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Accurate detection of somatic mutations in DNA sequencing data is a fundamental prerequisite for cancer research.

Previous analytical challenges were overcome by consensus mutation calling from four to five popular callers. This, how-

ever, increases the already nontrivial computing time from individual callers. Here, we launch MuSE 2, powered by multi-

step parallelization and efficient memory allocation, to resolve the computing time bottleneck. MuSE 2 speeds up 50 times

more thanMuSE 1 and eight to 80 times more than other popular callers. Our benchmark study suggests combiningMuSE 2

and the recently accelerated Strelka2 achieves high efficiency and accuracy in analyzing large cancer genomic data sets.

[Supplemental material is available for this article.]

Cancer arises and evolves by accumulating various types of genetic
alterations, such as single-nucleotide variation (SNV), copy num-
ber alteration (CNA), and structural variation (SV). The high-
throughput sequencing (HTS) technology has revolutionized the
way we look at many human diseases, particularly cancer. With
its constantly improved capacity and reduced cost, HTS is enabling
investigations of genetic alterations within large human patient
cohorts, hence advancing both basic and translational cancer re-
search. Many computational tools have been developed for calling
somatic variants (Xu 2018), which typically require, as input,
whole-genome sequencing (WGS) or whole-exome sequencing
(WES) data from the tumor tissue, as well as from the blood of
the patient to serve as the germline control. WGS provides the
most comprehensive coverage to sequence both protein-coding
and noncoding regions across the entire genome, whereas WES
provides an efficient alternative to WGS by targeting only pro-
tein-coding regions that account for 1%–2% of the genome
(Alfares et al. 2018), hence achieving both higher read depth
(Barbitoff et al. 2020; Sun et al. 2021) and lower sequencing cost.

We previously launchedMuSE 1 (Fan et al. 2016), a statistical
approach for somatic mutation calling, in which we introduced a
combination of nucleotide base-specific Markov substitution
model for molecular evolution and a tumor sample–specific error
model to estimate tier-based cutoffs for selecting SNVs. Because
of its high sensitivity and specificity, especially for calling subclo-
nal SNVs,MuSE 1was adopted inmultiple pipelines, including as a
major contributing caller to reach final consensus calls by The
Cancer Genome Atlas (TCGA) PanCanAtlas project (Ellrott et al.
2018), across approximately 13,000 tumor samples, and the
International Cancer Genome Consortium Pan-Cancer Analysis
of Whole Genomes (ICGC-PCAWG) initiative (The ICGC/TCGA
Pan-Cancer Analysis ofWholeGenomes Consortium2020), across
approximately 2700 tumor samples.

One major limitation of MuSE 1, like many other mutation
callers (Koboldt et al. 2012; Larson et al. 2012; Cibulskis et al.

2013), is the computational speed. It takes 2–3 d to finish running
the WGS data of a tumor–normal pair on a typical Linux server
with an Intel Xeon processor and >100 gigabytes (GB) random ac-
cessmemory (RAM), which explains the commonly seen longwait
times for completing mutation calling before any downstream
analysis in large patient cohort studies. Here, we present MuSE 2,
which maintains the same input, output, and mathematical mod-
el as MuSE 1 but accelerates significantly for both WES and WGS
data by adopting a new algorithmic programming backbone.
MuSE 2 uses a multithreaded producer–consumer model and the
OpenMP library for parallel computing, including parsing and
uncompressing reads from binary sequence alignment/map for-
matted (BAM) files, detecting and filtering variants, and writing
output. It is also optimized by adopting a more efficient memory
allocator. In this paper, we have benchmarked the accuracy of
MuSE 2 against three somatic mutation callers, namely, MuTect2
(Cibulskis et al. 2013), SomaticSniper (Larson et al. 2012), and
VarScan2 (Koboldt et al. 2012), which are the other highlighted
somatic mutation callers in the National Cancer Institute
Genomic Data Commons (GDC) DNA-seq analysis pipeline
(https://docs.gdc.cancer.gov/Data/Bioinformatics_Pipelines/DNA_
Seq_Variant_Calling_Pipeline/), as well as a recently accelerated
mutation caller Strelka2 (Kim et al. 2018). We use the consensus
mutation calls generated by previous consortial studies with three
to five unaccelerated callers (Craig et al. 2016; Ellrott et al. 2018;
The ICGC/TCGA Pan-Cancer Analysis of Whole Genomes
Consortium 2020). Here, we show the improved utility of our
new caller usingWES data generated from five tumor–normal pairs
and WGS data generated from seven tumor–normal pairs.

Results

Overview of approach

MuSE 2 takes as input the indexed reference genome FASTA file,
the BAM format sequencing data from a pair of tumor–normal tis-
sues (Supplemental Fig. S1), and the dbSNP (Sherry et al. 2001)
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variant call format (VCF) file, which is bgzip-compressed, tabix (Li
2011)-indexed using the same reference genome. Unlike MuSE 1,
which can only use one core,MuSE 2 takes advantage of themulti-
core resources in a modern computer or a computing node for
somatic SNV calling from WES/WGS data (Fig. 1A,B).

Because our benchmarking study requires a large number of
computational resources to cover multiple callers and scenarios,
we only include results for the WES data from five tumor–normal
pairs and for the WGS data from five tumor–normal pairs, which
are randomly selected and downloaded from the GDC data portal
and the ICGC data portal, respectively. The sequencing depths
from these samples reflect the wide ranges presented in both
data sets (Supplemental Table S1; Supplemental Fig. S2). We fur-
ther include WGS data from two tumor–normal pairs to evaluate
mutation calling performances on newer sequencing platforms.

We compare the SNV entries in the output VCF files generat-
ed by MuSE 2 with those by MuSE 1 for each patient sample with
the same or a different number of CPU cores. Because each SNV en-
try is denoted by one line of string in a VCF file, we compare the
strings from both methods line by line. The result shows that all
the entries from the twomethods are identicalwith the samenum-
ber or different number of cores (Supplemental Fig. S3).

Accuracy benchmarking for real tumor samples

We evaluate the performance of MuSE 2 and compare it to other
callers using the consensus SNV calls from TCGA (for the WES
data) and PCAWG (for theWGSdata) as truth sets. The truth sets in-
clude 168–2553 somatic SNVs (mean=1394, median=932) for the
WESdata and3813–19,081 somatic SNVs (mean=10,146,median=
8073) for the WGS data. We first compared among callers whose

predecessors contributed to the consensus call: MuSE 2, MuTect2,
SomaticSniper, and VarScan2 for TCGA WES and MuSE 2 and
MuTect2 for PCAWG WGS. We divided the mutation positions
into multiple bins defined by variant allele frequency (VAF), or se-
quencing read depth, and by classes of variant effects or clonality
(Methods) and calculated the precision, recall, and F1 score, that
is, the harmonic mean of precision and recall for each bin. For
both the WES and WGS data, MuSE 2 achieves a higher precision
at a similar or higher recall, hence a higher F1 score (Supplemental
Fig. S4; for TCGA, see A; for PCAWG, see B) across all bins of VAF
and read depth and across variant classes. It also achieves a higher
recall for subclonal consensus SNV calls from PCAWG WGS
(Methods) (Dentro et al. 2021).We then compared the performance
between MuSE 2 and Strelka2 (Kim et al. 2018). Strelka2 used ma-
chine learning and curated data to train a position-specific error
score, and was developed after the release of PCAWG consensus
calls. In contrast to machine learning, MuSE 2 uses the same
BayesianMarkovmodel asMuSE 1 to explicitly define an evolution-
ary process and estimate model-based parameters based on the data
at hand. Overall, Strelka2 performswell in bothWES andWGS data.
Compared with MuSE 2, its performance is lower in WES (Fig. 2)
across all bins of VAF, read depth, and different variant class.
However, in the case of WGS data, it either matches or surpasses
MuSE 2 in precision at a similar recall rate (Fig. 3A). There is an ex-
ception that Strelka2 still shows a slightly lower recall than MuSE
2 at positions with low VAF (<0.2) or low read depth (<20×).

Accuracy benchmarking for tumor cell line data

As the TCGA and PCAWG data used above were generated by
Illumina HiSeq 2000 more than a decade ago, we further obtained

A

B

Figure 1. Assembly line illustration of themultistep parallelization implemented inMuSE 2. (A) “MuSE call”: Workers (threads) keep fetching chunks from
the input BAM files from the tumor and normal samples and unzipping them to the text format of reads. Downstreamworkers combine the reads from the
tumor and normal samples and send to a queue; from there, other workers detect candidate variants. (B) “MuSE sump”: Multiple workers are used to take
the candidate variants and their corresponding estimated summary statistic π’s and scan them against the dbSNP database, labeling those appearing in the
database. For candidate variants from the WGS data, we fit two-component Gaussian mixture models (GMMs) with multiple initializations, distributed to
multiple workers, in order to separate true variants from background noise; for candidate variants from the WES data, no parallelization is implemented
owing to computational simplicity as we simply fit a Beta distribution to π’s.
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a set of tumor cell line sequencing data that was generated using
newer sequencing platforms to compare the caller performances.
The cell line tumor–normal pair COLO829/COLO829BL was used
to generate WGS data on HiSeq X Ten, called COLO829 Illumina,
and on NovaSeq, called COLO829 10X, and the consensus calls
from three mutation callers were generated through a multi-institu-
tional effort (Methods) (Craig et al. 2016). Although the sequencing
datawere newer, the consensus call effort was relatively old, and the
three callers did not entirely match what was established by the
TCGA and PCAWG projects. They include MuTect2’s predecessor
MuTect (Cibulskis et al. 2013), Strelka2’s predecessor Strelka
(Saunders et al. 2012), and Seurat (Christoforides et al. 2013). We
therefore implemented two strategies to benchmark the accuracy
of MuSE 2 and Strelka2. First, we took the consensus calls as the
truth set, which includes 35,543 SNVs from the two pairs of sam-
ples, COLO829 Illumina and COLO829 10X. Second, we put aside
the consensus calls and instead used the mutation calls made in
the tumor cell line (100%) as the truth set. This truth set then in-
cludes 45,853 SNVs from MuSE 2 and 44,257 SNVs from Strelka2,
respectively, called from COLO829 Illumina. We then evaluated
how many of these initial calls were recovered in a in silico diluted
data set in which the tumor cell proportion decreases to 75%,
50%, 25%, 20%, and 10% (Methods). MuSE 2 and Strelka2 did
equally well with both truth sets.MuSE 2 presented a slightly higher
recall than did Strelka2 at positions with a low VAF (<0.2) or in sam-
ples with a low tumor cell proportion (≤10%) (Fig. 3B,C). We note
that this slight advantage in MuSE 2 is consistently observed across
allWGSdata, whereas an advantage of higher precision inMuSE 2 is
consistently observed in WES data.

Speed benchmarking

We compare the speed of running MuSE 2 against MuSE 1,
MuTect2, SomaticSniper, VarScan2, and Strelka2 on a computing

cluster. Each method is tested with the number of CPU cores at
one, five, 10, 20, 28, 40, and 80. All methods are assigned with
the same RAM of 50 GB for the WES data and 150 GB for the
WGS data. The time cost of each method for each pair of data is
shown in Figure 4A. Except for COLO829 10X, both MuSE 2 and
Strelka2 continue to gain computational advantages with an in-
creasing number of CPU cores, whereas the other four methods
do not.We examine the overall speed performances of thesemeth-
ods with MuSE 2 at 80 cores and Strelka2 at 80 cores, as well as the
average time cost across multiple runs over the different numbers
of cores except for core= 1 (for which the computing resource is
too limited) for the other methods (Fig. 4B). Both MuSE 2 and
Strelka2 achieve much faster SNV calling compared with all the
other methods. For the WES data, MuSE 2 accelerates 28–58
times (mean=44) compared with MuSE 1, 68–83 times (mean=
77) compared with MuTect2, five to eight times (mean=8)
compared with SomaticSniper, and 33–39 times (mean= 36)
compared with VarScan2. Similarly, for the WGS data, it acceler-
ates 48–59 times (mean =57) comparedwithMuSE 1, 33–44 times
(mean=41) compared with MuTect2, seven to eight times (mean
=8) compared with SomaticSniper, and 33–43 times (mean= 37)
compared with VarScan2. On the other hand, Strelka2 is faster
than MuSE 2 for all the WES data and the WGS data except for
COLO829 10X. It is about a twofold speedup on average com-
pared with MuSE 2. For COLO829 10X, however, Strelka2
stopped gaining speed after five CPU cores, whereas MuSE 2 con-
tinued accelerating; its computing time is 20 times that of MuSE 2
at 80 cores.

Overall, MuSE 2 and Strelka2 are the two top accelerated
methods compared with the others in the above benchmarking.
We further examine the difference between the SNV calls reported
by them for the same patient sample (Fig. 4C). For the WES data,
46%–78% (mean=66%) of the calls are identified by both;
2%–16% (mean=7%) of the calls are unique to MuSE 2; and

Figure 2. Comparisons of F1 score, precision, and recall betweenMuSE 2 and Strelka2 within each bin of variant allele frequency (VAF; top), sequencing
read depth (middle), or variant class (bottom) for TCGA WES data. The calls of each method and the consensus calls, which are used as the truth set, are
pooled from the WES data of five patient samples in TCGA.

MuSE with multistep parallelization
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Figure 3. Accuracy benchmarking of MuSE 2 and Strelka2 within each bin of VAF ( first row), sequencing read depth (second row), or class of variant
effects (third row) for PCAWG WGS (A) and cell line WGS (B) data. Comparison of recall between the two methods within different clonality for PCAWG
WGS data is shown in the last row of A. The calls of eachmethod, as well as the truth set, are pooled from theWGS data of the selected five patient samples
fromPCAWG (A) or theWGS data of the cell line COLO829/COLO829BL generated from two platforms (B). The number of consensus calls for a variant class
is included in the x-axis labels. (C ) F1 scores ofMuSE 2 and Strelka2with varied tumor cell proportions. Calls from the tumor purity of 100%were used as the
truth set.
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13%–51% (mean=27%) of the calls are unique to Strelka2. For the
WGS data, 41%–77% (mean=62%) of the calls are identified by
both; 6%–18% (mean=11%) of the calls are unique to MuSE 2;
and 13%–45% (mean=26%) of the calls are unique to Strelka2.

We further investigate the feasibility of using the intersect
calls from these two methods to reproduce the consensus calls
for these data generated by previous studies (Craig et al. 2016;
Ellrott et al. 2018; The ICGC/TCGA Pan-Cancer Analysis of
Whole Genomes Consortium 2020). For the WES data, these calls
notably improve the F1 scores of Strelka2 calls, while maintaining
a comparable F1 score with the MuSE 2 calls (Fig. 4D;

Supplemental Table S2). This suggests that running MuSE 2 alone
might be sufficient for theWES datawhen the computing resource
is limited. For the WGS data, on the contrary, Strelka2 calls (0.76–
0.92) have higher F1 scores than do MuSE 2 calls (0.63–0.88) in all
the patient samples, whereas the intersection calls outperform the
two individual callers and reach the highest F1 scores (0.91–0.96).
Also, the intersect calls achieve the highest precision values (0.92–
0.96 for WES, 0.87–0.95 for WGS) for all the data benchmarked,
despite the differences of read depths and sequencing platform
they were generated (Supplemental Table S1). The intersect calls
maintain good recall values at 0.74–0.89 (median=0.86) for the

A

D

CB

Figure 4. Benchmarking the speed and usability of MuSE 2. (A) The runtime ofMuSE 2 against MuSE 1 and the other four methods for both theWES and
WGS data across different numbers of cores. The numbers in the plot represent the fold speedup of MuSE 2 (with 80 cores) relative to the other methods
whose time cost is averaged across different numbers of cores (excluding core= 1). For Strelka2, only the time cost with 80 cores is considered. (B) A sim-
plified version of A in which the time cost of each method is averaged across all samples (excluding COLO829 10X as an outlier; see A) and different num-
bers of cores. (C) Venn diagrams showing the unique and shared SNV calls of MuSE 2 and Strelka2. (D) Scatter plot of the precision and recall for the
intersection calls from MuSE 2 (in red) and Strelka2 (in blue) and the calls from each of the two methods (in purple) against the previously reported con-
sensus calls, which are considered as the benchmark. For both the WES (circle) and WGS (triangle) data, the median F1 scores of the intersection calls and
calls of each individual method are shown. Two shaded rectangles highlight the difference of the performance metrics between the WES and WGS data.
Results from the WGS data are located in the top rectangle.
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WES data and at 0.96–0.98 (median=0.96) for the WGS data. The
recall values of either the intersect call sets or the individual call
sets from the two methods are consistently higher for the WGS
data than the WES data (Fig. 4D, all results from the WGS data
fall in the top rectangle). Also, MuSE 2 call sets achieve higher pre-
cisions and F1 scores and lower recalls for WES but achieve higher
recalls and lower precisions and F1 scores for the WGS data com-
pared with the calls from Strelka2. Because the F1 scores of inter-
sect calls are lower in WES than in WGS, we further investigated
whether the inclusion of a third caller could improve the accuracy
for WES. This led to an interesting observation that adding
VarScan2 or SomaticSniper as a third caller did not improve preci-
sion, recall, or F1, whereas addingMuTect2 improved recall but de-
creased precision and F1 (Supplemental Table S3). In the project of
multicenter mutation calling inmultiple cancers (MC3) organized
by TCGA, the latter strategy was further expanded to include five
callers,maximizing recall, andwas followedby a postfiltering pipe-
line, independent of any callers, to improve precision (Ellrott et al.
2018). This postfiltering pipeline removes potentially false-posi-
tive variants that are caused by germline contamination, sequence
artifacts, low read depth in the normal sample, and nonexonic var-
iants. In summary, combining mutation calls from the two accel-
erated callers MuSE 2 and Strelka2, for example, by simply taking
an intersection of the calls, is promising to achieve optimizedmu-
tation calling in a significantly shorter wait time. This strategy is
particularly useful for the WGS data and for analysis of large pa-
tient cohorts. With the WES data, running MuSE 2 alone can be
a cost-effective strategy to obtain mutation calls with high preci-
sion and a reasonable F1 score.

A Snakemake pipeline for somatic SNV calling

Finally, we introduce a fully automated mutation calling pipeline
for general users who do not have the time or expertise to learn
about the nuances in optimizing mutation calling accuracy, using
the Snakemake workflow management system (Supplemental Fig.
S5) (Köster and Rahmann 2012). This user-friendly pipeline allows
for running all preprocessing steps, MuSE 2 and Strelka2 for muta-
tion calling, and all postprocessing including the consensus steps,
in the background without manual curation. It is compatible with
typical Linux systems and computing clusters and optimizesmem-
ory and CPU use by parallelizing independent tasks.

Discussion

Precision medicine and personalized cancer treatments have ad-
vanced remarkably in the past decade, which greatly benefited
from the accurate identification of genetic variations in the tumor
tissue using HTS data. An efficient and accurate somatic mutation
caller is crucial to the scientific studies of all cancers and their clin-
ical management. Previously the accuracy and utility of MuSE 1,
either alone (Fan et al. 2016) or as a member of a multicaller con-
sensus calling strategy, have been validated by multiple consortial
projects (Ellrott et al. 2018; The ICGC/TCGA Pan-Cancer Analysis
ofWholeGenomesConsortium2020). This study further develops
MuSE 2 in order to fully use resources on a high-performance com-
puting machine, including both the CPU cores and memory allo-
cation. The producer–consumer model behind the parallelization
implemented in the step of “MuSE call” gives MuSE 2 the ability
to manage multiple processes (workers) at the same time: They
run independently at their own rates without being affected by
the computing load of other processes. Because the calculation

in the step of “MuSE sump” is more straightforward (the comput-
ing speed bottlenecks only reside in several for-loop iterations), we
use theOpenMP library,withwhich the parallelization is relatively
trivial. The speed-up byMuSE 2 becomes evident when it is run on
at least four to five cores to take advantage of the multistep paral-
lelization. In summary,MuSE 2 improves themutation calling util-
ity of MuSE 1 by accelerating its computing speed by up to 50–60
times for both theWES andWGSdata.MuSE 2 reduces the compu-
tational time cost of a somaticmutation calling project from∼40 h
to <1 h for the WGS data and from 2–4 h to ∼5 min for the WES
data, from each pair of tumor–normal samples.

MuSE 2 ismuch faster than the other three benchmarked call-
ers, namely, MuTect2, SomaticSniper, and VarScan2. It is slightly
slower than Strelka2 for the sequencing data generated by HiSeq
2000 and HiSeq X Ten but is much faster than the latter with
NovaSeq. Because we only include one pair of tumor–normal
WGS data from HiSeq X Ten and NovaSeq, respectively, more
data are needed to validate this result in the future study. The inter-
section ofMuSE 2 and Strelka2 calls can substantially improve pre-
cisions without much loss in recalls, hence improving the overall
F1 scores for both theWES andWGSdata benchmarked.We there-
fore show the utility of the intersection calls from these two fast
callers compared with using each caller individually or using unac-
celerated callers.

In contrast to the current consensus calls of TCGA and
PCAWG and the cell line study, running MuSE 2 and Strelka2 to
generate intersect calls may greatly improve the efficiency of geno-
mic data analysis for large patient cohorts, especially for thosewith
WGS data. We also found runningMuSE 2 alone is a cost-effective
solution formutation calling inWES data, as it would otherwise re-
quire four to five callers plus postfilterings to achievemuch higher
recall and precision. Finally, in order to improve accessibility by ge-
neral users, we provide a Snakemake workflow pipeline that auto-
matically runs preprocessing, intersect mutation calling using the
two accelerated callers, and postprocessing without human inter-
vention. We note that the hg19 genome assembly was used
throughout the study because all consensus calls were based on
hg19. Given the underlyingmodels ofMuSE 2 and Strelka2, we ex-
pect the performance of the variant calling of both methods to be
insensitive to genome assemblies. As the switch of assembly build
from hg19 to hg38 can impact preprocessing and read mapping to
generate the input data, some difference in variant calls could be
observed, which should not substantially affect the conclusions
(Gao et al. 2019). Future development of MuSE 2 includes indel
calling and SNV calling from formalin-fixed paraffin-embedded
(FFPE) samples and from tumor samples only, all of which require
an advanced error model construction, as well as further bench-
marking. In summary, we expect the proposed MuSE 2 to signifi-
cantly accelerate the variant calling process and benefit the
cancer research and clinical communities.

Methods

Sample selection

The consensus mutation calls of the TCGA portion of the PCAWG
project were downloaded from the ICGC data portal (https://dcc
.icgc.org/releases/PCAWG/consensus_snv_indel). The consen-
sus mutation calls of the TCGA MC3 project were downloaded
from the NCBI Genomic Data Commons (GDC) (https://gdc
.cancer.gov/about-data/publications/mc3-2017).We randomly se-
lected five patient samples from each of the two repositories and

Ji et al.

638 Genome Research
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.278456.123/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.278456.123/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.278456.123/-/DC1
https://dcc.icgc.org/releases/PCAWG/consensus_snv_indel
https://dcc.icgc.org/releases/PCAWG/consensus_snv_indel
https://dcc.icgc.org/releases/PCAWG/consensus_snv_indel
https://dcc.icgc.org/releases/PCAWG/consensus_snv_indel
https://dcc.icgc.org/releases/PCAWG/consensus_snv_indel
https://gdc.cancer.gov/about-data/publications/mc3-2017
https://gdc.cancer.gov/about-data/publications/mc3-2017
https://gdc.cancer.gov/about-data/publications/mc3-2017
https://gdc.cancer.gov/about-data/publications/mc3-2017
https://gdc.cancer.gov/about-data/publications/mc3-2017


downloaded the BAM files from https://dcc.icgc.org/repositories
and https://portal.gdc.cancer.gov/analysis_page?app=Downloads,
respectively. The sequencing data of these 10 patient samples
were generated by Illumina HiSeq 2000. We further downloaded
BAM files of WGS data from the metastatic melanoma cell line
COLO829 and the matched normal lymphoblastoid line
COLO829BL from the European Nucleotide Archive (ENA; acces-
sion code PRJEB27698; https://www.ebi.ac.uk/ena/browser/view/
PRJEB27698). We downloaded the latest WGS data set (Espejo
Valle-Inclan et al. 2022). The sequencing libraries either were pre-
pared with Illumina TruSeq Nano reagent kit and sequenced on
the HiSeq X Ten platform (COLO829 Illumina) or were prepared
on the 10x Chromium platform and sequenced on the NovaSeq
platform (COLO829 10X). For COLO829 Illumina, we also down-
loaded the BAM files of the cell line with mixed tumor cell propor-
tions of 75%, 50%, 25%, 20%, and 10%. These data were simulated
by in silico mixing of reads from COLO829 (100% tumor) and
COLO829BL (normal sample) with different ratios.

BAM preprocessing

MuSE 2 adopts the same preprocessing steps for the unaligned se-
quencing reads of the tumor–normal pair as MuSE 1, which in-
clude trimming poor-quality bases, removing adapters, marking
duplicate reads, performing local indel realignment for the paired
tumor–normal BAM files jointly, and recalibrating base quality
scores (Supplemental Fig. S1). In this study, the sequencing reads
are aligned against the hg19 reference genome build using BWA-
MEM (Li 2013).

Sequencing depth

The sequencing depth of each BAM file after preprocessing is esti-
mated by SAMtools (Li et al. 2009)with the “depth” command. For
the WGS data, the overall depth was calculated as the average of
the read depths of all genomic locations. For the WES data, the
overall depth was calculated as the average of the read depths of
the genomic locations in the exon regions defined by the exome
capture kit downloaded from GDC (https://gdc.cancer.gov/
about-data/publications/mc3-2017).

Parallel computing implementation for MuSE

MuSE call

We implement a multithreaded producer–consumer model that
deploys threads for parsing and uncompressing reads from BAM
files, for variant filtering and detection, for writing outputs, and
for monitoring the whole process. The model connects all the
threads concurrently by thread-safe queues and atomic variables.
We also adopt a faster and more efficient memory allocator (i.e.,
TCMalloc: https://github.com/google/tcmalloc) rather than use
the default malloc in C and the new in C++ in this step. The paral-
lelizationmodel starts with creating six threads, three for the BAM
of the tumor sample and the other three for the BAM of the
normal sample: One of the three threads parses the compressed
binary data and sends its reference to two queues, namely,
ChunkReadQueue and ChunkUnzipQueue; the other two threads
take the data from the ChunkUnzipQueue, decompress it, and la-
bel it as “processed.” This change is also effective for the data in
ChunkReadQueue, because these two queues in fact store the
same data. Another thread (i.e., read) is then created, which takes
uncompressed data fromChunkReadQueue, recovers them to read
format for both the BAM tumor sample and the BAM of normal
sample, and pushes them to the same queue, ReadQueue. A new
thread named processReads is created; it parses the reads from

ReadQueue and sends them to the queue, processQ. n threads of
named workers are created to take the reads from processQ and
process them following the same prefiltering and evolutionary
model as MuSE 1. The last thread is named as “monitor,” which
prints the sizes of the queues every second. Here, users can specify
n according to the number of cores available in the input ofMuSE 2
(Supplemental Fig. S6).

MuSE sump

We use the OpenMP library to parallelize the three most time-con-
suming parts in MuSE sump. The first is the loading of candidate
variants, as well as the corresponding estimates of equilibrium fre-
quencies for all four alleles (A, C, T, G) for each variant fromMuSE
call, and filtering out the variants whose ratio between the VAF
from the normal sample and the VAF from the tumor sample is
above a predefined cutoff (0.05) (Fan et al. 2016). The second is
scanning for the remaining variants in the dbSNP, marked as
“true” or “false” if they appear in the database or not. For the
WGS data, MuSE 1 fits a two-component Gaussian mixture model
to the allele frequencies of the postfiltered variants to separate true
mutations from background noise. The parameters (e.g., mean,
standard deviation, and proportion) of the two components are es-
timated using the expectation-maximization algorithm, which is
repeated 50 times with random initializations. For the three parts,
we parallel the for-loop iterations using the “omp parallel for”
clause from OpenMP in MuSE 2 to deploy the computation on
multiple cores.

Speed benchmarking settings

For all the benchmarkedmethods, if the number of cores requested
lies in {1, 5, 10, 20, 28}, the processor is the Intel Xeon gold 6132
CPU at 2.60 GHz; if the number of cores requested lies in {40, 80},
the processor is the Intel Xeon platinum 8380 CPU at 2.30 GHz.
We run each method by submitting the load sharing facility
(LSF) job script using the bsub command,withwhichwe can easily
control the RAM and the number of cores specified for eachmeth-
od. The options for the six callers can be found in Supplemental
Table S4.

Precision and recall

For the samples from TCGA and PCAWG, we used the consensus
SNV calls published previously (Ellrott et al. 2018; The ICGC/TCGA
Pan-Cancer Analysis of Whole Genomes Consortium 2020) as a
truth set; for the cell line COLO829/COLO829BL, we used the SNV
calls downloaded from Craig et al. (2016) as a truth set. The version
information of the benchmarked callers is listed in Supplemental
Table S5. Indel calls were removed from the call set before any com-
parison. For theWGS data, we took calls from all tiers inMuSE 2 (Fan
et al. 2016), andonly calls from the PASS category from the other call-
ers for each patient sample. We filtered out low-quality SNVs from
the consensus calls from PCAWG WGS data that are labeled as
“LOWSUPPORT,” “OXOGFAIL,” “bSeq,” “bPcr,” “GERM1000G,”
“GERMOVLP,” “NORMALPANEL,” or “REMAPFAIL” (https://dcc
.icgc.org/releases/PCAWG/consensus_snv_indel). Consistently, we
used consensus calls for the cell line COLO829/COLO829BL, which
had already gone through a similar postfiltering process (Craig et al.
2016). For the WES data, we selected calls from all the categories ex-
cept for “Tier5” from MuSE 2 and selected only calls from the PASS
category from the other callers for each patient sample. We also
used the consensus calls of TCGAWES thathad alreadygone through
postfiltering (Ellrott et al. 2018). The intersection between any two
sets from the same patient sample was identified by matching the
SNV IDs, which combined the columns of CHROM, POS, REF, and
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ALT from the two VCF files. For theWES data, we removed the SNVs
from the intersection calls outside the regions defined by the exome
capture kit of TCGA.

We considered any calls reported by the consensus, but not
by the intersection calls, as false negatives; any calls reported by
the intersection calls, but not by the consensus, as false positives.
We calculated precision, recall, and F1 score to evaluate the accu-
racy of a call set against a truth set.

F1 = 2× Precision × Recall
Precision+ Recall

.

Definitions of VAF bins, sequencing depth bins, clonality,

and variant effect annotation for SNVs

To resolve the issue that the read depth (including the number of
reads supporting the reference allele and the alternate allele) can
be different for the same SNVs fromMuSE 2, Strelka2, and the con-
sensus calls, we used alleleCount (https://github.com/cancerit/
alleleCount) to recalculate the read depth and VAF for all the
unique SNVs from MuSE 2, Strelka2, and the consensus calls. We
finally generated the bins of VAFs (i.e., 0–0.2, 0.2–0.3, 0.3–0.4,
0.4–0.5, and >0.5) and read depths (<40×, 40–80×, 80–120×,
120–160×, and >160× for the WES data, <20×, 20–40×, 40–60×,
60–80×, and >80× for the WGS data) for the calls of each method
for detailed comparisons.

We downloaded the consensus subclonal reconstruction re-
sults (Dentro et al. 2021) for the consensus calls of PCAWG WGS
data from ICGC data portal (https://dcc.icgc.org/releases/
PCAWG/subclonal_reconstruction/). Each SNV in the consensus
calls is defined as either clonal or subclonal when such informa-
tion is available. To compare the performance between MuSE 2
and other callers, we restricted the SNVs from each caller overlap-
ping with the ones from the consensus calls such that they can be
annotated as clone or subclone. Therefore, only recall is evaluated.

We used Ensembl VEP (v101) (McLaren et al. 2016) to predict
the effect of a SNV. For simplicity, we merged nonsense and mis-
sense variants into nonsynonymous variants; variants in the 3′ un-
translated region (UTR), 5′ UTR, 3′ flank, and 5′ flank into
untranslated region variants; variants in splice region, translation
start site, and RNA variants into the others category. We also re-
named silent variants to synonymous variants. We have four clas-
ses for the SNVs from TCGA WES data (nonsynonymous,
synonymous, untranslated region, and others) and six classes for
the SNVs from PCAWG or cell line COLO829/COLO829BL WGS
data (nonsynonymous, synonymous, intergenic region, intron,
untranslated region, and others).

Software availability

MuSE 2 is implemented in C++ and is available at GitHub (https://
github.com/wwylab/MuSE) with the GPL-2.0 license. A Dockerfile
is included in the repository for building MuSE 2 into a Docker
container running on Linux machines. A Snakemake pipeline for
somatic SNV calling, MuSE.Snakemake 1.0, is also available on
the GitHub repository. The source code of the repository is also
available as Supplemental Code.
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