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Abstract. When odorants bind to the sensory cilia of ol-
factory sensory neurons, the cells respond with an elec-
trical output signal, typically a short train of action po-
tentials. This review describes the present state of knowl-
edge about the olfactory signal transduction process. In
the last decade, a set of transduction molecules has been
identified which help to explain many aspects of the sen-
sory response. Odor-induced second-messenger produc-
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tion, activation of transduction channels, the central role
of the ciliary Ca2+ concentration, as well as mechanisms
that mediate adaptation, are all qualitatively understood
on the basis of a consistent scheme for chemoelectrical
transduction. This scheme, although necessarily incom-
plete, can serve as a working model for further experi-
mentation which may reveal kinetical aspects of signal
transduction processes in olfactory sensory neurons.

Key words. Olfaction; chemoreception; sensory physiology; signal transduction; receptor current; cyclic nucleotide-
gated channel; chloride channel.

Introduction

Since David Ottoson’s investigations of chemoelectrical
transduction in the olfactory epithelium (OE) of verte-
brates [1, 2], a concerted effort by scientists of various di-
sciplines has yielded some insight into the ultrastructure
of olfactory sensory neurons (OSNs), the molecular basis
of odor detection and the biochemical regulation mecha-
nisms operating in these cells. With the currently available
data, a signal-transduction scheme has been constructed
that integrates most of what is known about OSNs and ex-
plains the generation of receptor current, electrical ex-
citation, as well as adaptation and recovery. In this brief
review, I describe the interplay of the main molecular
components that lead from activation of odorant-receptor
proteins to excitation of OSNs in air-breathing verte-
brates. The transduction process is located in the sensory
cilia, which detect the presence of odorants in the inhaled
air and generate a receptor current that depolarizes the
OSN. A sketch of the ciliary transduction pathways 
(fig. 1) illustrates the interrelations of transduction mole-
cules discussed in the text.

Odorants induce synthesis of cAMP

Adenosine 3,5-cyclic monophosphate (cAMP) was first
proposed as second messenger in olfactory signal trans-
duction when it was found to induce electrical signals in
the OE (recorded as electro-olfactogram, EOG) and to
interfere with odor-induced EOG signals [3,4]. Subse-
quently, membrane-permeable cAMP analogues, as well
as forskolin (a drug that stimulates cAMP synthesis) and
isobutyl methylxanthine (a compound that inhibits degra-
dation of cAMP) were found to induce electrical excita-
tion of OSNs when applied to frog sensory cilia [5].
OSNs do not exhibit any selectivity in these experiments:
Every neuron is excited by cAMP, suggesting that cAMP
mediates signal transduction in All olfactory neurons, ir-
respective of odor selectivity. In membrane preparations
containing isolated rat or frog sensory cilia, odorants in-
duce cAMP synthesis, a process that depends on a GTP-
binding protein [6, 7]. 
A key role in this process plays Golf , a stimulatory GTP-
binding protein a subunit that shows 88% amino acid
identity with Gsa [8] and a high degree of sequence iden-
tity among species (99% between rat and human, [9]).
Golf is abundantly expressed in the sensory cilia of mature
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OSNs [10, 11]. It is activated by picomolar concentra-
tions of odorants [12], and odorant-induced cAMP syn-
thesis can be suppressed by antibodies directed against
Golf [12, 13]. Most important, homozygous null-mutant
mice that do not express Golf are anosmic to all odorants
tested [14], strongly suggesting that Golf is absolutely ne-
cessary for olfactory signal transduction. No molecular
identification of b and g subunits of olfactory GTP-bind-
ing proteins has yet been reported for mammals and am-
phibia, but immunocytochemical data show expression of
both subunits in rat sensory cilia [15, 16].
Golf transmits the olfactory signal from odorant receptors
to adenylyl cyclase which synthesizes cAMP from ATP.
The enzyme expressed in the cilia of OSNs belongs to the
AC III type of adenylyl cyclases [17, 18]. The protein has
an apparent molecular size of ~129 kDa (~200 kDa when
fully glycosylated [18]) and is expressed in sensory cilia
at an extremely high molar concentration (~100-fold 
higher than in myocard [17]). AC-III activity is sensitive
to Ca2+/calmodulin in vitro [19], however, the extent of
Ca2+ regulation in intact OSNs is not clear. Ca2+ was re-
ported to stimulate olfactory AC III at low (<10 µM
[19–22]) but to inhibit the enzyme at higher concentra-
tions [21, 22]. Recent evidence suggests that AC III may
be inhibited by Ca2+-binding proteins and by protein
phosphorylation (see below). Odorant stimulation of 
AC-III has been demonstrated in preparations enriched in
apical membranes from frog or rat OE, which contain
sensory cilia as well as microvilli of supporting cells [6,

22–25]. A consistent observation in these studies is that
different odorants stimulate cAMP synthesis with differ-
ent potency: some compounds are very effective, others
show reduced efficacy and some show no detectable ef-
fect. A straightforward explanation for this result is that
each odorant stimulates cilia derived from a specific sub-
set of OSNs, and that the numbers of cells belonging to
each subset differ. This notion is in line with the concept
that each type of receptor protein is expressed in only a
small subpopulation of OSNs. Accordingly, electro-ol-

Figure 1. (Left): Position of olfactory sensory neurons and epithelial supporting cells in the olfactory neuroepithelium. The chemosensory
cilia protrude from the dendritic endings into a layer of mucus and are arranged in parallel to the apical surface. Not shown are microvilli
of supporting cells, which rise from the apical membrane to the mucus/air interface [35]. (Right): Schematic representation of the cAMP-
mediated transduction pathway operating in the sensory cilia. Generation of the receptor current is indicated by green arrows, termination
by red arrows. Details are explained in the text. AC, adenylyl cyclase; Golf /Gi , GTP-binding proteins; PDE, phosphodiesterase; R1/R2, odo-
rant receptor proteins.

Figure 2. Relation between EOG amplitude measured in bullfrog
olfactory epithelium and odor-induced adenylyl cyclase activity in
preparations of apical membranes from bullfrog olfactory epithe-
lium. Data for 36 different odorants were normalized to the re-
sponse elicited by 2-hexylpyridine, the most effective odorant test-
ed in this preparation. The plot shows a clear correlation between
the electrical response of the olfactory epithelium and the activity
of adenylyl cyclase (correlation coefficient, 0.86; reprinted from
[26] with permission of Dr Geoffrey Gold). 
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factogram (EOG) measurements, which are compound
recordings from large numbers of OSNs, show differ-
ences in response intensity that are consistent with the
biochemical data. Figure 2 shows that EOG amplitude
and AC-III activity are closely related [26], a strong in-
dication (i) that the electrical response of the OE to 
odorants results from AC-III activity, and (ii) that cAMP
synthesis observed in the membrane preparations results
from activation of sensory cilia.
If cAMP acts as a second messenger, it must be produced
rapidly upon odor stimulation. Figures 3A and B com-
pare the time course of odor-induced cAMP accumula-
tion in a membrane preparation from rat OE [27] to the
rise of the receptor current in an isolated rat OSN [28].
Maximal cAMP accumulation is observed after roughly
100 ms in the membrane preparation, whereas the recep-
tor current takes several hundred ms to develop. This
suggests that cAMP synthesis is sufficiently fast to gen-
erate the receptor current. In intact OSNs, the ciliary
cAMP concentration must reach a threshold level to ac-
tivate the receptor current (see below). The time neces-
sary to accumulate a superthreshold cAMP concentration
causes the latency between stimulus and onset of receptor
current seen in figure 3B [29]. The rapid decline of
cAMP content during prolonged application of odorants
observed in the biochemical assay (fig. 3A) has not been
demonstrated in intact cells, where receptor currents can
be sustained for several seconds by elevated levels of
cAMP during extended stimulation (fig. 3B) [28, 30]. 
Although the role of the stimulatory protein Golf is well
investigated, little is known about participation of inhibi-
tory GTP-binding proteins in olfactory signal transduc-

tion. Rat sensory cilia appear to specifically express the
isoform Gi2a in a subpopulation of OSNs [16]. Adding a
polyclonal antiserum against an N-terminal domain of
Gia to membrane preparations of rat sensory cilia poten-
tiates stimulation of AC III by odorants [13], which sug-
gests a relief of inhibitory control over AC-III activity.
However, an antiserum against the C-terminus of Gia
does not affect the odorant response in the same prepara-
tion [12]. Thus, inhibitory input to cAMP synthesis may
be restricted to a subset of OSNs, and its physiological
role remains to be established.

cAMP opens Ca2+-permeable ion channels

The odor-induced rise of the ciliary cAMP concentration
causes activation of cyclic nucleotide-gated (CNG) chan-
nels in the ciliary membrane. Estimates of channel den-
sity range from 70 mm–2 to 1700 mm–2 [31, 32], and chan-
nel expression was shown over the entire extent of the
OSN apical membrane, from dendritic knob to the tip of
the cilia [33–36]. Ultrastructural immunocytochemistry
has revealed that channel expression is particularly promi-
nent in the elongated distal parts of the cilia [35, 36]. The
channels open upon binding of cAMP [34, 37, 38] and are
an essential requisite of signal transduction, as homozy-
gous null-mutant mice which lack functional cAMP-gated
channels are anosmic [39]. In rat OSNs, CNG channels
consist of three distinct subunits (fig. 4A) that probably
form a tetrameric protein complex [40–46]. The cAMP
concentration for half-maximal activation is 2–20 mM in
mammals and amphibians, and the open probability is

Figure 3. (A) Kinetics of cAMP accumulation in an apical membrane preparation enriched in sensory cilia from rat olfactory epithelium
upon stimulation with 1 mM isomenthone. The odorant was applied for the indicated duration, and the reaction was stopped using a rapid-
quench system (reprinted from [27] with permission of Nature). (B) (Trace 1): Receptor current at –50 mV induced in an isolated rat ol-
factory sensory neuron by an odorant stimulus of 40 ms duration. The current starts with a delay of 195 ms and declines within 1 s to ba-
seline. (Trace 2): Direct activation of CNG channels in the same cell by photorelease of cAMP following a light flash. The light intensity
was adjusted to produce a current amplitude similar to the odorant response. The rapid rise and decline of the photolysis-induced current
show that the gating kinetics of transduction channels do not determine the time course of receptor currents. This time course probably re-
flects the concentrations of the messengers cAMP and Ca2+ (reprinted from [28] with permission of Nature). 
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only weakly affected by membrane voltage [34, 37, 47,
48]. Channel conductance is very low (~ 0.5 pS) so that
each individual channel contributes less than 0.05 pA to
the receptor current [49]. Thus, the effects of CNG-chan-
nel activation on membrane voltage are limited by low ion
conductance. However, extensive biophysical studies of
ion permeation have revealed that the channels conduct
Ca2+ ions from the mucus into the ciliary lumen [50–55],
causing a rapid increase of the ciliary Ca2+ concentration
[56, 57]. Consequently, CNG channels, drive a ciliary Ca2+

signal during odor detection that plays a pivotal role in
both excitation and adaptation of the OSN.

Ca2+-gated Cl– channels amplify the receptor current

In addition to CNG channels, the ciliary membrane con-
tains Ca2+-activated Cl– channels that open upon Ca2+ in-
flux [58–61]. Cl– channels are expressed at a density sim-
ilar to CNG channels [49]; they have a channel conduct-

ance of ~0.5 pS [49] and are half-maximally activated at
5–20 mM Ca2+ [58, 61]. Because the Cl– distribution in
the OE favors efflux of Cl– ions from cilia to mucus (the
mucosal Cl– concentration in rats is ~55 mM [62], and
23–120 mM Cl– was estimated for the cytosol of rat and
amphibian OSNs [62–65]), activation of ciliary Cl– chan-
nels causes a depolarizing inward current. Thus, the re-
ceptor current in OSNs has a cationic and an anionic
component contributed by CNG channels and Cl– chan-
nels, respectively [66, 67]. 
Both CNG channels and Cl– channels show cooperativity
in the activation by their respective ligand: the open prob-
ability shows a steep dependence on ligand concentration
in each channel type, typically increasing from 0.1 to 0.9
within a 10-fold concentration range. The cAMP depen-
dence of the receptor current clearly reflects the co-
operative activation of the two contributing channel pop-
ulations: experiments with rat OSNs have shown that the
current across the ciliary membrane rises from 10–90%
of its maximal amplitude upon a roughly three-fold step

Figure 4. (A) Transmembrane topology of the three subunits that form cAMP-gated channels in rat olfactory cilia. CNCa3 is the princi-
pal channel subunit, as it forms functional cAMP-gated channels when expressed as homomeric protein. The two modulatory subunits
CNCa4 and CNCb1b determine cAMP sensitivity, ion selectivity, Ca2+ permeation and calmodulin-feedback control in the heteromeric
channel [44–46]. CaM-BS, binding site for Ca2+/calmodulin; cAMP-BS, binding site for cAMP; P, pore region; S1–S6, transmembrane
regions. Note that amino acid residues contributing to the intrapore cation binding site are negatively charged in CNCa3 (E, glutamate)
and CNCa4 (D, aspartate), but uncharged in CNCb1b (G, glycine). (B) Amplitudes of current carried by cations and anions across the
ciliary membrane at –50 mV as a function of normalized light intensity used to release cAMP from caged cAMP. The relation between the
amount of photoreleased cAMP and the light intensity is linear. Consequently, these data illustrate the highly nonlinear dependence of the
receptor current on cAMP concentration. The solid line was constructed by a Hill equation, I = Imax i n/(i n + K n), with Imax = 817 pA, 
K = 0.15 and n = 4.7 (reprinted from [28] with permission of Nature). (C) Dose-response relations for stimulation by the odorant cineole
obtained from two different olfactory sensory neurons isolated from the tiger salamander. A Hill-type equation was fitted to the normaliz-
ed receptor currents at –55 mV, yielding K1/2 values of 5.4 mM and 38 mM, and Hill coefficients of 1.8 and 1.9, respectively (reprinted 
from [68] with permission of the Journal of Physiology).
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of cAMP concentration (fig. 4B) [28]. Such a steep de-
pendence on second-messenger concentration is expect-
ed to profoundly affect the response characteristics of
OSNs. It is probably the reason why individual OSNs
show a graded response only within a narrow range of
odorant concentrations, spanning little more than a single
decade (fig. 4C) [68]. Apparently, the cooperative activa-
tion of the two olfactory transduction channels gives rise
to a nonlinear amplification mechanism: Fluctuations of
cAMP concentration that remain below a threshold value
do not induce current, whereas concentrations only a little
above threshold cause strong activation. The high signal
gain of OSNs (defined as the increment in reponse in-
tensity per increment in odorant concentration) resulting
from the cooperative activation of the two transduction
channels, may be further augmented by modulation of the
ion channels that conduct action currents and control
spike generation in the dendro-somatic membrane (see
below). These pronounced nonlinear response character-
istics suggest that OSNs are designed to produce sensory
signals almost in an all-or-nothing fashion within a nar-
row range of odor concentrations. The wide dynamic
range of the whole OE, its ability to discriminate odors at
very low as well as at high concentrations, probably re-
flects the combined activity of many OSNs, each re-
sponding to the same odorant with high gain within a dif-
ferent concentration range. 

Ca2+ and protein kinases terminate the receptor 
current

Several Ca2+-dependent processes contribute to the termi-
nation of the signal and to recovery of the OSN. 
1) Ca2+ controls the activity of CNG channels by a nega-
tive feedback mechanism that reduces the channel’s 
ligand sensitivity [69–72]. The a3 and b1b subunits of
CNG channels contain high-affinity calmodulin (CaM)
binding sites (fig. 4A) which very effectively control 
the cAMP sensitivity of the channel. Binding of
Ca2+/CaM reduces cAMP sensitivity in rat OSNs, in-
creasing the concentration for half-maximal activation
from 3 mM to 60 mM [69]. This loss of cAMP sensitivity
develops within 1–3 s after the onset of the stimulus [72],
promotes channel closure, rapid termination of the re-
ceptor current and fast adaptation to further odor stimuli
(fig. 5A, B). 
2) The phosphodiesterase isoform PDE1C2 is highly en-
riched in rat OSNs [73]. This enzyme is activated by
Ca2+/CaM and shows a particuarly high affinity for
cAMP (Km = 1.2 mM [73]). In unstimulated OSNs, phos-
phodiesterase (PDE) inhibitors cause electrical excitation
[5], indicating that PDE-mediated hydrolysis of cAMP
balances the basal activity of AC III. During odor stim-
ulation, cAMP degradation increases at elevated ciliary

Ca2+ concentrations, thereby limiting activation of CNG
channels. During signal termination, PDE restores the ba-
sal cAMP level.
3) AC III is phosphorylated by Ca2+/CaM kinase II at ele-
vated ciliary Ca2+ concentration [74, 75]. Phosphoryla-
tion of Ser1076 of AC III in cilia preparations from mouse
OSNs attenuates enzyme activity, but the effect of AC-III
phosphorylation in intact cells has yet to be demonstrat-
ed. Similarly, the Ca2+-binding protein visinin-like pro-
tein mediates AC-III inhibition by Ca2+ in ciliary mem-
brane preparations [76], but data from intact cells are not
yet available. 
Evidence from biochemical analysis of odor-induced
cAMP synthesis in membrane preparations containing
isolated rat sensory cilia suggests an additional mechan-
ism for adaptation: desensitization by phosphorylation of
receptor proteins. This process involves the sequential ac-
tivation of two different protein kinases [77–81]: protein
kinase A is activated by cAMP during odor detection and
phosphorylates the regulatory protein phosducin, which
binds, in its nonphosphorylated form, to Gbg subunits.
Phosphorylation reduces the binding affinity of phos-
ducin and promotes dissociation from Gbg subunits. This
allows a cytosolic receptor-specific kinase (GRK3) to be
translocated to the membrane, since the Gbg subunits
function as membrane anchors for GRK3. After mem-
brane translocation, GRK3 phosphorylates activated odo-
rant receptors, uncoupling the receptors from AC III and
terminating the synthesis of cAMP.
Taken together, desensitization of CNG channels and
cAMP degradation represent robust adaptive mecha-
nisms that rapidly terminate the receptor current in
OSNs. In addition, cAMP-synthesis appears to be a target
of feedback inhibition, brought about by phosphorylation
of odorant receptors and AC III. The exact contributions
of the individual processes in vivo, as well as their tem-
poral relations to desensitization and recovery of the
OSN, are not yet fully understood.

Ca2+ extrusion from the sensory cilia

When OSNs are repetitively stimulated with odor pulses
of equal intensity, they exhibit a distinct refractory be-
havior: the amplitude of receptor currents decreases with
the time interval between stimuli (fig. 5A). Similar data
are obtained when ciliary CNG channels are directly ac-
tivated by photorelease of cAMP from caged cAMP (fig.
5B), indicating that adaptation mainly reflects the desen-
sitization of CNG channels at elevated ciliary Ca2+ [72].
If two pulses are separated by a time interval of 5–10 s,
adaptation is relieved, suggesting that ciliary Ca2+ con-
centration has dropped to levels that allow dissociation of
CaM from CNG channels. This relatively fast removal of
ciliary Ca2+ is mainly achieved by Na+/Ca2+ exchangers
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[82–84] that utilize the electrochemical potential differ-
ence of Na+ across the ciliary membrane to extrude Ca2+

from the cilia. This transport mechanism was revealed by
demonstrating that the decline of receptor current after
the stimulus depends on extracellular Na+ (fig. 5C). The
slowly declining current recorded in Na+-free solution
reflects sustained activity of Ca2+-activated Cl– channels,
as shown by its sensitivity to the Cl–-channel blocker nif-
lumic acid (fig. 5D) [84]. Thus, the activity of Na+/Ca2+

exchangers determines the kinetics of Ca2+ clearance
from the cilia, terminates the Cl– component of the re-
ceptor current and allows the cell to recover from adapta-
tion. Inflowing Na+ is recycled by a Na+/K+-ATPase
which was recently shown to be expressed in rat sensory
cilia [85, 86]. An additional pathway for Ca2+ extrusion
from the cilia may be provided by a Ca2+-ATPase that uses
metabolic energy to translocate Ca2+ across the ciliary
membrane. However, activity of this enzyme has, so far,
only been reported for salmon OSNs [87], and no data for
mammals or amphibia are available. 

Electrical excitation

The resting membrane voltage of OSNs is probably in the
range of –90 mV to –60 mV. Because of a very high input
resistance (1–20 GW), inward currents of only a few pA
cause sizable depolarizations and elicit action potentials
in isolated OSNs [88]. Inward currents exceeding 10 pA
induce trains of action potentials [89], indicating that
OSNs respond very sensitively to receptor currents of
small amplitude. The depolarization of the ciliary mem-
brane is conducted passively to the dendritic knob and to
the membrane of the dendrite. In Necturus OSNs, the
dendritic membrane is able to generate action potentials
[65] and to actively propagate excitation toward the soma.
If common to all OSNs, dendritic action potentials repre-
sent an important factor for detection efficiency. The so-
mata of OSNs are equipped with a set of voltage-gated
Na+-, K+- and Ca2+ channels that allow repetitive firing of
action potentials [90] and even sustained oscillations of
membrane voltage with pronounced bursting behavior

Figure 5. (A) Double stimulations with the odorant amyl acetate reveal adaptation of an isolated newt olfactory sensory neuron. Whole-
cell currents at –50 mV recorded in four experiments from the same cell. Currents induced by the first of each stimulus pair are superim-
posed. Intervals between first and second stimuli were 1.5, 2.5, 4.5 and 6.5 s, respectively (reprinted from [72] with permission of Nature).
(B) Refractory behavior in response to photorelease of cAMP. Intervals separating each stimulus pair were 3, 5 and 7 s, respectively. This
experiment shows that the adaptive process that causes current reduction during the second stimulation represents a direct effect on CNG
channels (reprinted from [72] with permission of Nature). (C) Na+/Ca2+ exchangers mediate termination of receptor current and recovery
from adaptation in frog olfactory sensory neurons. Cells respond to a 1-s stimulation by 100 mM cineole with a receptor current that de-
clines to baseline within 2 s (control). Upon replacing extracellular Na+ with Li+ or choline+ immediately after the odor pulse, recovery is
strongly inhibited (Li+ and Cho+). Neither Li+ nor choline+ can substitute for Na+ in the activation of Na+/Ca2+ exchangers. (D) The sus-
tained current after inactivating Na+/Ca2+ exchangers (Cho+) is blocked by the Cl–-channel blocker niflumic acid (Cho+ + NA). Thus, when
Na+/Ca2+ exchangers are inactive, Ca2+-gated Cl– channels remain open after the odor stimulus because the ciliary Ca2+ concentration re-
mains high (reprinted from [84] with permission of the Journal of General Physiology).



[91]. It was recently shown that the action currents in
newt OSNs are conducted in almost equal fractions by T-
type Ca2+ channels and voltage-gated Na+ channels [92,
93], and both current types are subject to modulation by
adrenaline [94]. Spike generation appears to be mainly
controlled by Ca2+ channels which activate at more nega-
tive voltages and inactivate more slowly than Na+ chan-
nels. Partial suppression of ICa , combined with a negative
shift of the Na+ channel-activation curve, have been ob-
served upon application of adrenaline or activation of
protein kinase A. By regulating the channel activity, ad-
renaline increases the response to current injection, and
was suggested to further narrow the dynamic range of
odor response in newt OSNs [94]. Voltage-gated channels
in OSNs are also modulated by dopamine [95] and gona-
dotropin-releasing hormone [96], illustrating efferent
control of OSN excitability.
Thus, OSNs are electrically compact, respond sensitively
to depolarizing currents and are capable of generating
bursts of action potentials. An unmyelinated axon trans-
mits the signal to the brain: axons from several OSNs are
collected in a nerve fascicle and ensheathed by a single
Schwann cell. Axons do not form collaterals and receive
no efferent input. They synapse in the olfactory bulb of
the brain onto secondary neurons (mitral cells), which in-
tegrate the sensory signal and relay the olfactory infor-
mation to further levels of processing. 

Open questions

It appears that the major components of the cAMP-me-
diated signal transduction pathway in OSNs have been
identified. The second level of investigation, the quanti-
tative analysis of their interactions, is only just beginning,
and several important points are being addressed:
1) What is the density of each protein species (receptors,
G proteins, AC III, ion channels, exchangers, pumps) in
the ciliary membrane? How is their spatial distribution
across the length of the cilium?
2) What are the concentrations of soluble transduction
proteins? Of particular interest are the various Ca2+-bind-
ing proteins that have been identified in OSNs [76, 97].
What are their target proteins, and what is their Ca2+-sen-
sitvity?
3) What are the concentrations of the two messengers
cAMP and Ca2+ during the odor response? How is their
spatial distribution within the cilium? What are the 
threshold concentrations of cAMP and Ca2+ for inducing
receptor currents? How do concentrations change during
adaptation? 
4) What is the ionic composition of the receptor current?
What are the concentrations of permeant ions in cilia and
olfactory mucus? Are there homeostatic mechanisms that
control mucosal ion concentrations? 

5) How are the precise temporal relations between activa-
tion and inactivation of the various enzymes and chan-
nels? What determines the time course of amplifying and
adaptive processes?
6) Are other signaling mechanisms involved in olfactory
signal processing? Several additional transduction path-
ways have been proposed to be active in OSNs, including
the phosphoinositide metabolism [24, 98–100], genera-
tion of nitric oxide and carbon monoxide [101–104], and
a guanylyl cyclase/cGMP pathway [105–109], but their
physiological roles are not yet understood [110]. 
Thus, kinetic investigations of enzyme reactions, of se-
cond-messenger dynamics and of ion transport pathways,
as well as ultrastructural studies of olfactory cilia, must
be combined to create an integrated model that can ex-
plain generation and termination of the receptor current,
as well as adaptation and recovery of OSNs. This model
will certainly look considerably more complex than fi-
gure 1, but will help to understand how chemoelectrical
signal transduction works. 
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