastatic 59 (41.5) 687 (32.2) 4 (66.7) 181 (24.3) 59 (58.4) 699 (51.9) 39 (35.8) 791 (31.7)
Unclear 4 (2.8) 29 (1.4) 0 (0) 7 (0.9) 2 (2) 39 (2.9) 2 (1.8) 43 (1.7)

CFR46.101(b) (4), this studywas performed utilizing retrospective, deidentified
clinical data. Therefore, this study was considered Institutional Review Board
exempt, and no patient consent was necessary from the subject.

Data Availability
The datasets generated and/or analyzed during the current study are available
from the corresponding author on reasonable request. The NGS raw data are
owned by Caris Life Sciences and cannot be publicly shared because of the data
usage agreement signed byDr. RyanH.Moy.Qualified researchers can apply for
access to these data by contacting Joanne Xiu (jxiu@carisls.com) and signing a
data usage agreement.

Results
Patient Demographics and CCNE1 Amplification Status
The study population was composed of 7,083 patients including 751 patients
with ESCC, 2,276 patients with esophageal adenocarcinoma (EA), 1,449 pa-
tients with EJC, and 2,607 patients with gastric adenocarcinoma. Baseline
patient characteristics are summarized in Table 1. We performed NGS includ-
ing targeted and WES to identify the mutations and CN alterations (CNA) in
each tumor sample, using a cutoff of CCNECN≥6 to define CCNE amplifica-
tion. Compared with adenocarcinoma, ESCC demonstrated a narrower range
of CCNE amplification (Fig. 1A). We identified CCNE amplification in 6.2%
of EA, 7.0% of EJC, and 4.2% of gastric adenocarcinoma samples; by contrast,
CCNE was rarely amplified in ESCC (0.8%; Fig. 1B). The median CCNE CN
was 2.05, 2.05, 1.97, and 1.98 for EA, EJC, gastric adenocarcinoma, and ESCC,
respectively. We compared the CCNE amplification rate in untreated tumors
versus tumors exposed to prior therapy and observed a higher frequency of
CCNE amplification in untreated EA but no difference in the other EGC sub-
types (Supplementary Fig. S1), suggesting that CCNE amplification is likely
present at diagnosis prior to therapy.

There were 4,438 samples from primary tumors (63%) and 2,591 samples from
metastases (37%). Compared with primary tumors, metastatic sites tended
to have a higher frequency of CCNE amplification (Fig. 1C; Supplementary
Table S1). The frequency of CCNE amplification in EA primary tumors was
5.3% versus 9.1% in metastatic samples (P = 0.0061, Fisher exact test), with an
amplification rate of 7.6% in lung metastases, 8.8% in liver metastases, 9.5% in

lymph node metastases, 10% in brain metastases, and 16.1% in connective/soft
tissue metastases. Similarly, we observed a higher frequency of CCNE am-
plification in gastric adenocarcinoma metastatic sites (6.0%) such as liver and
lymph node metastases (11.1% and 10.4%, respectively) compared with primary
tumors (3.9%; P = 0.037, Fisher exact test). These data suggest that CCNE
amplification is common in EG adenocarcinomas, particularly in metastatic
lesions.

Genomic Coalterations and Oncologic Biomarker
Prevalence in Concordance with CCNE1Amp

Using WES data and IHC, we next assessed for common coalterations
with CCNE amplifications and compared the molecular profiles of CCNE-
amplified and nonamplified EG adenocarcinoma. We observed several
differences in critical oncogenes and tumor suppressors. The most common
comutated gene across EG adenocarcinoma was TP, consistent with CCNE-
amplified EG adenocarcinoma being most associated with the CIN molecular
subtype (Fig. 2A; Supplementary Fig. S2A–S2C). Here we observed that TP
mutations were significantly enriched in CCNE-amplified gastric adenocar-
cinoma (87.0% vs. 54.6%, P = 3.2 × 1011) but only slightly increased in
CCNE-amplified EA (90.6% vs. 85.6%, P = 0.10; Supplementary Fig. S2A and
S2C). We also observed increases in FBXW mutations in CCNE-amplified
EG adenocarcinoma, with a significant increase in CCNE-amplified EA (8.9%
vs. 2.4%, P = 0.002) and modest albeit not statistically significant increase
in CCNE-amplified gastric adenocarcinoma (5% vs. 3.4%, P = 0.39; Fig. 2A;
Supplementary Fig. S2). Interestingly, FBXW7 encodes an ubiquitin ligase com-
plex that is demonstrated to negatively posttranslationally regulate a multitude
of critical proteins, including CCNE1 (23).

From TCGA analysis, several frequently occurring alterations have been de-
scribed in GS, gastric adenocarcinoma, including mutations in CDH and
RHOA, as well as CLDN:ARHGAP fusions. We observed a significant reduc-
tion in CDH mutations in CCNE-amplified gastric adenocarcinoma versus
nonamplified gastric adenocarcinoma (2.9% vs. 16.4%, P = 0.0002) as well
as a reduction in CLDN:ARHGAP fusions (0% vs. 6.8%); however, the fre-
quency of RHOA mutations were similar (Supplementary Fig. S2C). We also
observed frequent PIKCA mutations, associated with the EBV+ subtype, in
gastric adenocarcinoma and EA, with a decrease in CCNE-amplified versus
nonamplified gastric adenocarcinoma (1.9% vs. 9.2%, P = 0.01) and a similar
frequency in CCNE-amplified versus nonamplified EA. Finally, we observed a
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FIGURE 1 Incidence of CCNE1 amplification in EGC by real-world analysis. NGS, including targeted and WES, was performed on 7,083 patients
including 751 patients with ESCC, 2,276 patients with EA, 1,449 patients with EJC, and 2,607 patients with gastric adenocarcinoma (A). CN distribution
of CCNE1 is reported by total numbers for EAC, ESCC, gastric adenocarcinoma, and EJC. CCNE1 amplification is defined as a CN ≥ 6 which is denoted
by the black line. Percent CCNE1 amplification across cancer types (B). CCNE1 amplification by site, either primary tumor or metastasis, is shown for
EAC, gastric adenocarcinoma, and EJC (C).

trend toward significant decreases in ARIDA and CDKNA mutations across
CCNE-amplified EG adenocarcinoma.

CNA analysis revealed CNA differences in several genes in CCNE-amplified
EG adenocarcinoma (Fig. 2B). We observed a significant increase in CNA in

FGFR, BCL, and IDH in CCNE-amplified versus nonamplified EG adeno-
carcinoma (Fig. 2B). Other CNA (besides ERBB) which have been investigated
as potential driver alterations or targetable biomarkers demonstrated reduced
frequency in CCNE-amplified EG adenocarcinoma including KRAS (7.8%
vs. 11.6%, P = 0.32), EGFR (3.2% vs. 4.6%, P = 0.22), MET (0.3% vs. 2.9%,
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P = 0.004), and FGFR (0.3% vs. 2.3%, P = 0.013), suggesting that CCNE am-
plification is molecularly distinct from these other drivers. LOH is a frequent
genetic event in many cancers and is a hallmark of CIN. We leveraged WES
data to measure genomic LOH and observed a significant increase in LOH in
CCNE-amplified EG adenocarcinoma (35.9% vs. 20.6%,P= 3.1× 106; Fig. 2C).

Previous studies have identified concomitant focal amplification of CCNE and
ERBB in gastric cancer as well as breast cancer (24, 25). Consistent with
these data, we also observed a significant increase in HER2 overexpression
or ERBB amplification in CCNE-amplfiied EG adenocarcinoma by either
CISH, IHC, or NGS (Fig. 2D). By contrast, ERBB mutations were reduced in
CCNE-amplified EG adenocarcinoma.

To further determine whether CN level correlates with differential genomic
features, we compared tumors with CCNE CN≥6 (amplification), CN≥3
and <6 (gain), and CN<3 (neutral; Supplementary Fig. S3A–S3D). Interest-
ingly, we observed stepwise differences in select alterations based on CN level.
For example, EA with CCNE gain demonstrated intermediate frequency of
TP, CDKN2A, ARIDA, and ERBB alterations relative to CCNE neutral
and amplified tumors, while gastric adenocarcinoma with CCNE gain showed
intermediate levels of TP mutation, CDH mutation, KMTD mutation,
LOH, and ERBB amplification. These data suggest there may be differences
in molecular phenotype based on the magnitude of CCNE CNA.

We compared our findings of CCNE amplification rates in EGC with the
Memorial Sloan Kettering (MSK) Cancer Discovery 2017 cohort (26) [pub-
licly available in cBioPortal (27, 28)] (Supplementary Fig. S4A). Among
341 esophagogastric tumors that underwent MSK-IMPACT sequencing, 9.2%
(32 samples) harbored CCNE amplification, including 13/147 (8.8%) gas-
tric adenocarcinoma samples, 12/137 (8.8%) EAC samples, and 7/57 (12.3%)
EJC samples. While limited by the smaller sample size, examination of coal-
terations among the CCNE-amplified versus non–CCNE-amplified cohorts
revealed trends toward increased FBXW mutation (9.4% vs. 3.2%, P = 0.11)
increased ERBB amplification (43.8% vs. 27.5%, P = 0.066), decreased CDH
mutation (0% vs. 6.47%, P = 0.24), decreased CDKNA mutation (3.1% vs.
12.0%, P = 0.23), and decreased ARIDA mutation (0% vs. 14.2%, P = 0.022;
Supplementary Fig. S4B). Overall, these findings are largely consistent with
comprehensive genomic profiling from our larger real-world cohort and indi-
cate that CCNE-amplified EG adenocarcinoma harbors a distinct molecular
landscape compared with nonamplified tumors.

Immune Microenvironment and Transcriptional
Landscape of CCNE1Amp EGC
CIN has been linked to immune cell exclusion, and prior analysis of tumors
within TCGA demonstrated that “immune-cold” CIN-type EG adenocarci-
noma are enriched for CCNE amplifications, correlating with low CD8+

T-cell abundance (19). Therefore, we examined immune-related biomarkers in
CCNE-amplified EGC. We observed a significant decrease in MMR/MSI-H
tumors in CCNE-amplified adenocarcinoma (0.6% vs. 5.6%, P = 5.0 × 10−5),
while therewere no significant differences inTMB-high status (≥10mt/Mb) be-
tween CCNE-amplified and nonamplified tumors (Fig. 3A). Median TMB for
both CCNE-amplified and nonamplified tumors was 4.0. PD-L1 is a validated
biomarker, with higher expression by CPS tending to confer higher responsive-
ness to anti-PD1 inhibitors (29), but we found no difference in the percentage
of PD-L1–positive (CPS ≥1) or mean PD-L1 CPS (Fig. 3A).

Next, we utilized RNA deconvolution of whole transcriptome sequencing
(WTS) to characterize the immune microenvironment of CCNE-amplified
tumors relative to nonamplified EGC (Fig. 3B-D; Supplementary Fig. S5).
In CCNE-amplified EA, we observed a statistically significant underrep-
resentation of B cells and neutrophils (Fig. 3B). Similarly, we found that
CCNE-amplified gastric adenocarcinoma harbored decreased B cells in ad-
dition to natural killer cells, whereas M1 macrophages showed increased
representation. There were no significant differences in CD4+ or CD8+ T-cell
representation in CCNE-amplified versus nonamplified EA or gastric ade-
nocarcinoma. Assessment of individual immune-related genes demonstrated
decreased IFNG andCD RNA expression inCCNE-amplified EA (Fig. 3C).
Finally, we analyzed specific immune-related gene signatures and found de-
creased IFN signatures in CCNE-amplified EA, as well as trends toward
decreased T cell–inflamed signatures in CCNE-amplified EA and gastric
adenocarcinoma (Fig. 3D).

In addition to immune microenvironment deconvolution, we performed inge-
nuity pathway analysis of differentially expressed genes. Consistentwith the role
of CCNE1 overexpression in driving cell cycle progression, we observed upreg-
ulation of pathways related to the cell cycle including kinetochore metaphase
signaling and G1–S checkpoint regulation (Supplementary Fig. S6). One of the
most strongly overrepresented pathways in both CCNE-amplified gastric ade-
nocarcinoma and EAwas liver X receptor/retinoid X receptor activation, which
has been linked to regulation of tumor growth, metastasis, and restriction of
innate immune suppression in tumors (30–32). Together, these data indicate
that CCNE-amplified EG adenocarcinoma harbors a distinct immune and
transcriptional landscape.

Treatment Outcome and CODEai Survival Analysis
of CCNE1Amp EGC
We utilized our real world evidence (RWE) database to analyze treatment
history and survival outcomes, comparing patients with CCNE-amplified
versus nonamplified tumors. Patients with CCNE-amplified EA had pro-
longed OS (defined as the time from tissue collection to last day of contact)
compared with patients with non–CCNE-amplified EA [HR = 0.756, 95%
confidence interval (CI): 0.605–0.945, P = 0.014] (Supplementary Fig. S7A);
similar results were observed in patients with EJC (Supplementary Fig. S7D).
While there were no differences in OS in patients with CCNE-amplified
gastric adenocarcinoma (Fig. 4A), interestingly, we observed differences in
survival outcomes after receiving specific therapies. There were no differ-
ences in survival after treatment with oxaliplatin (Fig. 4B); however, compared
with patients with non–CCNE-amplified gastric adenocarcinoma, patients
with CCNE-amplified gastric adenocarcinoma showed a trend toward shorter
survival after receiving trastuzumab (HR = 1.694, 95% CI: 0.873–3.289,
P = 0.115; Fig. 4C). When limiting analysis to only patients with HER2
positivity by IHC (HR = 2.694, 95% CI: 1.146–6.336, P = 0.018) or NGS
(HR = 3.641, 95% CI: 1.442–9.194, P = 0.004), patients with HER2+/CCNE-
amplified gastric adenocarcinoma demonstrated significantly worse survival
after trastuzumab comparedwith patientswithHER2+/non–CCNE-amplified
gastric adenocarcinoma (Fig. 4D and E). In contrast, patients with CCNE-
amplified gastric adenocarcinoma exhibited a trend toward improved survival
after receiving immunotherapy with a PD1 or PD-L1 inhibitor (HR = 0.541,
95% CI: 0.239–1.226, P = 0.134; Fig. 4F). These differences in survival out-
comes with trastuzumab or immunotherapy were limited to CCNE-amplified
gastric adenocarcinoma, as we did not find any significant survival differences
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in CCNE-amplified EA or EJC after trastuzumab or immunotherapy, although
there was a slight trend toward improved survival after immunotherapy in
CCNE-amplified EJC (Supplementary Fig. S7B, S7C, S7E, and S7F). Although
these analyses are limited by the small sample size of patients with available
survival data, these data suggest that CCNE amplification may be associ-
ated with clinical outcomes in response to either HER2-targeted therapy or
immunotherapy, specifically in patients with gastric adenocarcinoma.

Discussion
CCNE amplification is a common alteration in multiple tumor types that leads
to G1–S-phase checkpoint dysregulation and genomic instability, a key hall-
mark of cancer. While CCNE amplification has been previously identified in
gastric cancer, its clinical relevance in a real-world setting has been largely un-
characterized. In this study, we utilized comprehensive molecular profiling to
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define the incidence andmolecular features ofCCNE-amplified gastric cancer,
as well as implications on treatment outcome.

We identified CCNE amplification in approximately 7% of EA and 4% of gas-
tric adenocarcinoma. This frequency is lower than previous studies, in which
CCNE amplification has been reported in 10%–12% of EGCs (10, 15, 33). One
difference may be the cutoff used to define gene amplification, as some stud-
ies have utilized a CN cutoff of 4 as opposed to our study in which we used a
threshold of 6. In addition, the histologic makeup of the study population af-
fects the overall frequency of CCNE amplification, which is more likely to be
associated with intestinal-type gastric cancer than diffuse type. Finally, the tis-
sue site may impact the frequency of CCNE amplification, as we observed a
higher percentage of CCNE amplification in metastatic sites compared with
primary tumors. The association of CCNE amplification with metastases is
consistent with other data suggesting that patients with CCNE-amplified gas-
tric cancer aremore likely to have livermetastases (15). Humanmetastases have
also been shown to be enriched for CIN, and genetic inhibition of CIN delayed
metastatic in preclinical models, suggesting that CIN promotes metastatic pro-
gression (34–36). Our data support the notion that CCNE amplification is a

common alteration in EG adenocarcinoma and may correlate with increased
metastatic potential.

We assessed common coalterations with CCNE amplification and observed
frequent TP mutations as well as decreased CDH mutation. Moreover,
CCNE-amplified tumors tended to have a greater number of CNAs, includ-
ing an enrichment for HER2 overexpression/ERBB amplification as has been
described previously. These data are consistent with CCNE amplification as a
critical driver of CIN and its association with CIN-type gastric cancer.

Importantly, we found that CCNE amplification may have therapeutic
relevance in gastric cancer. Previous studies have suggested that CCNE am-
plification is a potential prognostic factor in certain tumor types. For example,
CCNE amplification has been associated with poor survival in patients with
triple-negative breast cancer (37) and ovarian cancer (10, 38). In a small cohort
of patients with resected gastric cancer, CCNE overexpression was associ-
ated with worse disease-free survival (16). Furthermore, CCNE expression
has been suggested to be a predictive biomarker, with high CCNE RNA ex-
pression correlating with decreased progression-free survival in patients with
metastatic hormone receptor–positive, HER2-negative breast cancer receiving

1406 Cancer Res Commun; 4(6) June 2024 https://doi.org/10.1158/2767-9764.CRC-23-0496 | CANCER RESEARCH COMMUNICATIONS



Molecular Landscape of CCNE1-amplified Gastric Cancer

the CDK4/6 inhibitor Palbociclib (39). CCNE amplification has also been
linked to therapeutic resistance to trastuzumab in breast cancer and gastric
cancer (18, 24). In addition, in a phase II trial of chemotherapy plus the HER2
inhibitor lapatinib for gastric cancer, nonresponders were enriched for CCNE
amplification (17). Using insurance claims data, we found that CCNE am-
plification was not associated with OS in gastric cancer. However, patients
with HER2-positive gastric cancer and concurrent CCNE amplification ex-
perienced poorer prognosis after receiving trastuzumab than those without
concurrentCCNE amplification. This is suggestive ofCCNE amplification as a
predictive biomarker and further demonstrates that CCNE amplification may
be one mechanism that decreases efficacy or promotes resistance to targeted
therapies. Indeed, recent studies suggest that CCNE amplification may pre-
dict sensitivity to the Wee1 kinase inhibitor adavosertib (40). Modulation of
CCNE1 expression inHER2-positive cancer cell lines regulated sensitivity to the
HER2-targeting antibody–drug conjugate trastuzumab deruxtecan (T-DXd) in
vitro, and adavosertib acted synergistically with T-DXd in HER2-expressing
patient-derived xenografts in vivo (41).

While we observed impaired survival after trastuzumab in CCNE-amplified
gastric cancer compared with nonamplified gastric adenocarcinoma, sur-
prisingly, we noted a trend toward improved survival after initiation of
immunotherapy. In addition to promoting genomic instability, CCNE ampli-
fication may also modulate the tumor-immune microenvironment. On one
hand, CIN can stimulate inflammatory pathways, such as through generation
of micronuclei and cytosolic DNA leading to cGAS-STING activation. How-
ever, CIN and particularly aneuploidy can also facilitate immune evasion (36,
42). Analysis of CIN-type EG adenocarcinomas from TCGA revealed that
immune-cold tumors with decreased CD8+ T-cell infiltration are enriched for
CCNE amplifications, suggesting that CCNE amplification may also promote
immune resistance in gastric cancer (19). It is important to note that TCGA
samples predominantly represent primary tumors, whereas samples in our
dataset primarily representmetastatic tumorswhichmay have a distinct tumor-
immune microenvironment. Interestingly, we did not observe any differences
in T-cell abundance in CCNE-amplified gastric cancer from transcriptomic
analysis. However, there were changes in other immune cell populations in-
cluding decreased B cells and neutrophils in CCNE-amplified tumors, as well
as increased M1 macrophages in CCNE-amplified gastric adenocarcinoma.
We also observed decreased T-cell inflammation scores and IFN signatures
in CCNE-amplified tumors. While these analyses are limited by extraction
from bulk RNA sequencing, they suggest thatCCNE-amplified EGCmay have
a unique tumor-immune microenvironment that should be explored. Future
studies such as single-cell RNA sequencing, spatial transcriptomics, or quan-
titative immunofluorescence may further define the immune cell composition
and localization inCCNE-amplified gastric cancer, and how the distinct tumor
microenvironment may impact response to therapy.

Despite the large size of our dataset and clinical relevance, we acknowledge a
few limitations within this study. There exists an extreme genetic andmolecular
heterogeneity of this patient cohort, for which TCGA subtypes of EG adeno-
carcinoma are well established (RRID:SCR_003193). While CCNE-amplified
tumors are enriched for alterations associated with CIN (such as TP and
ERBB), molecular data in the CODEai database are aggregated, and so we
are unable to assign TCGA subtypes and assess the relationship of CCNE
amplification on an individual sample basis. There was a limited number of
CCNE-amplified tumors having been treated with immunotherapy, asCCNE-
amplified tumors account for only 4%–7% of samples and not all samples have

linked insurance claims data for real-world survival analysis. Also, some histor-
ical samples may have been obtained when immunotherapy was not approved,
and patients with coamplification of CCNE and ERBB may have received
trastuzumab alone prior to recent approval of chemotherapy in combination
with trastuzumab and pembrolizumab perKEYNOTE-811 (4). Asmore patients
withmetastatic gastric cancer are receiving immunotherapy in the first-line set-
ting in combination with chemotherapy (and trastuzumab for HER2+ tumors),
it will be important to understand whether CCNE amplification impacts the
response to therapy in larger cohorts, as well as to identify other coalterations
that may modulate the effect of CCNE expression. We will need prospective
data to assess whether treatment paradigms should be modified in the setting
of CCNE and ERBB coamplification.

Overall, this study demonstrates that CCNE amplification is associated with a
distinct molecular profile in gastric cancer andmay impact response to therapy,
including targeted therapy and/or immunotherapy.WhileCCNE1 cannot yet be
directly inhibited, several agents are under investigation to target CCNE am-
plification through synthetic lethal strategies (43).Wee1 inhibitors have thus far
been clinically limited in part due to toxicity (40), but ongoing trials are investi-
gating PKMYT inhibition (such as RP-6306; ref. 44) and CDK inhibition (45)
selectively in CCNE-amplified cancers (46, 47). Thus, further investigation of
CCNE amplification as a predictive biomarker is warranted.
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