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Abstract. Nuclear receptors, many of which undergo a ulate their expression in response to ligand. In particular,
major conformational change upon binding specific lig- nuclear receptors repress or stimulate transcription by
and, belong to a superfamily of proteins that bind to recruiting corepressor or coactivator proteins, in addition

to directly contacting the basal transcription machinery.specific DNA sequences and control gene transcription.
In this review, we discuss recent progress in studies ofThey regulate the assembly of a transcriptional preinitia-

tion complex at the promoter of target genes and mod- these transcriptional coregulators of nuclear receptors.
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Introduction

Over 150 members of the nuclear receptor superfamily
[reviewed in ref. 1] have been discovered since glucocor-
ticoid receptor was first reported in 1985. They primar-
ily regulate, in a ligand-dependent manner,
transcriptional initiation of target genes by directly
binding to specific DNA sequences named hormone
response elements (HREs). The C terminus of the lig-
and-binding domain (LBD) of these proteins harbors an
essential ligand-dependent transactivation function, ac-
tivation function 2 (AF2), whereas the N terminus of
many nuclear receptors often includes activation func-

tion 1 (AF1). Genetic studies have shown that tran-
scription coregulators (or cofactors) with no specific
DNA-binding activity are essential components of tran-
scriptional regulation, leading to the identification of a
series of nuclear receptor-interacting coregulatory
proteins [for recent reviews, see refs 2–5]. These include
the p160 family, CREB-binding protein (CBP)/p300,
p/CAF, thyroid hormone receptor (TR)-associated
protein (TRAP)/vitamin D3 receptor (VDR)-interacting
protein (DRIP), activating signal cointegrator-1 (ASC-
1), activating signal cointegrator-2 (ASC-2), TIF1,
ARA70, SRA, PGC-1, Smad3, REA, RIP140, and
many others. Thus far, these proteins have been shown
to exhibit a few characteristic features, as summarized
in figure 1. First, they bind to target transcription
factors in a ligand-dependent manner. Second, many of
them are capable of directly interacting with the basal
transcriptional machinery. Third, some of them exhibit
enzymatic function intrinsically linked to gene regula-
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tion, such as the nucleosome-modifying histone acetyl
transferase (HAT) or deacetylase (HDAC) activities. In
addition, they often harbor transferable transactivation
or repression domains. Thus, these proteins appear to
function by either remodeling chromatin structures and/
or acting as adapter molecules between nuclear recep-
tors and the components of the basal transcriptional
apparatus. In this article, we focus on a number of
coregulatory proteins whose functions with nuclear re-
ceptors are relatively well defined, along with ASC-1
and ASC-2, two coactivators newly reported from our
laboratory.

The p160 family

A group of related proteins named the p160 or steroid
receptor coactivator (SRC) family were found to en-
hance the ligand-induced transactivation function of
several nuclear receptors. These proteins are grouped
into three subclasses based on their sequence homology;
i.e., SRC-1/NCoA-1 [6–8], TIF2/GRIP1/NCoA-2 [6,
7], and p/CIP/ACTR/AIB1/xSRC-3 [8–11]. A distinc-
tive structural feature of the p160 coactivators is the
presence of multiple LXXLL signature motifs [8, 12].
The AF2 core (helix 12) was recently shown to undergo
major restructuring upon ligand binding, forming part
of a ‘charged clamp’ that accommodates p160 coactiva-
tors within a hydrophobic cleft of the receptor LBD,
through direct contacts with these LXXLL motifs [13,
14]. Loss-of-function studies using an antibody microin-
jection technique suggested that the p160 family
proteins are required for nuclear receptor functions in

vivo [8]. In addition, these factors can interact with
CBP/p300 via a separate domain [15, 16]. Weak intrin-
sic HAT activity has been reported in SRC-1 and
ACTR, suggesting that a function of these factors may
involve chromatin remodeling [9, 17]. Interestingly, a
novel arginine methyltransferase enzyme named
CARM1 was found to be associated with the C-termi-
nal region of p160 coactivators, which can methylate
histone H3 in vitro [18]. These results suggest that
coactivator-mediated methylation of proteins in the
transcription machinery may contribute to transcrip-
tional regulation. Finally, we have recently shown that
SRC-1 also mediates transactivation by a series of other
non-receptor-type transcription factors, including AP-1
[19], NFkB [20], SRF [21], and p53 [22]. In particular,
SRC-1 and p/CIP were strong coactivators for p53,
whereas AIB1 and xSRC-3 were repressive [22]. The
p160 family of proteins also has a large number of
uncharacterized isoforms [9; our unpublished results].
These results suggest a provoking hypothesis that each
member of the p160 family or isoforms may differen-
tially regulate a specific set of target transcription fac-
tors in vivo.

CBP/p300

CBP was originally isolated on the basis of its associa-
tion with CREB in response to cAMP signaling,
whereas its close homologue p300 was purified as a
cellular binding protein of the adenoviral protein E1A
[23, 24]. CBP and p300 have been implicated in func-
tions of a large number of regulated transcription fac-

Figure 1. The role of transcriptional coregulators. Three general functions of known receptor coregulators are denoted as I, II, and III
(see text for details). HRE and +1 denote hormone response elements and transcription initiation site, respectively. Nuclear receptors,
nucleosomes, coregulator and RNA polymerase II bound to TATA sequences are schematically depicted. Notably, RNA polymerase
II and most coregulators exist as a steady-state complex of multiple polypeptides [62].
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tors [reviewed in ref. 25]. For nuclear receptors, the
interaction with CBP/p300 is ligand and AF2 depen-
dent, although this direct interaction does not appear to
be essential for many nuclear receptors [26, 27]. In
fibroblasts isolated from a p300−/− mouse, however,
retinoic acid-dependent transcription was severely im-
paired, clearly indicating that CBP/p300 are compo-
nents of hormonal regulation of transcription in vivo
[28]. Surprisingly, CBP and p300 harbor HAT activity
[29, 30]. In addition, purified p300 was shown to poten-
tiate ligand-induced function of the estrogen receptor
(ER) only on chromatinized template, strongly indicat-
ing that a major function of CBP/p300 could be to
modify chromatin structure via histone acetylation [31].
However, it is notable that CBP/p300 can also acetylate
and functionally modulate, either in a negative or posi-
tive manner, non-histone proteins, including TFIIEb

[32], HMG I(Y) [33], p53 [34], hematopoietic transcrip-
tion factor GATA-1 [35], erythroid Krüppel-like factor
[36], and ACTR [37]. These results suggest that CBP/
p300 may also target different aspects of gene activa-
tion, in addition to their roles in chromatin remodeling.

p/CAF

This protein was first discovered on the basis of se-
quence homology to the yeast HAT protein Gcn5p [38].
The N terminus of p/CAF interacts with CBP and
members of the p160 family, whereas the interaction
interface between p/CAF and nuclear receptors differed
from that mediating the binding with either CBP/p300
or p160s [39, 40]. A core p/CAF complex was recently
isolated by exploiting an affinity purification approach,
which contained human homologues of the yeast ADA
proteins, TAFs or TAF homologues, and p/CAF-asso-
ciated factor 65a which contains histone-like structure
[41]. These results suggest a possible link between the
p/CAF complex and the RNA polymerase II core ma-
chinery. This p/CAF complex resembles the GCN5/
SAGA complex in yeast. In particular, other subunits of
the complex facilitate p/CAF to acetylate histones in
the context of nucleosomes, although p/CAF alone is
inert [42].

TRAP/DRIP

TRAPs, comprising at least nine polypeptides, were
immunopurified from cells stably transfected with Flag-
tagged TR [43]. In reconstituted in vitro transcription
assays utilizing naked DNA templates, the TRAP com-
plex potentiated the transactivation function of lig-
anded TR. A highly homologous VDR-interacting
protein complex (i.e., DRIP) was also isolated using
VDR as the affinity matrix [44], which in contrast to the

p160 family of coactivators was devoid of any HAT
activity [45]. Interestingly, constituents of the DRIP
complex are almost identical to another newly discov-
ered ‘activator recruited cofactor complex,’ which is
essential for a number of other transcription factors
such as SREBP, NFkB and VP16 [45, 46]. This TRAP/
DRIP complex is recruited to the LBD AF2 core in
response to ligand binding through a single subunit
(DRIP205/TRAP220/TRIP2) via an LXXLL motif
[45–47]. This protein anchors the other components of
the DRIP/TRAP complex to the receptor, thereby con-
ferring hormone-dependent recruitment of what ap-
pears to be a preformed complex. In addition,
TRAP/DRIP also contain part of the ‘mediator com-
plex’ [48], strongly suggesting their direct connection to
the RNA polymerase II core machinery.

ASC-1

We have recently reported a novel nuclear receptor-in-
teracting coactivator, ASC-1 [49]. As depicted in figure
2A, ASC-1 contains a zinc finger-like domain that har-
bors an autonomous transactivation function and binds
to basal transcription factors TBP and TFIIA and
transcription coactivators SRC-1 and CBP/p300. In-
triguingly, ASC-1, a nuclear protein, was found to be
cytoplasmic under serum deprivation but remained in
the nucleus when serum starved in the presence of either
ligand or overexpressed CBP/SRC-1, suggesting addi-
tional roles for ASC-1 in cellular signal transductions
[49]. Recently, we purified the steady-state ASC-1 com-
plex from HeLa nuclei, and found it to consist of four
different polypeptides of 200, 100, 65 (ASC-1), and 50
kDa [our unpublished results]. Isolation of their cDNAs
revealed that P200 and P50 have multiple RNA-helicase
domains and RNA-binding motifs, respectively. In ad-
dition, we have recently isolated a new coactivator
molecule ASC-3, which functions specifically with the
ER and AP-1 [our unpublished results]. Interestingly,
ASC-3 contains an RNA-binding motif and a serine/
arginine-rich domain associated with many splicing fac-
tors [50]. Notably, p68 RNA helicase was recently
isolated as a transcriptional coactivator specific for the
AF1 of ERa [51], whereas RNA helicase A was found
to mediate association of CBP with RNA polymerase II
[52]. In addition, a novel transcriptional coactivator p52
interacted not only with transcriptional activators and
general transcription factors to enhance activated tran-
scription but also with the essential splicing factor ASF/
SF2 both in vitro and in vivo to modulate
ASF/SF2-mediated pre-mRNA splicing [53]. More re-
cently, PGC-1 was shown to mediate direct coupling of
transcription initiation and mRNA processings in vivo
[54]. It is important to note that post-transcriptional
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Figure 2. Schematic representations of ASC-1 and ASC-2. (A) The putative E1A-type zinc finger domain of ASC-1 is as depicted, and
serves as an interaction interface with indicated nuclear receptors and also contains an autonomous transactivation domain (TAD) [49].
(B) Various functional domains of ASC-2 as well as its CBP-dependent TAD are as shown. ASC-2 contains two distinct LXXLL motifs
that differentially recognize different nuclear receptors, as indicated [61].

mRNA processing such as 5%-capping, splicing, and
polyadenylation can take place cotranscriptionally in
vivo [reviewed in ref. 55]. Thus, these results suggest
that, in addition to functioning as transcriptional coac-
tivators, these proteins, including ASC-1, may also act
as adaptor molecules to coordinate various pre-mRNA
processing and transcriptional initiation of class II
genes.

ASC-2

ASC-2 is another novel transcriptional coactivator
molecule of nuclear receptors that we have recently
isolated [56] (fig. 2B). Similar or identical molecules
have also been reported by other groups, and variously
named TRBP [57], PRIP [58], RAP250 [59], and NRC
[60]. ASC-2 binds not only basal transcription factors
TBP and TFIIA but also transcription coactivators
SRC-1 and CBP/p300. Accordingly, ASC-2, a typical
ligand- and AF2-dependent interacting protein of nu-
clear receptors, enhances receptor transactivation, ei-

ther alone or in conjunction with SRC-1 and p300.
Consistent with an idea that ASC-2 is essential for
nuclear receptor function in vivo, microinjection of
anti-ASC-2 antibody almost completely abrogated the
ligand-dependent transactivation of retinoic acid recep-
tor (RAR) [56]. Interestingly, the autonomous transacti-
vation domain of ASC-2 coincided with the interaction
interface with CBP, and the receptor-activating function
of ASC-2 required the integrity of CBP recruitment in
vivo [60, 61]. More recently, we have also found that
ASC-2 exists as a stable complex of multiple polypep-
tides in vivo [unpublished results], which shows distinct
chromatographic profiles from either ASC-1 [our un-
published results] or the recently described CBP/p300,
SRC-1, and TRAP/DRIP complexes [43, 44, 62]. In
addition, the LXXLL-type receptor interaction domains
of ASC-2 acted as a potent dominant negative mutant
of the peroxisome proliferator-activated receptors,
RAR, TR, and liver X receptor transactivation [58, 61].
These results suggest that ASC-2 should bind directly to
receptors and recruit CBP to mediate the receptor
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transactivation function in vivo. Surprisingly, ASC-2
was identical to AIB3, a gene previously identified
along with the p160 family member AIB1 during a
search for genes amplified and overexpressed in breast
and other human cancers [10, 63]. Similarly, high levels
of PBP/TRAP220 expression and its gene amplification
were also detected in primary breast cancers and breast
cancer cell lines [64]. Whether overexpression of these
genes directly results in tumorigenesis is not currently
clear. However, overexpression of these genes could
conceivably perturb normal signaling within the cell,
which in turn may lead cells to engage in deregulated
proliferative activity. Consistent with this idea, we have
recently found that ASC-2 mediates transactivation by
a series of mitogenic transcription factors, including
SRF, AP-1, and NFkB [65].

NCoR/SMRT/HDACs

Unliganded RAR and TR bind to their target genes and
repress transcription. This basal repression is known to
be mediated by the silencing mediator of RAR and TR
(SMRT) [66] and nuclear receptor corepressor (NCoR)
[67], originally isolated as factors associated with the
hinge domain of these nuclear receptors in the absence
of ligand. More recently, however, the molecular basis
of NCoR/SMRT recruitment was shown to be similar
to that of coactivator recruitment, involving coopera-
tive binding of two helical interaction motifs within the
NCoR carboxyl terminus to both subunits of an RAR-
retinoid X receptor (RXR) heterodimer [68, 69]. The
NCoR/SMRT nuclear receptor interaction motifs ex-
hibited a consensus sequence of LXXI/HIXXXI/L, rep-
resenting an extended helix compared to the coactivator
LXXLL helix [8, 12], which was able to interact with
specific residues in the same receptor pocket required
for coactivator binding. Thus, discrimination of the
different lengths of the coactivator and corepressor in-
teraction helices by the nuclear receptor AF2 motif may
provide the molecular basis for the exchange of coacti-
vators for corepressors, with ligand-dependent forma-
tion of the ‘charge clamp’ that stabilizes LXXLL
binding and inhibits interaction of the extended core-
pressor helix. Interestingly, NCoR and SMRT harbor
transferable repression domains that associate with var-
ious HDACs, consistent with the concept that histone
hypoacetylation correlates with gene repression [70–75].
In humans, three highly homologous class I (HDAC1,
HDAC2, HDAC3) and four class II (HDAC4,
HDAC5, HDAC6, HDAC7) HDAC enzymes have
been identified to date. The class I deacetylases HDAC1
and HDAC2 are components of multisubunit com-
plexes (mSin3A and the NuRD complex) that are criti-
cally involved in the basal repression by unliganded TR

and RAR [76, 77]. A few components of the NuRD
complex are also present in the recently described Sin3
complex that consists of seven polypeptides [78, 79]. In
particular, SAP30 was found to interact directly with
NCoR [79]. It should be noted that NCoR/SMRT may
serve as an adapter molecule between the core mSin3
complex and sequence-specific transcriptional repres-
sors such as apo-nuclear receptors without stably asso-
ciating with the mSin3 complex. More recently,
however, SMRT/NCoR was found to be an active
component of a newly isolated HDAC3 complex [72,
73]. NCoR/SMRT have also been reported to partner
with HDAC4, HDAC5, and HDAC7 [74, 75]. Steroid
hormone receptors do not appear to interact with
NCoR or SMRT in the presence or absence of agonists,
whereas both the ER and the progesterone receptor can
interact with these corepressors in the presence of their
respective antagonists [80–83]. Interestingly, NCoR/
SMRT are also known to mediate transcriptional re-
pression from a wide variety of other
non-receptor-mediated pathways. These include AP-1,
NFkB, SRF [84], MyoD [85], the bHLH-LZ proteins
Mad and Mxi that mediate repression of myc activities
and tumor suppression [86], E2F-repressive retinoblas-
toma protein [87], and the oncoproteins PLZF-RAR
[88] and LAZ3/BCL6 [89], which are involved in acute
promyelocytic leukemia and non-Hodgkin lymphomas,
respectively.

Conclusion and perspectives

Transcription coactivators and corepressors provide im-
portant insights into the mechanisms by which ligand
mediates the transactivation function of nuclear recep-
tors. In brief, ligand binding results in the dismissal of
HDAC-containing corepressor complexes and the con-
comitant recruitment of coactivator complexes. The
current model for the coactivator recruitment by nu-
clear receptors involves a two-step mechanism, depicted
in figure 3A. First, SRC-1 appears to be directly re-
cruited to the liganded receptors, and then serves as a
platform to recruit CBP. Consistent with this idea, the
receptor-interacting LXXLL motif located at the N
terminus of CBP was deleted without significantly af-
fecting transactivation by RAR-RXR heterodimers,
whereas the SRC-1 LXXLL motifs were absolutely
essential [26, 27]. These factors and associated proteins
such as p/CAF, by using their HAT activities, remodel
the nucleosomal structures so that TRAP/DRIP com-
plexes can replace SRC-1/CBP and bind the liganded
receptors. Subsequent recruitment of RNA polymerase
II complex to TRAP/DRIP completes the second step
in nuclear receptor transactivation. However, this sim-
ple view is blurred by a large number of other nuclear
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Figure 3. Model for coactivator assembly. (A) A two-step hypothesis for recruitment of coactivators represented schematically. SRC-1
binds receptors directly and serves as a platform to recruit CBP. When CBP and associated proteins, using their HAT activities, remodel
the nucleosomal structures, TRAP/DRIP complexes occupy receptors and subsequently recruit the RNA polymerase II complex. (B)
ASC-2 may act as an alternative, functional homologue of SRC-1, whereas ASC-1 and related factors may link post-transcriptional
mRNA processing to transcriptional initiation (see text for details).

receptor-binding cofactor proteins or complexes, in par-
ticular the increasing number of AF2-dependent coacti-
vators [2–5]. Thus, one of the most immediate
challenges is to unravel the interrelationships between
these distinct transcription cofactor proteins or com-
plexes. These potential nuclear receptor cofactors may
specifically function with different target genes as
shown by the distinct roles of CBP and p300 in
retinoid-induced differentiation of F9 cells [90]. Alter-
natively, these complexes may sequentially engage in
different steps during ligand-induced transactivation by
nuclear receptors. For example, we have recently sug-
gested that ASC-2 may play a similar, essential role as
SRC-1; i.e., direct binding to nuclear receptors and
recruitment of CBP to the receptor-ASC-2 complex [61]
(fig. 3B). Since ASC-2 expression is low in most cells
but can be up-regulated in certain cells by various
cytokines and growth factors [our unpublished results],
ASC-2 may represent an inducible, alternative func-
tional homologue of SRC-1. It should also be noted
that, from the results with ASC-1 and ASC-3 [49; our
unpublished results], p68 [51], RNA helicase A [52], p52
[53], and PGC-1 [54], transcription initiation appears to
be directly linked to post-transcriptional RNA-process-
ing events, as depicted in figure 3B. Finally, it is impor-
tant to note that various cellular signal transduction
pathways add another layer of regulation to the assem-
bly and/or functions of these coregulatory proteins/
complexes. In particular, phosphorylation of these
coregulatory proteins may result in increased or de-
creased affinity with target transcription factors. For
example, MAP kinase-induced phosphorylation of
SRC-1 was recently demonstrated to enhance its ability
to function as a transcriptional coactivator [91]. In

addition, CBP- and HDAC4-mediated transcriptional
regulation were shown to involve calcium signaling [92,
93]. More recently, a MEK-1 kinase pathway was
demonstrated to regulate SMRT phosphorylation and
nuclear export, resulting in inhibition of its corepressor
function [94]. Further characterization of the coregula-
tors specifically mentioned in this review as well as
those newly emerging will continue to unravel the fun-
damental mechanisms underlying nuclear receptor ac-
tion as well as the general transcription controls,
undoubtedly with plenty of excitement and surprises.
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