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Estrogen Receptor 1 (ESR1; also known as ERα, encoded by ESR1 gene) is the main driver and prime drug target in luminal

breast cancer. ESR1 chromatin binding is extensively studied in cell lines and a limited number of human tumors, using con-

sensi of peaks shared among samples. However, little is known about inter-tumor heterogeneity of ESR1 chromatin action,

along with its biological implications. Here, we use a large set of ESR1 ChIP-seq data from 70 ESR1+ breast cancers to explore

inter-patient heterogeneity in ESR1 DNA binding to reveal a striking inter-tumor heterogeneity of ESR1 action. Of note,

commonly shared ESR1 sites show the highest estrogen-driven enhancer activity and are most engaged in long-range chro-

matin interactions. In addition, the most commonly shared ESR1-occupied enhancers are enriched for breast cancer risk SNP

loci. We experimentally confirm SNVs to impact chromatin binding potential for ESR1 and its pioneer factor FOXA1.

Finally, in the TCGA breast cancer cohort, we can confirm these variations to associate with differences in expression

for the target gene. Cumulatively, we reveal a natural hierarchy of ESR1–chromatin interactions in breast cancers within

a highly heterogeneous inter-tumor ESR1 landscape, with the most common shared regions being most active and affected

by germline functional risk SNPs for breast cancer development.

[Supplemental material is available for this article.]

The Estrogen Receptor 1 (ESR1; also known as ERα, encoded by the
ESR1 gene) is the driving force in most breast cancers diagnosed in
women—as well as men—worldwide (Waks and Winer 2019). As
such, ESR1 is considered the critical drug target inboth the adjuvant
and metastatic phase of the disease, but resistance to hormonal
treatment is common (Early Breast Cancer Trialists’ Collaborative
Group [EBCTCG] 2005). ESR1 serves as a hormone-dependent tran-
scription factor (TF), associating to DNA regulatory elements upon
ligand-mediated activation to drive activity of responsive genes, ul-

timately giving rise to tumor growth.DNAbinding sites for ESR1 are
enriched for the palindromic DNA sequence AGGTCAnnnT
GACCT, termed estrogen response elements (EREs), through which
the ESR1 homodimer directly interacts with the DNA (Coons et al.
2017). To study ESR1 DNA action in a genome-wide and compre-
hensive fashion, chromatin immunoprecipitation followed by se-
quencing (ChIP-seq) was used to profile the receptor’s DNA
binding pattern in breast cancer cell lines as well as in tumors.
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From these studies, we now know that the vast majority of ESR1
binding sites are found further away from the genes they control
(Carroll et al. 2006), and ∼95% of all ESR1 chromatin binding is
found at distal intergenic regions or introns (Carroll et al. 2005;
Ross-Innes et al. 2012), positive for the classical enhancer marks
H3K27ac and EP300 (Carroll et al. 2006). Notably, the total number
of ESR1 sites found at putative enhancers greatly outnumber the
genes they control (Fullwood et al. 2009), implying a level of func-
tional redundancy or cooperative action between ESR1 sites that is
still poorly understood.

Previous studies have identified ESR1 binding patterns that
characterize response to hormonal treatment or prognostication
by sex. In cell lines, numerous studies report on plasticity in
ESR1 DNA binding in endocrine therapy–sensitive MCF-7 cells,
as well as their treatment-resistant derivatives (Hurtado et al.
2011; Ross-Innes et al. 2012; Martin et al. 2017). In patients,
Ross-Innes et al. (2012) first reported on distinct ESR1 binding pro-
files and associated gene expression between patients with good
(ESR1+/PGR+) or poor (ESR1+/PGR−) clinical outcome, which asso-
ciated with FOXA1-mediated ESR1 cistromic reprogramming.
Later, our team reported an ESR1 ChIP-seq-based classifier using
primary tumor specimens, capable to identify a breast cancer pa-
tient’s response to aromatase inhibitor (AI) treatment in the meta-
static setting (Jansen et al. 2013). Inter-tumor variability in ESR1
DNA binding has also been described to decrease upon neoadju-
vant tamoxifen treatment, and again associated binding sites
were able to stratify patients on outcome (Severson et al. 2016).
ESR1 DNA binding profiles were not found to differ greatly be-
tween male or female breast cancer patients, although sites associ-
ated with patient outcome were sex specific (Severson et al. 2018).
These studies highlight the value of characterizing ESR1 DNA
binding between clinically distinguishable groups of patients.
However, even within the studied groups, a large variation in
ESR1 DNA binding was observed, of which the biological and clin-
ical implications remain unknown.

Because of the observed inter-sample heterogeneity of ESR1
peaks, downstream analyses typically rely on a consensus of peaks.
Whether a peak is included in a consensus relies on an (often arbi-
trarily chosen) threshold for the minimum number of tumors in
which the peak is detected. This leaves large amounts of potential-
ly interesting data unused. To the contrary, here we set out to ex-
plore inter-patient heterogeneity in ESR1 binding in more detail.
We evaluate the biology underlying inter-tumor cistromic hetero-
geneity of ESR1, in relation to genomic locations and germline var-
iations between breast cancer tumors, to better understand the
possible biological implications thereof.

Results

Putative enhancers represent the largest source of inter-patient

heterogeneity in ESR1–chromatin interactions

To identify the level of ESR1 chromatin binding heterogeneity in
human breast cancer specimens, we used ESR1 ChIP-seq data
from 40 female breast cancer patients (Fig. 1A; Supplemental
Table S1). Five newly generated ESR1 ChIPs on female tumors
were added to this study. The remaining 35 female samples have
been described and analyzed, in previous publications, to identify
genomic regions that could stratify patients on outcome or sex
(Supplemental Table S1; Ross-Innes et al. 2012; Jansen et al.
2013; Severson et al. 2018). Further, in parallel, we used an inde-
pendent cohort of 30 ESR1+ male breast cancer patients

(Supplemental Table S1; Severson et al. 2018) as a validation co-
hort. All sampleswere reanalyzed andprocessedwith the samebio-
informatics pipeline (for details, see Methods).

Analyzing these samples, we observed a high level of inter-
tumor heterogeneity of ESR1 binding, with the vast majority of
ESR1 sites being poorly conserved between tumors from female
patients (Fig. 1B). Of note, we were able to identify this high level
of heterogeneity despite considering two regions as overlapping
with as little as only one base being shared. If we were to reeval-
uate the aforementioned data by consensus with a lenient thresh-
old of peaks present in at least two patients, 50% of data would be
ignored. Previous analyses have been performed with cutoffs as
stringent as peaks found in 75% of patients (Ross-Innes et al.
2012). Applying this cutoff to this cohort, merely 0.3% (for fe-
male tumors) and 1.1% (for male tumors) of sites would remain.
In both female and male breast cancer patients, the level of con-
servation for ESR1 sites depends on the genomic distribution of
the peakset (Fig. 1C), as promoter binding events are more con-
served between individual tumors than are those of distal ESR1
binding sites (Fig. 1D).

For both sexes, we mapped all ESR1 binding events to genes
using promoter–enhancer loops defined by Corces et al. (2018).
Interestingly, the gene with the highest number of distal ESR1
binding events identified in our patient cohorts was FOXA1.
FOXA1 is the classical pioneer factor, essential for ESR1 to facilitate
its chromatin binding (Hurtado et al. 2011). Although the FOXA1
promoter was ESR1-occupied inmost samples, ESR1 binding at pu-
tative regulatory elements surrounding the FOXA1 locus varied
strongly between patients (Fig. 1E).

Common peaks represent 30% of ESR1 binding

in a patient ChIP sample

To better appreciate the functional implications of enhancer het-
erogeneity among patients, we removed all ESR1 binding events
at promoters and ranked all distal ESR1 binding events (74,438
in females, 91,712 inmales) from common among patients to pa-
tient-unique events (Fig. 2A; Supplemental Fig. S1A; Supplemen-
tal Tables S2, S3). Fifty-three percent of all ESR1-bound putative
enhancers found in female tumors were patient unique, 46% of
sites were found in two to 19 female patients, and merely 1.1%
were found in more than half of the female cohort (Fig. 2A). Sim-
ilarly, among males, inter-patient heterogeneity was large, with
46.3% of distal ESR1 binding events being patient unique,
49.5% found in two to 14 patients, and merely 4.3% found in
more than half of all male tumors analyzed (Supplemental Fig.
S1A).

Differences in peak conservation between patients were not
owing to subtle differences in peak calling performance, as partial-
ly shared ESR1 sites were genuinely differentially enriched be-
tween tumors (Fig. 2B). On patient level, the signal intensity at
ESR1 sites is higher at common compared with patient-unique
peaks (Fig. 2C,D), with highly common peaks (20 or more pa-
tients) showing the strongest signal.

For each patient in our cohort, we looked into the amount of
ESR1 ChIP-seq peaks picked up in their respective tissue sample
(Supplemental Fig. S1B). When viewing the list of all distal ESR1
ChIP-seq peaks found in a single patient, the minority of that
list is made up of peaks that we consider common among individ-
uals in the cohort: 29.3% (in females) and 42% in males
(Supplemental Fig. S1C). This implies that the body of ESR1
DNA binding events in a single patient sample occurs at regions
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considered less common among individuals. Thus, as previous
studies have applied stringent consensus-based approaches to
identify peaks common among individuals, they do not take
into account most of the ESR1 binding in a single individual. Or

in other words, a consensus analyzes ESR1 on group level but
may inform less on ESR1 behavior in an individual patient.

In an individual patient, peaks that are unique to that patient
make up 13.3% (in females) and 8.9% (in males) of all distal ESR1

A B

DC

E

Figure 1. The largest inter-patient heterogeneity in ESR1 chromatin binding is found at putative enhancers. (A) Graphical representation of study design.
ESR1 ChIP-seq on tumor samples from 30 male and 40 female breast cancer patients analyzed for the level of overlap and biological features. For sample
details, see Supplemental Table S1. (B) Percentage of ESR1 peaks included or excluded in consensus, by varying the threshold of minimal overlap of peaks
between female patients. (C) Genomic distribution of ESR1 consensus by varying threshold in females. (D) Percentage of distal and proximal regions re-
tained by varying threshold for consensus in females. (E) ESR1 binding sites in the vicinity of FOXA1, showing the number of patients in which these peaks
were called. Green lines represent enhancer regions; red line indicates promoter. Enhancer regions were coupled to FOXA1 on the basis of work by Corces
et al. (2018). Gray lines represent peaks that were not coupled to FOXA1 on the basis of work by Corces et al. (2018), but these are shown for completeness
as they were located in between peaks that were coupled to FOXA1.
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peaks found in that tissue sample (Supplemental Fig. S1C).
Although generally weaker, signal at patient-unique sites is only
slightly lower than the average signal for that particular tumor
(Fig. 2D). The number of patient-unique peaks in a patient sample
increases with the total number of distal peaks picked up in that
patient sample (Fig. 2E; Supplemental Fig. S1B,C), implying
unique peaks are not a proxy of relatively poor ChIP-seq quality.

Cumulatively, these data confirm a remarkable inter-patient
heterogeneity of ESR1 enhancer action that is typically overlooked
in consensus-based analyses.

ESR1 cistromic heterogeneity is independent of patient

pathological features

We explored putative biological features that might explain the
observed ESR1 peak heterogeneity by clustering the patients by
Pearson correlation coefficient of ChIP-seq signal at ESR1 enhanc-
er peaks (Supplemental Fig. S2). In doing so, we defined five clus-
ters based on the unsupervised hierarchical clustering and
analyzed the ESR1 binding heterogeneity within each cluster
(Fig. 3A; Supplemental Figs. S2, S3A). All the clusters—except for

A

B

C D E

× × ×

Figure 2. Characterization of enhancers ranked from commonly to less frequently bound by ESR1 shows distinct biological features. (A) A ranked over-
view of 74,438 distal ESR1 peaks showing in how many tumor samples each peak was found in a cohort of 40 female patients. Heatmap showing the av-
erage ESR1 ChIP-seq score at a specific peak for each sample. The bar plot (left) indicates the fraction of peaks found in each patient of the total peaks found.
Clustering is based on the Pearson correlation at ESR1 peaks for the ESR1 ChIP-seq signal as defined in Supplemental Figure S2A. (B) Examples of ESR1 peaks
that were peak-called in tumor samples in all 40 females (left), in 16 females (middle), and in only one female patient (right). (C ) Examples of per-patient
heatmaps of ESR1 signal, of peaks called in that female patient sample, ranked as in A. (D) Formore commonly occurring and unique peaks, examples of the
average intensity of ESR1 ChIP-seq signal in four female patients are shown. (E) Correlation plot of the total number of distal peaks in a patient sample
(x-axis), versus the percentage of patient-unique peaks in that sample (y-axis).
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female cluster 1—displayed a lower heterogeneity compared with
the global trend, showing that molecularly similar samples share a
larger fraction of peaks. Further,we analyzed the clinicopathological
and molecular characteristics (Supplemental Table S4) for both the
female (Supplemental Figs. S2A, S3B) and male (Supplemental
Figs. S2B, S3C) samples. For the female samples, these analyses did
not highlight any biological feature that would explain the separa-
tion in different clusters (Supplemental Fig. S2A). On the other
hand, for the male samples, we identified the male clusters 1, 3,
and 4 to be enriched for a specific patient outcome (Supplemental
Fig. S3C).However, stratification of the samples by PGR (also known
as PR), ERBB2 (also known as HER2), or outcome status was not suf-
ficient to explain the observed ESR1 heterogeneity among the sam-
ples (Fig. 3B; Supplemental Fig. S3D).

Our observations that patient outcome in females cannot ex-
plain the ESR1 heterogeneity corroborate with the observation
that outcome-associated peaks (Ross-Innes et al. 2012) are not spe-
cifically enriched with the more common peaks (Fig. 3C). On the
other hand, peaks associated to AI response in the metastatic set-
ting (Jansen et al. 2013) were particularly found at the more com-
monly shared peaks (Fig. 3C).

In summary, we showed that female patients cannot be strat-
ified by their molecular or clinicopathological features, and also
less-conserved peaks carry prognostic information on patient
outcome.

ESR1 cistrome converges to common gene regulation programs

Because clinicopathological features of the patients do not explain
ESR1 binding heterogeneity, we hypothesized that ESR1 occupancy,

despite being highly variable between patients, might occur at re-
gions that regulate similar cellular programs. Of note, only eight
peaks were found being conserved among all female patients (Fig.
2A) and 34 in all male patients (Supplemental Fig. S1A). However,
analyzing the genes associated to each ESR1 peak in each sample,
using the promoter–enhancer linkage data as defined by Corces
et al. (2018), we found that the ESR1 profiles for all patients were
enriched for gene signatures associated to estrogen-receptor re-
sponse (Fig. 4A; Supplemental Fig. S4A). Further, we considered
the genes linked with ESR1 peaks depending on the degree with
which these peaks are shared among patients, and we identified
the estrogen-receptor response tobe among the topenriched signa-
tures also in this case (Fig. 4A; Supplemental Fig. S4A). A few well-
known estrogen-related genes are proximal to top common peaks,
includingPGR,RARA, IGFBP4,CUEDC1, andGREB1 (Supplemental
Table S3). Common peaks relate to canonical early and late estro-
gen response genes more frequently (Fig. 4A; Supplemental Fig.
S4A), although less commonanduniquepeakswere also associated
to classical estrogen-related signaling genes such as CCND1 and
TFF1 (Supplemental Table S3). Interestingly, the percentage of pu-
tative ESR1-regulated genes shared among patients is higher
than the percentage of shared ESR1 peaks (Fig. 3C; Supplemental
Fig. S3C). To confirm these observations, we performed similar
analyses using physical enhancer–promoter chromatin loops de-
tected by ESR1–chromatin interaction analysis with paired-end
tag (ChIA-PET) inMCF-7 cells (Fig. 4B; Supplemental Fig. S4B; Full-
wood et al. 2009; The ENCODE Project Consortium 2012). These
data highlighted a drastically lower variability in the ESR1-linked
genes in eachpatient comparedwith the ESR1bindingheterogene-
ity (Fig. 4B; Supplemental Fig. S4B).

A C

B

Figure 3. ESR1 heterogeneity in female patients is not explained by molecular and clinical features. (A) Cumulative percentage of ESR1 peaks shared
among female patients within the five clusters defined in Supplemental Figure S2A. (B) Percentage of female patients sharing ESR1within groups of patients
based on outcome, PGR, and ERBB2 status. The global distribution over all the peaks is depicted by a dashed green line. (C ) Cumulative percentages and
heatmap of the overlaps between ranked female ESR1 patients and good/poor outcome-associated (Ross-Innes et al. 2012) or aromatase inhibitor (AI)
response–associated ESR1 peaks (Jansen et al. 2013).
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A

B

Figure 4. ESR1 female peaks converge to redundant enhancers regulating estrogen response genes. (A) Heatmap shows the number of ESR1 peaks that
are overlapping with a region associated to a gene (x-axis) (Corces et al. 2018) per each female patient (y-axis). Each gene is ranked by decreasing number
of patients carrying ESR1 peaks associated to that specific gene. The number of patients sharing a gene is shown by the line above the heatmap. The global
distribution of ESR1 peak conservation among samples is depicted by a black dashed line. Ranked genes are grouped in seven bins depending on the
degree of coregulation among patients. For each bin, the statistically significantly enriched cancer hallmark gene sets are shown (bottom heatmap), and
the bar plot on the bottom left shows the number of bins sharing a given hallmark. The left heatmap depicts the cancer hallmarks enriched in each pa-
tient; above this heatmap, a bar plot indicates the percentage of patients showing the enrichment of each hallmark. (B) Same heatmap as in A, but in this
case, the gene associated is based on chromatin loops identified by ESR1 ChIA-PET in MCF-7 (Fullwood et al. 2009; The ENCODE Project Consortium
2012).
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Overall, ESR1 peak–gene association analyses showed that,
despite the high variability of ESR1 chromatin occupancy, the
transcriptional program converges in the estrogen response owing
to a redundancy of distal regulatory element binding by ESR1.

ERE strength weakly associates with the level of inter-tumor

conservation of ESR1 sites

From cell lines, ESR1 DNA binding is known to be enriched at
EREs, although indirect chromatin associations by tethering
through other TFs may also occur (Coons et al. 2017). In our
ranked list of peaks in female tumors, an ERE could be found in
99.5% of common peaks (20 or more patients), in 87.3% of peaks
found in two to 19 patients, and in 67.6% of patient-unique peaks
(Fig. 5A). We used HOMER (Heinz et al. 2010) to determine the
strength of the EREs; that is, sequencesmost similar to the consen-
sus ERE receive a higher score versus those deviating from the con-
sensus ERE. When present, the average strength of the ERE was
found to correlate with how often a binding site was bound by

ESR1 in our cohort of female patients (P<0.001) (Fig. 5B). A similar
observation was made performing TF binding enrichment analy-
ses (GIGGLE) (Layer et al. 2018), displaying that ESR1 is the top en-
riched TF and that its enrichment is stronger at highly conserved
peaks (Supplemental Fig. S5). Nonetheless, the variance in ERE
strength per patient number is large, and strong EREs were still ob-
served at less common sites and vice versa (Fig. 5B). In a regression
model in which strength of the ERE in a peak was evaluated as pre-
dictor for the number of patients in which an ESR1 peak was
found, the R2 (goodness of fit) was only 0.048, suggesting that al-
though ERE strength is statistically significantly associated with
ESR1 site conservation, it is not a powerful predictor of heterogene-
ity in ESR1 binding.

ESR1 does not act independently but requires activity of other
proteins for its function. One essential ESR1 interactor is the fork-
head protein FOXA1, which serves as a pioneer factor rendering
the chromatin accessible for ESR1 to bind (Hurtado et al. 2011).
The consensus FOXA1 motif TGTTTAC is generally found close
to ERE sequences, yet does not overlap (Serandour et al. 2013).

A

E F G

D

B C

Figure 5. Common ESR1 peaks are associated with stronger ERE motif, increased chromatin interactions, and higher enhancer activity. (A) The percent-
age of common, less common, and patient-unique ESR1 peaks in females that contain an estrogen response element (ERE). (B) The strength of those EREs as
determined by HOMER, ranked from those in common to those in more patient-unique ESR1 peaks. Black dots represent outliers. (C) Aggregate region
analyses (ARAs) showing the average Hi-C contacts (observed over expected scores) at ESR1 binding sites shared by an increasing number of patients from
left to right. Thematrices include awindow of ±250 kb from the ESR1 peak centers. (D) Schematic overview of STARR-seqmethodology. (E) Stacked bar plot
showing the overlap between STARR-seq regions and MCF-7 ESR1 peaks (Ross-Innes et al. 2012) in bins of female patient STARR-seq shared regions. (F )
Volcano plot of STARR-seq results in the cell line MCF-7 upon 6 h of 10 nM estradiol (E2) stimulation. (G) Distribution of enhancer activity as determined by
STARR-seq upon 6 h of 10 nM estradiol stimulation, from common to more patient-unique peaks. Details on cutoffs for categories induced, not-induced,
and inactive are described in the Methods section.

Human breast cancer ESR1 heterogeneity profil ing

Genome Research 545
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.278680.123/-/DC1


In our female cohort, 87.1% of common ESR1 peaks, 79.6% of
peaks in two to 19 patients, and 62.1%of patient-unique peaks car-
ried a forkhead motif (P<0.001) (Supplemental Fig. S6A), but no
relationship between strength of the forkheadmotif and heteroge-
neity in ESR1 DNA binding was observed (Supplemental Fig. S6B).

Estrogen-induced enhancer activity is highest for commonly

shared ESR1 binding sites

Wenext questioned if the ESR1 binding profiles found in themost
commonly used ESR1+ breast cancer cell lines MCF-7, T-47D, and
ZR-75-1 are representative of the ESR1 DNA binding identified in
primary human tumors. Comparing ESR1 peaks from these cell
lines in full medium conditions to peaks found in patients, we
found that these cell lines capture 99.7% of peaks present in 19
or more patients and 65.3% of peaks present in at least two to 19
patients (Supplemental Fig. S6C,D). The 29% of the “patient-
unique” peaks was also called in at least one cell line, further solid-
ifying the confidence in the ESR1 signal at these locations. ESR1
ChIP-seq fromMCF-7, T-47D, and ZR-75-1 appears to recapitulate
a significant number of ESR1 peaks found among 40 patients
(Supplemental Fig. S6D), and we therefore deemed these cell lines
adequate models to investigate the functional consequences of
ESR1 enhancer heterogeneity.

Using one of these cell line models, MCF-7, we further inves-
tigate the biological features at commonly and less frequently
bound ESR1 sites. For this, we first evaluated chromatin conforma-
tion behavior of common andmore patient-unique sites bymeans
of high-throughput chromatin conformation analyses (Hi-C),
which illustrated a direct positive association of long-range chro-
matin interaction frequency with the level of ESR1 site conserva-
tion among patients (Fig. 5C). Although classical ESR1 target
genes were represented among themost commonly shared regions
(Supplemental Table S2), no enrichment for essentiality was found
for genes proximal to ESR1 sites (Dempster et al. 2021; https://doi
.org/10.6084/m9.figshare.22765112.v2), relative to the level of in-
ter-tumor heterogeneity (Supplemental Fig. S6E).

We then surveyed enhancer activity across the ranked peaks
using self-transcribing active regulatory region sequencing
(STARR-seq) (Fig. 5D; Arnold et al. 2013). This method allows for
the massive parallel testing of intrinsic enhancer activity of DNA
fragments by cloning these sequences downstream from a core
promoter and then quantifying the enhancer activity based on
the self-transcription in mRNA transcripts. We generated a library
of 11,147 regions, which included 7922 peaks that were called in at
least seven or more patients and a random sampling of less com-
mon peaks. All subsets of regions used for STARR-seq analyses—ex-
cept for the least shared peaks (bin 1–5)—were showing a high
fraction (>75%) of overlap with MCF-7 ESR1 ChIP-seq peaks (Fig.
5E), excluding therefore any cell type–specific bias in the further
analyses. The library was transfected intoMCF-7 cells, and reporter
read-out was generated under beta-estradiol (E2) stimulation or ve-
hicle control. Out of all 11,147 ESR1 sites cloned in the library, 597
(5.2%) were found to be E2-induced, 5777 (51.8%) were not-in-
duced, and 5053 (44.1%)were inactive (for details on these catego-
ries, seeMethods) (Fig. 5F). Of note, these distributions of observed
activities were comparable to that of androgen receptor (AR) sites
studied in LNCaP prostate cancer cells (Huang et al. 2021;
Kneppers et al. 2022) or glucocorticoid receptor (GR) sites studied
in lung cancer A549 cells (Vockley et al. 2016). Overall, this sug-
gests that only a small fraction of nuclear receptor sites is actively
engaged in transcriptional regulation. By ranking the peaks from

common to less frequently bound by ESR1 in patients, we ob-
served that these binding sites have distinct intrinsic properties.
The more common ESR1 peaks are among patients, the higher
the percentage of E2-induced enhancer activity (Fig. 5G).
Enhancer activity at patient-unique sites is slightly more often
constitutively active, acting in an ESR1-independent manner, al-
though the receptor does bind.

Cumulatively, these results imply direct biological conse-
quences of the observed inter-patient heterogeneity of ESR1,
with enhancers showing hormone-induced activity being mostly
conserved among patients.

Breast cancer risk SNP loci are enriched at ESR1 sites commonly

shared by tumors

Although we observed a relationship between average ERE
strength and the commonness of ESR1 binding to enhancers
among patients, this was not sufficient to explain the large ob-
served variation.We therefore hypothesized that genetic variation
at enhancer elements contributes to this inter-patient heterogene-
ity of ESR1 enhancer action. To test this hypothesis, we turned to a
known source in variation of breast cancer risk and analyzed our
data for a possible overlap with breast cancer risk single-nucleotide
polymorphisms (rSNPs) and small indels. Importantly, rSNPs for
different cancer types have been found previously to be enriched
in enhancer regions,withprostate cancer risk SNPs found enriched
at AR sites (Morova et al. 2020), but also breast cancer rSNPs have
been found enriched at ESR1-bound regulatory elements (Cowper-
Sal lari et al. 2012; Li et al. 2013; Fachal et al. 2020). Any association
of rSNPs or small indels with ESR1 site heterogeneity between tu-
mors remains unexplored.

We hypothesized that alterations in DNA sequence by rSNPs
or small indels may affect ESR1 binding and thereby facilitate in-
ter-patient heterogeneity. rSNPs and indels with a significant (P<
10−6) correlation with ESR1+ breast cancer risk as published by
Michailidou et al. (2017) were tested for overlapwith ESR1 binding
sites in our cohort, yielding a combined list of 318 rSNPs and a
small number of indels that overlap with ESR1 sites identified in
our patient samples (Fig. 6A). Surprisingly, the rSNPs and indels
showed relative enrichment at the top of the ranked peaks, con-
verging more often at ESR1 binding sites common between pa-
tients (P<0.0001) (Fig. 6B,C). The relative enrichment of rSNPs
and some indels at common ESR1 binding sites was also seen in
the male breast cancer samples (P< 0.001) (Supplemental Fig.
S7A,B). When normalized to the number of bases in peaks (to ex-
clude enrichment being an artifact of peakwidth, as genomic loca-
tion of common sites may be slightly broader owing to merging of
more info) (Fig. 6C; Supplemental Fig. S7B) or when leaving out
patient-unique peaks (Supplemental Fig. S7C), the statistically sig-
nificant association holds. Of note, in both sexes, the more com-
monly bound an ESR1 site is, with which an rSNP/indel
coordinate overlaps, the stronger the P-value for the association
with breast cancer for that rSNP/indel (Fig. 6D; Supplemental
Fig. S7D), although the protective (negative beta) or risk effects
(positive beta) of the rSNPs/indels at common sites are modest
(Fig. 6E).

In accordance with literature showing that rSNPs often lie in
regions with TF motifs (Cowper-Sal lari et al. 2012; Li et al. 2013;
Fachal et al. 2020), ESR1 peaks that overlap with rSNP/indel coor-
dinates do hold an ERE more often than those that do not overlap
with rSNP/indel coordinates (Supplemental Fig. S7E). These EREs
also tend to be slightly stronger than EREs without rSNPs/indels
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(P=0.06) (Supplemental Fig. S7F). Although ERE strength was a
statistically significant but not a powerful predictor of observed
heterogeneity in ESR1 binding, we nonetheless checked if the en-
richment of rSNPs/indels at common peaks was confounded by
ERE strength, but we found no evidence to this (Supplemental
Fig. S7G).

Breast cancer risk SNPs affect ESR1 inter-patient heterogeneity

through TF motif perturbation, with biological implications on

gene expression

Of the 318 rSNP/indel coordinates overlapping with ESR1 peaks in
our cohort, 25 of those rSNP/indel coordinates fall within an ERE
palindromic sequence (Supplemental Table S5). Of those, we fo-
cused our attention on rSNPs/indels in sites that showed enhancer

activity in the STARR-seq data (E2-induced, constitutively active,
or not-induced) (Supplemental Fig. S7H). To determine which re-
maining rSNPs/indels had the potential to significantly and
directly affect the strength of the ERE and thereby ESR1 binding,
we used the in silico prediction tool SNP2TFBS (Kumar et al.
2017), which compares the position weight matrix of a TF binding
motif in reference format and when including the rSNP/indel var-
iant. This resulted in a short list of three rSNPs, rs9952980,
rs11695384, and rs11665924, which SNP2TFBS predicted to affect
a hormone response element (Supplemental Table S5).

To validate the effects of these rSNPs on ESR1 binding exper-
imentally, we designed two 50-bp oligonucleotides containing the
WT and rSNP-affected ERE, which were both biotin-labeled and
pulled through an MCF-7 lysate to detect interacting proteins via
mass spectrometry in an unbiased fashion (Supplemental Table

A B

C D E

Figure 6. ESR1+ breast cancer rSNPs are enriched at regions with low inter-patient heterogeneity in ESR1. (A) Manhattan plot of ESR1+ breast cancer risk
SNPs (rSNPs) with genome-wide significance originating from Michailidou et al. (2017). Highlighted in orange are 318 rSNPs, for which the coordinates
intersect with one of the 74,438 ESR1 peaks found among 40 female breast cancer patients. (B) The position of these 318 rSNPs in the ranked peaks in-
troduced in Figure 2A. (C, top) Comparison (Fisher’s exact test) of the percentage of ESR1 peaks with which coordinates overlap with at least one rSNP
coordinate, for common and less common ESR1 peaks. (Bottom) Comparison (Fisher’s exact test) of the percentage of bases, present in common or
less common ESR1 peaks, that overlap with at least one rSNP coordinate. (D) Correlation between the P-value of rSNP (x-axis) and its position in the ranking
of ESR1 peaks introduced in Figure 2A (y-axis). If multiple rSNPs overlapped the same ESR1 peak, the strongest P-value was used for analysis. (E) Overview of
beta values corresponding to rSNPs with which a coordinate intersected an ERE. Negative beta values correspond with rSNPs that confer less risk to breast
cancer, whereas positive beta values correspond to increased risk of ESR1+ breast cancer.
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S5; Vermeulen 2012). For rs11695384 and rs11665924, we were
unable to confirm differential binding of ESR1, leaving
rs9952980 for further study.

rs9952980 is an rSNP located in an intron of the gene
SLC14A2, located on Chromosome 18. This region was bound by
ESR1 in 11 female (exemplified in Fig. 7A) and sixmale tumor sam-
ples. STARR-seq data confirmed the region to be active and in-
duced upon E2 treatment (Supplemental Fig. S7H). Considering
the reference genome, the region holds a relatively strong ERE at
a log odds motif score of 12.3. rs9952980 affects the fifth nucleo-

tide of the ERE (Fig. 7B), which is a position of high importance
for strong ESR1 affinity (Fig. 5A), as it facilitates direct DNA–pro-
tein interaction with ESR1 (Coons et al. 2017). Accordingly, in sil-
ico analysis using SNP2TFBS (Kumar et al. 2017) predicted
rs9952980 to significantly decrease ESR1’s binding affinity (Fig.
7C; Supplemental Table S5). Mass spectrometry (Fig. 7D) andwest-
ern blot (Fig. 7E) of DNA-oligo pulled-down proteins confirmed di-
minished ESR1 binding in the rSNP condition. Moreover, we
investigated the effect of rs9952980 on enhancer activity of the re-
gion carrying this risk SNP by using luciferase reporter assays in
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Figure 7. rs9952980 affects SLC14A2 expression via reduced ESR1 binding by impacting ERE. (A) Snapshots of ESR1 peak intersecting the coordinate of
rs9952980. The peak, positioned in an intron of SLC14A2, was found in 11 female patients. (B) ERE at this peak, in reference allele and rSNP format. (C)
Predicted score of position weight matrix for WT and rSNP ERE, by SNP2TFBS (Kumar et al. 2017). (D) UsingMCF-7 lysate, an immunoprecipitation (IP) was
performed with 50-bp biotin-labeled oligos containing the WT or the rs9952980 variant of the ERE, followed by mass spectrometry. (E) ESR1 western blot
(WB) of IP by 50-bp biotin-labeled oligos containing the reference allele or the rs9952980 variant of the ERE. (F) Snapshot of STARR-seq normalized signal at
the SLC14A2 locus. (G) Luciferase reporter assay inMCF-7 cells stimulated or not by estradiol (E2) for the SLC14A2 locus enhancer activity containing or not
the rs995290 variant. Bar plot represents the fold change of luciferase expression over the untreated empty vector condition. (H) TCGA gene expression of
SLC14A, which rs9952980 is predicted to affect, by homozygous or heterozygous genotype.
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MCF-7 cells.We observed that although thewild-type sequence dis-
plays an increased enhancer activity in the presence of active ESR1
(E2-inducible) (Fig. 7F,G), rs9952980 was sufficient to completely
abolish the enhancer activity of this genomic locus (Fig. 7G).

Clinically, carriers of the alternative allele (T) have less risk
(beta: −0.0549) of developing breast cancer than do homozygous
carriers of the reference allele (C). rs9952980 was previously pre-
dicted to regulate expression of its target gene SLC14A2 (Fachal
et al. 2020), and in TCGA data, we indeed find rs9952980 signifi-
cantly associates (P=0.0063) with a reduced expression of
SLC14A2 (Fig. 7H), likely mediated via the rSNPs direct impact
on ESR1–DNA binding.

Few rSNPs/indels that intersected with our ranked peaks
directly overlapped an ERE, although they were often located in
close proximity. Such rSNPs/indels may affect ESR1 binding indi-
rectly by affecting affinity of ESR1’s partners, such as FOXA1. An
example for this is found for the rSNP rs6420415, located in an in-

tron of CDYL2 and of which the region was occupied by ESR1 in
only four females (Fig. 8A) and four males. The rs6420415 is pre-
dicted to perturb the forkhead motif such that FOXA1 binding is
negatively affected (Fig. 8B,C). Indeed, western blot of oligo-medi-
ated immunoprecipitation of the local forkhead motif in a refer-
ence allele and rSNP format confirmed diminished FOXA1
binding (Fig. 8D). Coinciding with these in vitro data, in a female
tumor sample for which both ESR1 and FOXA1ChIP-seq datawere
available, we noted about half of the reads from the reference allele
(T) and 50% from the SNP allele (G) in the ESR1 ChIP, whereas
reads from the FOXA1 ChIP-seq were dominated by the reference
allele T (Fig. 8E).

We investigated the effect of rs6420415 on the enhancer ac-
tivity by using luciferase reporter assays in MCF-7 cells. In this
case, we did not observe differences in the enhancer activity in
the presence of the rs6420415 variant (Fig. 8F,G). The different
behavior of the two rSNPs might be explained by the fact that, as
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Figure 8. rs6420415 affects CDYL2 expression via reduced FOXA1 binding by impacting the forkhead motif. (A) Snapshots of ESR1 peak intersecting the
coordinate of rs6420415. The peak, positioned in an intron of CDYL2, was found in four female patients. (B) Forkhead motif at this peak, in reference allele
and rSNP format. (C) Predicted score of position weight matrix for reference allele and rSNP forkhead motif by SNP2TFBS (Kumar et al. 2017). (D) FOXA1
western blot of pulldown by 50-bp biotin-labeled oligos containing theWT or rs6420415 variant of the forkheadmotif. (E) Distribution of reads in the ESR1
and FOXA1 ChIP-seq peak performed on tumor tissue from the same breast cancer patient, at the locus surrounding rs6420415. (F ) Snapshot of STARR-seq
normalized signal at the CDYL2 locus. (G) Luciferase reporter assay in MCF-7 cells stimulated or not by estradiol (E2) for the CDYL2 locus enhancer activity
containing or not the rs6420415 variant. Bar plot represents the fold change of luciferase expression over the untreated empty vector condition. (H) TCGA
gene expression of CDYL2, which rs6420415 is predicted to affect, by homozygous or heterozygous genotype for rs6420415.
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reported previously (Hurtado et al. 2011), FOXA1 expression status
does not impact ESR1–DNA binding on nonchromatinized
templates.

Carriers of rs6420415’s G allele are thought to have an elevat-
ed risk of developing breast cancer (beta: 0.0682) (Michailidou
et al. 2017), possibly mediated via reduced expression of CDYL2
(Fig. 8H).CDYL2 has been described to exert both tumor-suppress-
ing and oncogenic effects, depending on its isoform (Siouda et al.
2020; Yang et al. 2020), although this distinction was not made in
GWAS studies (Michailidou et al. 2017).

Nonetheless, our data cumulatively illustrate that breast can-
cer risk SNPs/indels are enriched at commonly shared active en-
hancer elements and can perturb binding of ESR1 or its pioneer
factor FOXA1, for instance, via allele preferential binding, which
is associated with affected expression of the genes they control.

Discussion

Breast cancer is a heterogenous disease, with clearly distinct inter-
tumor differences on subtype, aggressiveness, and, ultimately, pa-
tient prognostication. Here, we show that on epigenetic scale, sub-
stantial inter-patient heterogeneity of ESR1 chromatin binding
capacity is found. Therefore, consensus-based analysis of ESR1
ChIP-seq on patient samples, despite being a strategy often applied
in the field to reduce data complexity and limit noise, eliminates
potentially interesting and biologically meaningful data. Here,
we queried the full spectrum of inter-patient ESR1 enhancer het-
erogeneity by ranking all peaks in patients from commonly shared
to patient unique. Many peaks could only be found in a handful of
patients, and around half of all the peaks identified were patient
unique. This level of heterogeneity was substantially higher for pu-
tative enhancer elements as opposed to promoters. After investi-
gating the genes associated to these heterogenous enhancers, our
data suggested functional redundancy between enhancers in regu-
lating the same gene. These results are in line with recently shown
data of combinatorial CRISPR screening analyses (Carleton et al.
2017).

Although extensive quality control (QC) analyses were per-
formed on the ChIP-seq data sets, we cannot exclude that a frac-
tion of the ESR1 heterogeneity between the patients in our
cohort may be of technical origin. The female samples in this co-
hort were produced in different laboratories, but a single antibody
was used. Also, a similar degree of inter-patient heterogeneity was
seen in the male cohort, for which ChIP samples were exclusively
produced in our laboratory with the same (batch of) antibody.
Further, although contamination of the signal derived from stro-
mal cells cannot be excluded, evidence that the tumor-surround-
ing microenvironment does not significantly contribute to the
overall ESR1 ChIP-seq signal is provided by analyses on ESR1-neg-
ative breast tumors as performed by Ross-Innes et al. (2012), in
which ESR1 ChIP-seq analyses on these tumors did not detect
any peaks. Furthermore, as current technologies do not allow for
precise single-cell TF profiling in tumor tissues, it remains elusive
to what degree intra-tumor heterogeneity of ESR1–chromatin in-
teraction profiles impacts inter-tumor heterogeneity, as we report-
ed in this study.

Although inter-patient heterogeneity of ESR1 signal was
high, our analyses on ERE strength, enhancer activity (STARR-
seq data), and rSNP/indel analyses suggest that the most function-
al activity, hormone-induced action, and clinically relevant infor-
mation are found at the commonly shared ESR1 sites. In particular,
we identified that themost patient-conserved ESR1 peaks, carrying

stronger ERE motifs, are engaged in more chromatin–chromatin
interactions in the surrounding regions and display a higher en-
hancer activity potential. However, most enhancers analyzed by
STARR-seq were found to be not-induced by E2 stimulation or to
be completely inactive. These results are in linewith previous stud-
ies that reported a similar behavior for other steroid hormone re-
ceptors (SHRs), such as AR in the prostate (Huang et al. 2021;
Kneppers et al. 2022) and GR in lung cancer (Vockley et al.
2016). These findings indicate that chromatin binding of SHRs
cannot be directly translated to genuine enhancer activity but
rather that a relatively small fraction of SHR-chromatin bound sites
is actively induced in activity following stimulation, as determined
bymassive parallel reporter assays. These findings, in combination
with the observed enhancer redundancy, may suggest a model in
which the strongest EREs aremore commonly bound and drive ac-
tivation of the estrogen response, whereas “weaker” enhancers co-
operate to maintain this transcriptional program, in support of a
previously reported phase-separation model of ligand-activated
enhancers (Nair et al. 2019).

On the other hand, less commonly shared peaks found in
female patients revealed enrichment of other pathways that are
reported to be associated with therapy resistance, such as
epithelial-mesenchymal transition (EMT) and TNF/NF-kB
(Kastrati et al. 2020). As inhibitors of NF-kB show potential in tar-
geting endocrine therapy resistance (Kastrati et al. 2020), it is rele-
vant to consider that the intrinsic intra-tumor heterogeneity of
ESR1 action and downstream transcriptional programs may also
impact which particular patients may respond to these inhibitors.
Thus, based on these observations, we conclude that the observed
enhancer heterogeneity represents a biological hierarchy of ESR1
action, with biological and clinical consequences. This also under-
lines the importance of considering the whole ESR1 binding spec-
trum, because these less common sites, often discarded when
analyzing consensi of peaks, do harbor biologically meaningful
information.

Following this hierarchy, we found rSNP/indel coordinates to
be enriched at the most commonly shared ESR1 peaks, both in a
cohort of 40 female samples and in 30male samples. Yet, peculiar-
ly, GWAS P-values corresponding to these rSNPs/indels are stron-
ger at more common ESR1 sites, whereas corresponding beta
values were relatively modest. One could be tempted to interpret
these rSNPs/indels as statistically significant but biologically un-
important, but this does not reconcile with their enrichment at
common ESR1 sites. The rSNPs with strong P-values and small ef-
fect sizes have been hypothesized to result from heterogeneity in
the studied cohort (Hodge and Greenberg 2016). In this case,
breast cancer risk may indeed be caused by a large number of var-
iants and associated genes (i.e., polygenic risk model), but rather
than each locus contributing a small amount to breast cancer
risk, loci commonly bound by ESR1 contribute relatively more to
breast cancer risk. Indeed, the patients in our cohorts havebeen de-
scribed to have different prognoses, despite all having ESR1-posi-
tive breast cancer. When bound by ESR1 in almost all tumors,
this also allows common sites to contribute differently to different
subtypes of ESR1 breast cancer and thereby cause an attenuation in
effect size in GWAS studies. Neither in work by Michailidou et al.
(2017) nor in this work was a distinction in subtypes of ESR1-pos-
itive breast cancer made. However, we can speculate that other
non-risk-associated variants, or somaticmutations at regulatory el-
ements, further contribute to the observed inter-patient heteroge-
neity of ESR1–chromatin interactions. Previously we reported, in a
concise CRISPR-screen studying 99 ESR1 binding sites, that only a
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rather small fraction of ESR1 sites individually impact breast can-
cer cell proliferation capacity (Korkmaz et al. 2016). Therefore, oth-
er variants may further contribute to the observed ESR1
heterogeneity, for which the biological consequences are yet to
be understood.

As proof of concept, herewe reported the rSNP rs9952980, oc-
curring at the SLC14A2 locus, to be sufficient to abrogate the en-
hancer activity owing to disruption of an ERE motif. On the
other end, the rSNP rs6420415, occurring at the CYL2 locus, dis-
rupts a forkhead motif.

Overall, we did not observe any striking differences between
both sexes on ESR1 chromatin action, risk SNP enrichment, or
any other genomic features reported in this paper. Differences in
ESR1 regulation and features of the chromatin context bound by
ESR1 between the two sexes were extensively studied in our previ-
ous publication (Severson et al. 2018), but also here, very limited
differences were observed.

Cumulatively, these findings contribute to our basic under-
standing how sequence variants at specific regulatory elements
contribute to ESR1+ breast cancer development. Recently, we re-
ported a comparable observation in prostate cancer when analyz-
ing inter-tumor heterogeneity of AR action between primary
tumors, revealing not only somaticmutations but also rSNPs being
enriched at more commonly shared regions, which were more ac-
tive on transcriptional level (Kneppers et al. 2022). In that setting,
we also observed that less commonly shared regions were associat-
ed with disease progression and may become engaged later on, at
themetastatic disease stage. Future studies should address whether
this phenomenon would also occur in breast cancer and whether
the selectivity and plasticity of enhancer action are more general
features in hormone-driven cancers.

In conclusion, our analyses suggest a hierarchy of ESR1–chro-
matin interactions in breast cancers, resulting in a high degree of
inter-patient heterogeneity in ESR1 enhancer action. We find
that the most commonly shared ESR1 regions are the most-hor-
mone inducible enhancers and serve as hotspots for germline
functional risk SNPs/indels for ESR1+ breast cancer development,
highlighting a new perspective in better understanding the biolog-
ical basis of risk variants in breast cancer.

Methods

Patient cohorts

ESR1 ChIP-seq on 30 male breast cancer samples was previously
published by our group (Severson et al. 2018). The female cohort
was compiled of previously published ESR1 ChIPs performed in
our laboratory (Severson et al. 2018), five newly generated sam-
ples, and ESR1 ChIPs published by others (Ross-Innes et al. 2012;
Jansen et al. 2013). Only primary tumors were included. Sample
details are described in Supplemental Table S1.

Cell culture and chemicals

MCF-7 human breast cancer cell lines have been cultured in
Dulbecco’s Modified Eagle Medium (DMEM; Gibco) supplement-
ed with 10% fetal bovine serum (Capricorn Scientific FBS-12A)
and penicillin/streptomycin (100 μg/mL, Gibco). Cell lines were
subjected to regular Mycoplasma testing and underwent authenti-
cation by short tandem repeat profiling (Eurofins Genomics).

For hormone stimulation, cells were precultured for 3 d in
phenol red-free DMEM (Gibco) supplied with 5% dextran-coated
charcoal (DCC) stripped FBS, 2mML-glutamine (Gibco), and pen-

icillin/streptomycin (100 μg/mL, Gibco) and then stimulated with
10 nM DMSO-solubilized 17beta-estradiol (MedChemExpress HY-
B0141) for 6 h.

Publicly available cell line data analysis

Called peaks of ESR1 ChIP-seq for MCF-7 (GSM798423, GSM
631484, GSM1967545), T-47D (GSE68359, GSE32222) (Ross-
Innes et al. 2012; Mohammed et al. 2015), and ZR-75-1 (GSE
25710) were downloaded from the Cistrome Data Browser (Mei
et al. 2017; Zheng et al. 2019) and subsequently lifted over from
hg38 to hg19 by UCSC liftOver (Haeussler et al. 2019). Sample de-
tails are described in Supplemental Table S1. To assess how well
these cell lines represented theheterogeneousESR1 cistrome found
in patients, a union of cell line peaks was generated in DiffBind
v.2.9.0 (Ross-Innes et al. 2012) and subsequently intersected with
the list of patient peaks byBEDTools (Quinlan2014). The intersect-
ed peakset was subsequently used to create heatmaps shown in
Supplemental Figure S4D, using EaSeq (Lerdrup et al. 2016).

ChIP-seq library preparation

Five newly generated ESR1 samples were generated on fresh-frozen
female breast cancer tissues as previously described (Zwart et al.
2013; Singh et al. 2019). Technical details are available in the
Supplemental Material, and sample information is described in
Supplemental Table S1.

Publicly available data access

ESR1ChIP-seq on 30male breast cancer samples are available from
theNCBIGene ExpressionOmnibus (GEO; https://www.ncbi.nlm
.nih.gov/geo/) (Barrett et al. 2013) under accession number
GSE104399 (Severson et al. 2018). The female cohort raw data
can be found at GEO under accession numbers GSE104399
(Severson et al. 2018), GSE32222 (Ross-Innes et al. 2012), and
GSE40867 (Jansen et al. 2013).

ChIP-seq data analysis

Data of all patient samples were aligned to hg19/GRCh37 using
Burrows–Wheeler Aligner (BWA, v0.7.5a) (Li and Durbin 2009),
with mapping quality above 20, and were peak-called with
MACS2 (v1.4) (Zhang et al. 2008) using the pipeline available at
GitHub (https://github.com/csijcs/snakepipes) (Bhardwaj et al.
2019). For the peak calling, the corresponding input sample was
used as background, a filter on the Q-value was applied (q<0.01),
and reads were extended using the fragment size identified by
phantompeakqualtools (v1.2.2) (Kharchenko et al. 2008; Landt
et al. 2012). ChIP-seq signal was normalized to 1× coverage and ex-
pressed as reads per genomic content (RPGC; bamCoverage from
deepTools) (Ramírez et al. 2016). Heatmaps and peak snapshots
were generated with EaSeq (Lerdrup et al. 2016) and all other plots
using ggplot2 (Wickham 2016) under R v4.0.1. The percentage of
peaks included or left out at varying thresholds (Fig. 1B,D) was an-
alyzed in DiffBind (Ross-Innes et al. 2012). Genomic distribution
(Fig. 1C) was assessed with package ChIPpeakAnno (v3.15.1)
(Zhu et al. 2010).

To determine in howmany patients a putative enhancer peak
was called, per-patient BED files were separated into promoter (de-
fined as peak between 1 and 1000 bp upstream of TSS, fromRefSeq
hg19) and putative enhancer files. A union of all patient putative
enhancer peaks was generated byDiffBind. The unionwas next in-
tersected with the per-patient enhancer files again, using the op-
tion -C of BEDTools (v2.29.2) intersect (Quinlan 2014), producing
a list discriminating between patients with and without signal
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for each peak in the union. Subsetting this to patients with signal
and then using BEDTools intersect -C option again produced the fi-
nal list of peaks and patient counts used in this manuscript.

Heterogeneity plots have been generated using Rseb’s (v0.3.3)
(Gregoricchio et al. 2022) function evaluate.heterogeneity. Pearson
correlations of ESR1 ChIP-seq signal at enhancer ESR1 peaks were
computed using deepTools (Ramírez et al. 2016). The 1− correlation
values were used as distance to perform a hierarchical cluster-
ing (method “complete”) of the samples. Clustering dendrograms
were plotted using ggh4x (v0.2.4, https://cran.r-project.org/web/
packages/ggh4x/index.html).

Motif analysis

Presence and strength of EREs (HOMER’s MC00355) or forkhead
motifs (also HOMER’s) was defined by HOMER using a minimal
log odds threshold of two (Heinz et al. 2010). In case of multiple
EREs or forkhead motifs in a peak, the strongest was used for anal-
yses. To assess the relationship betweenmotif strength and hetero-
geneity in ESR1 binding, linear regression (with dummy variables)
was performed in SPSS.

TF binding enrichment analyses

GIGGLE (Layer et al. 2018) analyses have been performed using
the toolkit available at the CistromeDB website (http://dbtoolkit
.cistrome.org/). Top 1000 peaks according to peak enrichment
have been used for each publicly available data set.

Gene coupling, patterns, and dependency

Breast cancer–specific ATAC-seq-based enhancer–promoter loops
published by Corces et al. (2018) were used to associate distal
ESR1 binding sites to genes. Enrichment of gene patterns was as-
sessed with GSEA 4.3.2 (Mootha et al. 2003; Subramanian et al.
2005) For the purpose of enrichment analysis, if multiple enhanc-
ers looped to the same gene, only the binding site with the highest
patient binding score was included. DepMap’s Chronos 23Q2
(Broad Institute; https://depmap.org/) data set was used to assess
the relationship between commonness of ESR1 binding and the
dependency of breast cancer cells to the associated gene.

Replicates of ESR1 ChIA-PET (GSM970212, ENCSR000BZZ)
(Fullwood et al. 2009; The ENCODE Project Consortium 2012)
have been merged and overlapped to ESR1 breast ranked peaks
using Rseb’s (v0.3.3) (Gregoricchio et al. 2022) function
intersect.regions.

Hi-C library preparation and data processing

Hi-C single-index library preparation of MCF-7 cells was per-
formed as previously described using MboI (New England
Biolabs) restriction enzyme (Donaldson-Collier et al. 2019).

The quality and quantification of the Hi-C libraries were as-
sessed using the 2100 Bioanalyzer (Agilent, DNA7500 kit). Four bi-
ological replicates have been pooled in an equimolar manner and
subjected to sequencing using the Illumina NextSeq 550 system in
a 75-bp paired-end setup. Demultiplexed FASTQ data were ana-
lyzed at 10-kb resolution using the snHiC pipeline (v0.2.0)
(Gregoricchio and Zwart 2023), applying default parameters and
the hg19/GRCh37 genome assembly. Aggregate analyses at ESR1
binding sites have been performed using GENOVA (v1.0.1) (van
der Weide et al. 2021).

ESR1-focused STARR-seq capture library design

A custom oligonucleotide probe pool (Agilent) was designed to
capture ESR1 binding regions from clinical ChIP-seq. We selected

11,463 regions, which included all peaks that were called in at least
seven or more patients (n=7922), all regions for which coordi-
nates intersected with rSNP coordinates (n=217), and a random
sampling of less common peaks.

Pooled human genomic DNA (Coriell Institute for Medical Re-
search NA13421) was randomly sheared into 500- to 800-bp frag-
ments and ligated with Illumina compatible IDT xGen CS stubby
adaptors that contain 3-bp uniquemolecular identifiers (UMIs). Af-
ter the hybridization of the adaptor-ligated gDNA fragments to the
biotinylated probe pool, the target regions were captured with
Dynabeads M-270 streptavidin beads (Invitrogen). The postcapture
was PCR-amplified with STARR_in-fusion_Fw and STARR_in-
fusion_Rv primers (5′-TAGAGCATGCACCGGACACTCTTTCCCTA
CACGACGCTCTTCCGATCT-3′ and 5′-GGCCGAATTCGTCGAGT
GACTGGAGTTCAGACGTGTGCTCTTCCGATCT-3′), and cloned
intoAgeI-HF (New England Biolabs [NEB]) and SalI-HF (NEB) digest-
ed hSTARR-ORI plasmid (Addgene plasmid 99296) using the NEBu-
ilder HiFi DNA assembly master mix (NEB). The ESR1-focused
STARR-seq capture library was transformed into MegaX DH10B
T1R electrocompetent cells (Thermo Fisher Scientific), and the plas-
mid DNA was extracted using the Qiagen plasmid maxi kit.

ESR1 STARR-seq library preparation and analyses

MCF-7 cells (more than 2×108 cells/replica for three biological
replica) were grown for 48 h under hormone-deprivation con-
ditions. The ESR1-focused STARR-seq capture library was transfect-
ed in the cells, and after 24 h, cells were stimulated with 10 nM E2.
The poly(A) mRNAwas isolated using the oligo (dT)25 Dynabeads
(Thermo Fisher Scientific), converted to cDNA, and used for library
preparation. The detailed protocol is available in the Supplemental
Material.

Bioinformatics analyses for the ESR1-dependent STARR-
seq status of tested regions are described in detail in the
Supplemental Material.

Luciferase reporter assay

For luciferase assays, the regions of interest (WT) were PCR-ampli-
fied from pooled male human genomic DNA (Promega). The am-
plified regions were cloned by Gibson assembly into a STARR
luciferase vector ORI empty plasmid (Addgene 99298) (Muerdter
et al. 2018). Variants were either introduced by site-directed muta-
genesis PCR or found endogenously in the genomic DNA pool.
Reporter plasmids were transfected in MCF-7 cells stimulated or
not for 24 h with 10 nM E2. Cells were lysed and luciferase activity
quantified using the dual-luciferase reporter assay kit (Promega)
according to themanufacturer’s instructions. Firefly luciferase val-
ues were normalized to the Renilla luciferase. The detailed protocol
is described in the in the Supplemental Material.

rSNP analysis

Accompanying breast cancer risk SNPs (Michailidou et al. 2017)
were downloaded from the Breast Cancer Association Consortium
(BCAC) website (https://bcac.ccge.medschl.cam.ac.uk/). rSNP infor-
mation was used from the combined Oncoarray, iCOGS GWAS
meta-analysis results for ESR1-positive disease, and only consider-
ing rSNPs with a P-value<10−6, excluding rSNPs that also had a sig-
nificant association with ESR1-negative disease.

DNA affinity purification and LC-MS analysis

MCF-7 cells were harvested and washed twice with ice-cold PBS,
and nuclear extracts were prepared as described previously
(Vermeulen 2012); ∼50-bp oligonucleotide probes, encompassing
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the ERE roughly at the center with either WT or SNP sequence,
were ordered with the forward strand containing a 5′-biotin moie-
ty (Integrated DNA Technologies) (Supplemental Table S5). DNA
affinity purifications, on-bead trypsin digestion, and dimethyl la-
beling were performed as previously described (Makowski et al.
2016). Matching light and medium labeled samples were then
combined and analyzed using a gradient from 7% to 30% buffer
B in buffer A over 44 min, followed by a further increase to 95%
in the next 16 min at a flow rate of 250 nL/min using an easy-
nLC 1000 (Thermo Fisher Scientific) coupled online to an
Orbitrap Exploris 480 (Thermo Fisher Scientific). MS1 spectra
were acquired at 120,000 resolution with a scan range from 350
to 1300 m/z, normalized AGC target of 300%, and maximum
injection time of 20 msec. The top 20 most intense ions with a
charge state of two to six fromeachMS1 scanwere selected for frag-
mentation by HCD. MS2 resolution was set at 15,000 with a nor-
malized AGC target of 75%. Raw MS spectra were analyzed using
MaxQuant software (v1.6.0.1) with standard settings, with multi-
plicity set to two, dimethyl Lys 0 and N-term 0 as light labels, and
dimethyl Lys 4 and N as medium labels, and requantify enabled
(Cox and Mann 2008; Makowski et al. 2016). Data were searched
against the human UniProt database (FASTA file downloaded the
2017.06) using the integrated search engine.

Statistics and computational analyses

Statistical and computational analyses have been performed using
R (v4.0.3) (R Core Team 2021).

Data access

All raw and processed sequencing data generated in this study
have been submitted to the NCBI Gene Expression Omnibus
(GEO; https://www.ncbi.nlm.nih.gov/geo/) under accession
number GSE244845. The patient-related raw data generated in
this study have been submitted to the EuropeanGenome-phenome
Archive (EGA; https://ega-archive.org) under accession number
EGAS50000000008. The STARR-seq rawdata generated in this study
have been submitted to EGA under accession number
EGAS50000000009, and processed data are included in Supplemen-
tal Table S6. The mass spectrometry proteomics data generated in
this study have been submitted to the ProteomeXchange Consor-
tium (https://www.proteomexchange.org) (Deutsch et al. 2017)
via the PRIDE (Perez-Riverol et al. 2022) partner repository under
the data set identifier PXD045526.
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