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Abstract. An important mechanism of posttranscrip-
tional gene regulation in mammalian cells is the rapid
degradation of messenger RNAs (mRNAs) signaled by
AU-rich elements (AREs) in their 3’ untranslated re-
gions. HuR, a ubiquitously expressed member of the
Hu family of RNA-binding proteins related to
Drosophila ELAV, selectively binds AREs and stabilizes
ARE-containing mRNAs when overexpressed in cul-
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Introduction

The growth and development of eukaryotic organisms
require that gene expression be regulated. Typically,
this regulation is considered to occur at the level of
DNA (differential transcription) or protein (selective
degradation). However, gene expression can also be
regulated at the level of RNA. Posttranscriptional gene
regulation occurs through alterations in translational
efficiency (reviewed in [1]) and in messenger RNA
(mRNA) stability (for review, see [2] and [3]). The
stability of mRNA fluctuates tremendously in eukary-
otes (reviewed in [4]). In yeast, message half-lives range
from approximately 5 min to more than 60 min. In
vertebrates, message half-lives vary from 20 min to
more than 24 h. Consequently, 1000-fold differences in
the cellular abundance of various mRNAs can result
from seemingly minor differences in half-life (for re-
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tured cells. This review discusses mRNA decay as a
general form of gene regulation, decay signaled by
AREs, and the role of HuR and its Hu-family relatives
in antagonizing this mRNA degradation pathway. The
influence of newly identified protein ligands to HuR on
HuR function in both normal and stressed cells may
explain how ARE-mediated mRNA decay is regulated
in response to environmental change.

nuclear export; mRNA stability.

view, see [3]). These changes are ultimately reflected in
the amount of protein produced.

Over the course of the last 15 years, many different
types of mRNA decay have been described which alter
the stability of particular mRNAs in eukaryotes. Both
the signals and proteins participating in these processes
have been identified. Some act to degrade, whereas
others selectively stabilize mRNA. In this review, we
provide a general background concerning these differ-
ent forms of mRNA decay and the proteins implicated
in determining message stability. We focus on one spe-
cific pathway of mRNA degradation, mediated by AU-
rich elements (AREs), and a protein, HuR, which
antagonizes this degradation.

Many different elements affect mRINNA stability

Messenger RNA degradation is dependent upon both
cis-elements in the RNA and trans-acting factors. The
cis-elements that affect mRNA stability are numerous
and vary in location (fig. 1). Some elements are ubiqui-
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tous, whereas others signal the degradation of specific
messages.

Beginning at the 5" end of the molecule, the cap struc-
ture is an important determinant of the stability of all
messages. Its 5-5 triphosphate linkage renders mes-
sages resistant to general exonucleases. Only by removal
of the cap structure can degradation occur in a 5 to 3’
fashion. Studies in yeast have identified a decapping
enzyme (DCPI; [5]) as well as a cytoplasmic 5 to 3’
exonuclease (XRNT; [6]). Decapping activity requires at
least two distinct proteins that interact directly or indi-
rectly (DCP1 and DCP2; [7]). Yeast cells also contain a
nuclear 5" to 3’ exonuclease (Ratl), which is function-
ally interchangeable with the cytoplasmic 5’ to 3’ exonu-
clease [8]. Higher eukaryotic homologs of both the
decapping enzyme and the 5" to 3’ exonucleases remain
to be identified.

At the opposite end of the molecule, the poly(A) tail
plays an important role in mRNA stability (reviewed in
[9]). Poly(A) shortening is the rate-limiting step in the
turnover of many mRNAs. Several 3’ to 5" exoribonu-
clease activities have been identified in yeast, including
poly(A) nuclease (PAN) [10], mitochondrial NTP-de-
pendent exoribonuclease (mtEXO) [11] and the exo-
some (reviewed in [12]). PAN activity requires two
proteins, Pan2p [13] and Pan3p [14]; it is not clear
which PAN protein is the ribonuclease. Likewise,
whereas mtEXO contains three subunits, 75, 90 and 110
kDa, the nucleolytic subunit remains to be identified.
A higher eukaryotic deadenylating nuclease (DAN or
PARN) has been purified from calf thymus [15] and the
Xenopus oocyte [16]. PARN activity is altered (either
stimulated or inhibited depending on salt concentra-
tion) in vitro by the cytoplasmic poly(A)-binding
protein (PAB I). The microinjection of anti-PARN anti-
body into Xenopus oocytes inhibits default deadenyla-
tion during progesterone-induced maturation [16].
Similarly, the ectopic expression of a human PARN
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homolog in enucleated Xenopus oocytes rescues ma-
turation-specific deadenylation [16]. Interestingly,
PARN has recently been discovered to bind the 5 cap
structure and thereby enhance the rate of deadenylation
[17, 18].

The yeast exosome is an ~ 300-400 kDa complex
consisting of at least 11 proteins, many or all of which
independently contain exoribonucleolytic activity [19,
20]. Ten of these proteins are essential for viability, and
the absence of one results in temperature-sensitive
lethality [20]. The exosome, like the proteasome, per-
forms both partial and complete degradation of sub-
strates. Human homologs exist for at least 9 of the 11
identified subunits [20]. Three of these human proteins
complement mutations in their counterparts in Saccha-
romyces cerevisiae [19, 20]. Two of the human homologs
are components of the PM-Scl particle, recognized by
the sera of patients with the relatively rare autoimmune
disease polymyositis-scleroderma overlap syndrome
[20]. Therefore, it is likely that the PM-Scl particle is the
functional human counterpart of the yeast exosome.
The degradation of mRNAs can be signaled by se-
quence elements in the 5 untranslated region (UTR),
coding sequence and/or the 3" UTR (see fig. 1). For
example, the 5 UTR and proximal coding sequence
region are required for stabilization of the interleukin-2
message by the c-jun NH2-terminal kinase pathway [21].
The coding region of several messages, including the
yeast MATa«1 mRNA [22], mammalian c-fos [23] and
c-myc mRNAs [24], contain specific destabilizing se-
quences. More generally, coding sequences can promote
degradation whenever they contain premature nonsense
codons upstream of special regions termed downstream
elements in yeast (for review, see [25]) or of introns in
vertebrates (reviewed in [26]).

3" UTRs often regulate decay. One well-studied example
is the 3" UTR of transferrin mRNA, where an instabil-
ity element is located adjacent to stem-loop structures
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Figure 1. mRNA stability is determined by numerous cis-acting elements. Indicated above are decay processes that act on all mRNAs.
Examples of decay signals found only in certain mRNAs are listed below. See text for references.
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called iron-responsive elements (IREs), which are re-
versibly bound by an iron-regulatory protein (IRP)
leading to mRNA stabilization at reduced levels of
cellular iron (for review, see [27]). Hormones or cyclic
nucleotides alter the stability of a number of specific
mRNAs through sequences in their 3’ UTRs (see [28]
for the plasminogen activation inhibitor mRNA and a
discussion of other examples). Another well-studied in-
stance is the 3’ UTR of «-globin mRNA, where the
binding of a multiprotein complex confers stability,
apparently by protecting the poly(A) tail [29]. Finally,
since the poly(A) tail is important for mRNA stability,
elements in the 3’ UTR that regulate poly(A) lengthen-
ing (such as the cytoplasmic polyadenylation element
[CPE] and AAUAAA [30, 31]) should not be ignored as
potential determinants affecting mRNA decay.

AREs target mRNA for rapid degradation

The best-studied instability element in mammalian mes-
sages is the ARE [32]. AREs consist of multiple
stretches of adenylate and uridylate residues and are
present in the 3 UTRs of many mRNAs, including
those of growth factors, cytokines and lymphokines.
Because of the importance of proteins encoded by
ARE-containing mRNAs to normal and neoplastic cell
growth, this element must be considered a pivotal gene
regulatory target in vertebrate cells.

The earliest account of an ARE came from Verma and
colleagues [33]. Comparison of the mRNAs encoding
v-fos, an oncogene carried by the FBJ murine osteosar-
coma virus, and c-fos, its cellular protooncogene coun-
terpart, revealed differences in the 3’ UTR. In contrast
to the v-fos 3’ UTR, the c-fos 3’ UTR contains an ARE.
This difference is functionally significant. When the
c-fos coding region was placed upstream of the v-fos 3’
UTR (but not the c-fos 3" UTR) its overexpression led
to the transformation of cultured cells. Further analysis
revealed that the removal of a 67-nucleotide sequence in
the 3’ UTR converted c-fos into a transforming gene
[34]. Based on these and additional data showing that
the transient accumulation of c-fos mRNA following
serum stimulation is mediated by a region contained in
the 3" UTR, Treisman [35] speculated that these se-
quences act to destabilize the mRNA. This hypothesis
was proven correct by Shaw and Kamen [36], who
demonstrated that the insertion of a 51-nucleotide AU-
rich sequence from the 3 UTR of human granulocyte
monocyte-colony stimulating factor (GM-CSF) mRNA
into the 3" UTR of the relatively stable f-globin mRNA
signaled its degradation. Mutation of the ARE to in-
clude a higher G-C content abolished the destabiliza-
tion of the f-globin reporter mRNA. ARE-directed
mRNA degradation is initiated by rapid removal of the
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poly(A) tail and followed by degradation of the remain-
der of the message [37].

Since the initial discovery of the c-fos ARE, the catalog
of ARE-containing mRNAs has increased markedly.
Sequences of these AREs and the decay patterns of the
messages in which they reside have led to ARE classifi-
cation. Currently, AREs have been assigned to three
classes based on sequence and decay characteristics [32].
Class I AREs, such as the c-fos ARE, contain one to
three scattered copies of the pentamer AUUUA embed-
ded within U-rich regions. Class II AREs, like the
GM-CSF ARE, consist of at least two overlapping
copies of a critical nonamer UUAUUUA(U/A)(U/A)
[38] also in the context of a U-rich region. Class III
AREs, an example of which is the c-jun ARE, lack the
hallmark AUUUA pentamer but signal degradation
with U-rich (and possibly other unknown) sequences.
mRNAs containing class III AREs, like those contain-
ing class I AREs, exhibit degradation intermediates
with 30—-60 nucleotides of their poly(A) tail remaining.
Detectable degradation intermediates of messages con-
taining class IT AREs are poly(A) .

In vivo and in vitro systems for the study of
ARE-mediated decay

The study of ARE-mediated decay has been facilitated
by the development of both in vivo and in vitro systems.
Shyu and colleagues designed the first in vivo system
[23]. It takes advantage of the rapid but transient re-
sponse of the c-fos promoter to serum induction. The
central construct contains the human c-fos promoter
region fused to the 5 UTR, protein-coding region, 3’
UTR and polyadenylation signal of the rabbit f-globin
gene. Various AU-rich sequences can be inserted into
the 3" UTR. The resulting plasmid is transfected into
cells along with a control plasmid encoding a stable
RNA, the cells are serum-starved (usually overnight)
and serum is later added to stimulate transcription from
the c-fos promoter. Alternatively, transcription can be
induced by the addition of purified growth factors [39].
Transcription levels rise to a maximum approximately
30—-45 min after cell stimulation [39], and mRNA stabil-
ity is then assayed by either Northern blotting or
RNase protection. Although this system has been ex-
tremely useful, it is not ideal. Serum starvation restricts
observation to cells undergoing the GO—G1 transition.
Moreover, the induction procedure can potentially
complicate the analysis of regulatory mechanisms af-
fecting ARE-directed mRNA decay since it relies on cell
stimulation.

A second in vivo system reproduces the transcriptional
pulse while avoiding the disadvantages of the c-fos
promoter system [40]. This procedure utilizes the high-
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affinity, regulatable interaction between the tetracycline
transactivator (tTA) and the tetracycline regulatable
element (TRE) (for review, see [41]). tTA is a fusion
protein composed of the Escherichia coli tet repressor
and the activation domain of the herpes simplex virus
VP16 protein. The TRE contains seven copies of a
19-bp sequence derived from the tetracycline-resistance
operon of the bacterial transposon Tnl0. The rabbit
f-globin 5" UTR, coding sequence and 3" UTR have
been cloned downstream of a TRE and a human cy-
tomegalovirus (CMV) minimal promoter. AREs are
inserted into the rabbit f-globin 3" UTR, and the result-
ing plasmid is cotransfected into cells with a plasmid
encoding a stable message. tTA must be coexpressed by
either transient or stable transfection of a plasmid en-
coding this protein. In the absence of tetracycline, tTA
interacts with the TRE and drives transcription; in the
presence of tetracycline, a conformational change ren-
ders tTA incapable of binding the TRE and activating
transcription. ARE-mediated decay is assessed by
Northern blotting in reference to a stable mRNA. In
principle, the opposite approach could be used in cells
expressing the reverse tetracycline transactivator (rtTA).
rtTA is a mutant version of tTA that allows transcrip-
tion downstream of the TRE only in the presence of
tetracycline or tetracycline-related compounds [42].
Three in vitro systems for investigating ARE-mediated
mRNA degradation have also been established. A sys-
tem derived from a human erythroleukemic K562 cell
extract [43] has been used to characterize the 3’ to 5
decay of c-myc mRNA [44, 45]. The degradation of this
transcript is enhanced by hnRNP D (AUFI; [46]),
which specifically binds the c-myc ARE (see below). The
second degradation system utilizes S100 extracts either
from PC12, H9¢2 or WT-8§ cells. A capped RNA con-
taining the vascular endothelial growth factor 3 UTR
and a poly(A) tail is stabilized when the extract is
prepared from hypoxic cells [47] or when HuR is added
to the extract [48] (see below). The third in vitro system
uses HeLa cell S100 extract to investigate the decay of
ARE-containing RNAs that range from 94 to 132 nu-
cleotides in length, including a 60-residue poly(A) tail
[49]. Curiously, large amounts of poly(A) must be
added to the extract in both this [49] and the 3’ to 5
decay system [44] in order to observe deadenylation/
degradation. Degradation but not deadenylation re-
quires ATP. The effect of an ARE in this system is to
increase deadenylation, as observed in vivo. Moreover,
the addition of a Hu-family protein (see below) inhibits
degradation but not deadenylation in vitro, consistent
with in vivo observations that overexpression of HuR
slows decay of the mRNA body, not deadenylation (see
below). This system has recently been employed to show
that PARN interacts with the 5 cap and influences
mRNA deadenylation rates [17].
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ARE-mediated decay is a regulated phenomenon

There exists substantial evidence that ARE-mediated
mRNA decay is subject to regulation. Cell stress [50],
stimulation [51] and neoplastic transformation [52] have
all been shown to stabilize ARE-containing mRNAs.
Moreover, in some cases known signal transduction
pathways have been implicated in the response to these
stimuli. The treatment of quiescent primary T cells with
antibodies directed against CD3/CD28 receptors stabi-
lizes several mRNAs containing AREs [51]. Stabiliza-
tion of ARE-containing mRNAs has been associated
with the activation of c-jun N-terminal kinase (JNK),
which is correlated with lower decay rates of interleukin
(IL)-3 mRNA in mast cells [53]. Similarly, the activa-
tion of MAP kinase-activated protein kinase 2 has been
associated with the stabilization of ARE-containing
mRNA in HeLa cells [54, 55]. mRNA stability has also
been linked to the activity of phosphatases. An antago-
nist of calcineurin (protein phosphatase 2B), cy-
closporin A, destabilizes IL-3 mRNA in autocrine
tumor cell lines [56]. At present, the mechanisms by
which these kinases and phosphatases function to pro-
duce changes in mRNA stability remain unclear. Much
work will be required to determine the cellular roles of
the multiple players in these pathways.

The role of trans-acting factors in the stability of
ARE-containing mRNA

In an effort to understand the mechanism and regula-
tion of ARE-signaled mRNA degradation, a number of
laboratories have looked for proteins that selectively
bind AU-and U-rich sequences. At least 14, apparently
distinct proteins have been identified in cell extracts by
ultraviolet (UV)-crosslinking and gel-shift assays:
AUBF [57], AU-A [58], AU-B [58], AU-C [59], Hel-N1
[60], hnRNP D (AUF1; [61]), hnRNP Al [62], hnRNP
C [62], AUH [63], GAPDH [64], hnRNP A0 [65], HuR
[66, 67], tristetraprolin [68] and TIAR [69]. However,
only two of these proteins, hnRNP D and HuR, have
been demonstrated to alter the stability of ARE-con-
taining mRNA in vivo.

HnRNP D has been reported to be a DNA- [70], as well
as an RNA-binding protein [71]. It consists of four
alternatively spliced isoforms: p37, p40, p42 and p45
[72]. All isoforms contain two RRMs and are localized
in both the nucleus and the cytoplasm [61]. The overex-
pression of hnRNP D (particularly the p37 and p42
isoforms) in hemin-induced human erythroleukemic
K562 cells increased ARE-directed mRNA decay [73].
The triggering of degradation is consistent with changes
in the cellular localization of hnRNP D. Blocking ARE-
mediated mRNA decay by heat shock, downregulation
of the ubiquitin-proteasome pathway or by inactivation
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Table 1. RNAs bound by HuR.

RNA ARE class Reference
f-adrenergic receptor 111 [119]
Cyclin A I [82]
Cyclin Bl I [82]
Cyclin D1 I [82]
c-fos I [83]
c-myc I [83]
HPV-16 late 111 [120]
HPV-1 late I [121]
Herpesvirus saimiri-encoded U 11 [122]
RNA-1
Herpesvirus saimiri-encoded U I [122]
RNA-2
Herpesvirus saimiri-encoded U I [122]
RNA-5
IL-3 II [83]
N-myc 111 [83]
Neurofibromin 111 [123]
p21 I [81]
Plasminogen activator inhibitor I [124]
Tumor necrosis factor-o 11 [49]
Vascular endothelial growth 111 [48]
factor
GAP-43 111 [125]

of the E1 ubiquitinating enzyme all resulted in hnRNP
D movement to the nucleus of human HelLa cells [74].
Interestingly, hnRNP D (all isoforms) is also part of a
specific RNP complex which associates with the 3’ UTR
of a-globin and appears to regulate the accumulation of
o-globin mRNA in erythrocytes [75]. The cellular fac-
tors and/or events involved in regulating these different
activities for hnRNP D remain to be defined.

HuR stabilizes ARE-containing mRNA

HuR (or HuA) is a ubiquitously expressed member of
the embryonic lethal abnormal vision (ELAV) family of
RNA-binding proteins [66, 76], originally identified in
Drosophila melanogaster as essential for neural develop-
ment [77]. Both gel shift [67] and UV-crosslinking [78]
experiments have provided evidence that HuR binding
parallels the in vivo ability of ARE sequences to direct
mRNA degradation. However, overexpression of this
protein does not enhance degradation, but rather stabi-
lizes messages containing class I and class II (and to a
lesser extent class III) AREs in transient transfection
experiments [79, 80]. Accordingly, most of the specific
mRNAs bound by HuR in vitro (table 1) contain class
I or class I AREs. HuR appears to act by protecting
the body of the message from degradation, rather than
slowing the rate of deadenylation, in overexpressing
cells [80]. An alternative explanation for the stabiliza-
tion observed in cells overexpressing HuR is that it is
active in decay, but when overexpressed sequesters
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other factors needed for degradation. A HuR gene
knockout should clarify this question. The finding that
expression of antisense RNA to HuR increases the
decay of ARE-containing mRNAs [81, 82] is consistent
with HuR’s major role being to stabilize.

Like other Hu-family proteins (see below), HuR con-
tains three classic RNA recognition motifs (RRMs). At
least in the case of HuD, ARE recognition appears to
be mediated by the first two RRMs; the third RRM of
HuD has been suggested to bind the poly(A) tail [83]. In
transient transfection assays, deletion of RRM3 alone
abolishes HuR’s ability to stabilize ARE-containing re-
porter mRNAs [79].

Although predominantly nuclear, HuR shuttles between
the nucleus and the cytoplasm via a novel shuttling
sequence, HNS, located in the hinge region between its
second and third RRM (see fig. 2) [79, 84]. HNS is
similar to the M9 shuttling sequence of hnRNP A1l but
differs in several critical residues. The nuclear export
receptor for HNS is not yet known. HuR’s ability to
shuttle has led to the suggestion that HuR may initially
bind mRNAs in the nucleus and accompany them into
the cytoplasm, providing ongoing protection from the
degradation machinery. Recent in vivo crosslinking ex-
periments and gradient analyses established that HuR is
capable of binding poly(A) + RNA in both the nucleus
and the cytoplasm [85]. These data are consistent with
the observation that a substantial fraction of cytoplas-
mic HuR (~ 15%) is associated with polysomes [85].

HuR binding proteins modulate the nucleocytoplasmic
trafficking of HuR

In an effort to understand the intracellular interactions
that regulate the activity of HuR in stabilizing ARE-
containing mRNA, several protein ligands to HuR have
been identified and characterized [86]. Four ligands
were purified through affinity chromatography by pass-
ing RNase A-treated HeLa nuclear extract [87] over a
column containing HuR fused to glutathione-S trans-
ferase. They are SETo/f [88, 89], pp32 [90] and acidic
protein rich in leucine (APRIL; [91]). Coimmunoprecip-
itation experiments confirmed that interactions between
these ligands and HuR can be detected in gently lysed
cell extracts.

Three of these HuR ligands (SETo, SET/S and pp32)
had previously been identified as inhibitors of protein
phosphatase 2A (PP2A) [92, 93]. PP2A is a multimeric
serine/threonine phosphatase, affecting a diverse set of
cellular functions including: cell cycle progression,
DNA replication, transcription, splicing, development
and morphogenesis [94]. Its diverse cellular roles reflect
the enzyme’s ability to convert between holoenzyme
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forms in response to stimulation [95]. PP2A de-
phosphorylates both the substrates of kinases and
kinases themselves, thereby regulating their activities.
Its targets include several major protein-kinase
families including those of the AGC subgroup (e.g.
protein kinase B [96], protein kinase C [97] and p70
S6 kinase [98]), the calmodulin-dependent kinase [99]
and members of the ERK MAP-kinase pathway [100,
101].

The four HuR-binding proteins exhibit striking struc-
tural similarity. All contain an acidic C-terminal tail of
at least 50 amino acids [86]. Beyond this common acidic
region, the HuR-binding proteins divide into two sub-
sets: SETo and SETJ, and pp32 and APRIL. SET« and
SETp are identical over their 253 C-terminal amino
acids, and are probably splice variants of one another
[89]. In contrast, pp32 (249 amino acids) and APRIL
(251 amino acids) exhibit 71% sequence identity and
81% sequence similarity and are clearly products of
separate genes. They contain a second structural simi-
larity: rev-like leucine-rich repeats in their N-terminal
regions. Deletion experiments suggested that the acidic
tail of at least pp32 (and possibly these other HuR
ligands) is required for their interaction with a region
spanning the hinge region and third RRM of HuR [86].
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Confocal microscopy revealed that SET«/f are detected
in both the nucleus and cytoplasm, whereas pp32 and
APRIL are predominantly nuclear. Heterokaryon fu-
sion experiments showed that like HuR, pp32 and
APRIL shuttle between the nucleus and the cytoplasm
[86]. As suggested by their rev-like leucine-rich repeats,
coimmunoprecipitation experiments demonstrated that
pp32 and APRIL interact with the nuclear export factor
CRMI. Accordingly, inhibition of CRM1 with the anti-
fungal and antitumor agent leptomycin B (LMB; [102—
104]) resulted in the loss of shuttling and nuclear
accumulation of pp32 and APRIL. Most important,
CRM1 inhibition produced increased association of
HuR with pp32 and with APRIL, and an increase in
HuR’s ability to bind nuclear poly(A) + RNA in vivo.
Moreover, a specific ARE-containing mRNA, c-fos,
becomes retained in the nucleus after LMB treatment.
These data provide evidence for the in vivo interaction
of HuR with its ligands and strongly suggest that these
HuR ligands either increase HuR’s affinity for its target
mRNAs or modulate HuR export from the nucleus.
The fact that three of these HuR-binding proteins are
documented PP2A inhibitors argues that PP2A is in-
volved either in signaling cascades that regulate the
stability of ARE-containing mRNAs or directly in the
mechanism of ARE-mediated mRNA decay.
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Figure 2. Sequence alignment of human Hu-family proteins. Identities appear in black, similarities appear in gray. The amino acids
comprising the shuttling sequence of HuR, HNS’ are indicated; it is not known whether the insertions and changes in this region of the

other Hu proteins affect the functioning of HNS.
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Hu-family proteins promote cellular differentiation

Genetic analyses performed in D. melanogaster have
shown the ELAV locus to be essential for proper neu-
ral development [77, 105]. The expression patterns of
Hu-family proteins hint that this is also true of
ELAV’s mammalian counterparts. There are two neu-
ral-specific Hu-family members in mammals: HuC
[106], and HuD [107]. Another Hu-family member,
HuB, is expressed in both neurons and sex organs
([108] and references therein). All four of the Hu-fam-
ily proteins are target antigens in antibody-associated
paraneoplastic encephalomyelitis sensory neuropathy
(Hu syndrome) (reviewed in [109]). Like HuR, ELAV
and the other Hu-family proteins all contain three
RRMs. Between RRMs 2 and 3 is a poorly conserved
hinge region of ~ 50-80 amino acids. Recent NMR
studies of the first two RRMs of HuC show that the
individual RRMs bind weakly to AUUUA, whereas a
didomain fragment (comprised of both RRMs) binds
more tightly to a longer ARE [110]. Several amino
acid residues, which are conserved in the related
ELAV family protein Sxl, are implicated in mRNA
binding. HuB (Hel-N1) and its alternatively spliced
isoform (Hel-N2) have been shown to stabilize dead-
enylated intermediates generated from the turnover of
ARE-containing substrate mRNAs in vitro [49]. This
result is consistent with the ectopic expression of HuB
(Hel-N1) resulting in Glutl (a class III-ARE-contain-
ing mRNA) stabilization [l111]. Thus, Hu-family
proteins, like HuR, may function by stabilizing their
target mRNAs in vivo.

Recently published reports from several laboratories
have confirmed the involvement of Hu-family members
in neural development. The overexpression of HuB,
HuC and HuD in PC12 cells has been shown to induce
a neuronal phenotype even in the absence of nerve
growth factor [106, 112]. Moreover, the misexpression
of chicken HuD in cultured neural crest cells results in
an increase in the proportion of cells exhibiting neu-
ronal morphology [113]. Significantly, the overexpres-
sion of HuR in these same cells does not induce
neurite outgrowth. Neurite formation can likewise be
induced in human embryonic teratocarcinoma cells by
transfection with HuB [114]. Moreover, the treatment
of PC12 cells with antisense deoxynucleotides directed
against HuD blocks the induction of neurite outgrowth
in NGF-treated PCI12 cells [115]. Interestingly, mutants
of HuB and HuC lacking their third RRMs fail to
produce this phenotype upon overexpression [106]. In-
stead, the third RRMs of HuB and HuC function as
dominant-negative proteins when cotransfected with ei-
ther wild-type HuB or wild-type HuC into PC12 cells
[106]. These dominant-negative mutants also prevent
mouse embryonic central nervous system maturation

HuR and mRNA stability

when misexpressed, as judged by immunostaining for
an early motor neuronal marker. RRM3 of HuD was
also observed to be important for the neurite-inducing
activity in PCI2 cells [112]. The fact that the third
RRMs of HuB and HuC (and presumably HuD) re-
tain only a marginal ability to bind RNA [106] sug-
gests that they may function as dominant negatives by
competing with their endogenous (complete) counter-
parts for intracellular interactions with essential lig-
ands. Perhaps these are the same proteins as those
characterized as HuR ligands [86]. Thus, the same sig-
naling pathway may have different outputs in different
tissues, simply because the end target (an mRNA re-
quired for neural differentiation) and its regulator (an
Hu-family protein) are differentially expressed.

Cytoplasmic localization of Hu-family proteins is
induced by stress, correlates with RNA stabilization and
is required for cellular differentiation

The realization that HuR both stabilizes ARE-contain-
ing mRNAs and shuttles led to the idea that HuR
might bind its target mRNAs in the nucleus and fol-
low them to the cytoplasm to provide ongoing protec-
tion from the degradation machinery [79, 80].
Although this hypothesis remains unproven, much evi-
dence has emerged to support the importance of
HuR’s cytoplasmic localization for mRNA stabiliza-
tion (for review, see [116]). Gorospe and colleagues
have recently shown that the increased cytoplasmic lo-
calization of HuR upon the treatment of cells with UV
light is correlated with the stabilization of p21 mRNA,
an ARE-containing mRNA [81]. Gorospe and col-
leagues have also correlated the increased cytoplasmic
localization of HuR during late G1, S and G2 phases
in colorectal carcinoma RKO cells with the stabiliza-
tion of ARE-containing mRNA [82]. Similarly, an in-
creased ability of epithelial cells containing relatively
high amounts of cytoplasmic HuR to stabilize mRNA
containing the human papillomavirus type 1 AU-rich
element has been reported [117]. These data are consis-
tent with the increased cytoplasmic localization of
HuR following heat shock [85], a stress known to sta-
bilize ARE-containing mRNA [74]. A model for HuR
nucleocytoplasmic transport after heat shock is pre-
sented in figure 3.

Interestingly, the cytoplasmic localization of other
mammalian Hu-family proteins appears to be crucial
for their function [108]. Two deletion mutants of HuD
containing its novel nuclear export sequence domi-
nantly inhibit the wild-type protein’s neurite-inducing
activity in PCI12 cells [112]. Comparable deletion mu-
tants inhibit the neurite-inducing activity of HuB in
PC12 cells [106].
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Normal

m'G ARE poly{A)

poly(A)

poly(A)

i ARE

translational machinery

Heat shock

m'G

T— foci/granules

Figure 3. Model for HuR transport and hnRNP assembly in the presence and absence of stress, heat shock being the specific example.
In vivo UV-crosslinking of proteins to poly(A) + RNA indicates that HuR normally binds nuclear mRNA shortly before export and
well after hnRNP Al binds. Upon heat shock, HuR is exported (whether with or without mRNA is not known) and accumulates in
cytoplasmic foci [85] similar, if not identical, to stress granules [118].

Future challenges

Although much has been learned about the role HuR
plays in ARE-mediated mRNA stability since it was
first recognized 4 years ago, much more remains to be
understood. First, how does HuR specifically recognize
ARE-containing mRNAs? Does a single HuR molecule
simultaneously bind the ARE (using RRMs 1 and 2)
and the poly(A) tail (using RRM3)? Are the residues
that contact the mRNA amino acids that are conserved
between HuB, HuC, HuD and HuR? Second, the ex-
port and import receptor(s) for HuR remain to be
identified. Are they the same or different for other
Hu-family proteins? Is HuR a dominant player in the
export of ARE-containing mRNAs? Third, do the HuR
ligands increase the affinity of HuR for its target
mRNAs or do they regulate HuR export, thereby mod-
ulating its ability to stabilize ARE-containing mRNAs?
Fourth, does PP2A inhibition play a role in ARE-medi-
ated mRNA stability in terms of either mechanism or
regulation? Finally, how does hnRNP D, which appears
to facilitate the degradation of ARE-containing mR-
NAs, fit into the puzzle? Do hnRNP D and HuR simply
compete for the same binding site(s) in the 3" UTR of
mRNAs? If hnRNP D were to triumph in this dynamic
struggle, then decay might be instantaneous, consistent
with in vivo crosslinking results in which hnRNP D
binding to poly(A) + RNA was not detected [85]. What
about all of the other ARE-binding proteins that have

been identified? Are they coconspirators in either HuR-
mediated stabilization or hnRNP D-targeted degrada-
tion of this important class of cellular mRNASs? Insights
from structural biology and biochemistry, as well as cell
biological approaches, will be needed to achieve a
molecular understanding of this critical aspect of gene
regulation in mammalian cells.
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