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H3K9me3-dependent heterochromatin is critical for the silencing of repeat-rich pericentromeric regions and also has key

roles in repressing lineage-inappropriate protein-coding genes in differentiation and development. Here, we investigate the

molecular consequences of heterochromatin loss in cells deficient in both SUV39H1 and SUV39H2 (Suv39DKO), the major

mammalian histone methyltransferase enzymes that catalyze heterochromatic H3K9me3 deposition. We reveal a paradox-

ical repression of protein-coding genes in Suv39DKO cells, with these differentially expressed genes principally in euchro-

matic (Tn5-accessible, H3K4me3- and H3K27ac-marked) rather than heterochromatic (H3K9me3-marked) or polycomb

(H3K27me3-marked) regions. Examination of the three-dimensional (3D) nucleome reveals that transcriptomic dysregula-

tion occurs in euchromatic regions close to the nuclear periphery in 3D space. Moreover, this transcriptomic dysregulation

is highly correlated with altered 3D genome organization in Suv39DKO cells. Together, our results suggest that the nuclear

lamina-tethering of Suv39-dependent H3K9me3 domains provides an essential scaffold to support euchromatic genome or-

ganization and the maintenance of gene transcription for healthy cellular function.

[Supplemental material is available for this article.]

Gene silencing in regions of heterochromatin is critical to cell
identity and appropriate cell-fate decisions during development
and differentiation (Yadav et al. 2018; Nicetto et al. 2019;
Keenan 2021). Within all eukaryotic nuclei, heterochromatin
and euchromatin are spatially segregated, with euchromatin typi-
cally located in the nuclear interior and heterochromatin at the
nuclear periphery in large lamina-associated domains (LADs) often
spanning several megabases in size (van Steensel and Belmont
2017). The mechanisms driving the formation of these distinct
compartments have been unclear, but recent modeling suggests
that biophysical attractions between heterochromatic regions,
and not euchromatic regions, drives the phase separation of active
and inactive domains, leading to the subsequent tethering of het-
erochromatic domains to the nuclear lamina (Falk et al. 2019).

In mammalian cells, the heterochromatin-associated mark
H3K9me3 is deposited by the suppressor of variegation 3–9 homo-
log (SUV39H) enzymes SUV39H1 and SUV39H2. This H3K9me3
histone mark is then recognized by chromobox 5 (Cbx5; also

known as heterochromatin protein 1 [HP1]) corepressor reader
molecules that self-oligomerize to impart gene silencing and facil-
itate the tethering of heterochromatin domains to the nuclear
lamina (Bannister et al. 2001; Lachner et al. 2001; Towbin et al.
2012). H3K9me3-dependent heterochromatin is critical for the si-
lencing of repeat-rich pericentromeric regions (Bulut-Karslioglu
et al. 2014) and also has key roles in repressing lineage-inappropri-
ate genes (Allan et al. 2012; Liu et al. 2015; Nicetto et al. 2019) and
impeding the binding of diverse transcription factors (TFs) and
RNA polymerase, unlike H3K27me3-marked domains (Becker
et al. 2016, 2017).

Loss of heterochromatin has been proposed as a potential
universal molecular cause of aging, whereby over time, hetero-
chromatin domains lose integrity, leading to derepression of si-
lenced genes and thus aberrant expression patterns and cellular
dysfunction (Villeponteau 1997; Tsurumi and Li 2012). Loss of
function of the immune system is a key feature of aging whereby
elderly individuals become less responsive to vaccination and
more susceptible to a range of infections (Keenan and Allan
2019). Mice deficient in both Suv39h1 and Suv39h2 enzymes
(Suv39DKO) do not survive embryonic development on a pure
C57Bl/6 background (Keenan et al. 2020), unlike those on amixed
background, in which some developmentally defective mice can
survive to birth at submendelian ratios (Peters et al. 2001). We
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have recently developed a chimeric model in which we can recon-
stitute the entire hematopoietic compartment of donor mice with
Suv39DKOdonor stem cells to examine the premature aging of the
Suv39DKO immune system (Keenan et al. 2020), providing us now
with an opportunity to elucidate themolecularmechanisms of cel-
lular dysfunction following heterochromatin loss. We here aim to
investigate themolecular consequences of loss of heterochromatin
in Suv39DKO primary immune cells by performing comprehen-
sive transcriptomic and epigenomic analyses, including examina-
tion of the three-dimensional (3D) nucleome through Lamin B1
ChIP-seq and in situ Hi-C.

Results

Loss of Suv39-dependent H3K9me3 results in paradoxical

gene repression

To investigate the molecular consequences of heterochromatin
loss, we performed RNA-seq on Suv39DKO and littermate control
CD4+ CD8+ double-positive (DP) thymocytes (Supplemental Fig.
S1), an abundant primary immune cell type thatwe have previous-
ly shown to be >95% reduced in global H3K9me3 levels in the
absence of both SUV39H enzymes (Keenan et al. 2020). Paradoxi-
cally, we identified a predominant down-regulation of gene
expression, with 78% of differentially expressed (DE) genes show-
ing a negative logFC (Fig. 1A; Supplemental Table 2). As expected,
both Suv39h1 and Suv39h2 were included in these DEs (Supple-
mental Fig. S2; Supplemental Table 2).

Given heterochromatin loss has been linked to premature ag-
ing in studies by us (Keenan et al. 2020) and others (Larson et al.
2012; Zhang et al. 2015), we performed gene-set enrichment
analysis on aging-related genes from the GenAge Database
(de Magalhães et al. 2009). We noted many aging-related genes
have duplicated entries with conflicting effect annotations (i.e.,
annotated to both increase and decrease lifespan). Using only
genes with unique annotation, we found a positive correlation
(P = 0.0165) between the aging signature and the DE genes, sug-
gesting genes that increase lifespan tend to be up-regulated in the
DKO, whereas those that decrease lifespan tend to be down-regu-
lated. However, examination of the resultant barcode plot (Fig.
1B) reveals this correlation is predominantly driven by down-
regulated genes. When we include all aging-related genes (to in-
clude those genes with contradictory annotated life span effects),
we find a similar enrichment in down-regulated genes (Fig. 1C).

To investigate whether the gene regulation observed in the
Suv39DKO was a result of secondary effects such as through the
dysregulated expression of particular TFs, we performed TF bind-
ingmotif analysis. However, we found no statistically significantly
(P<0.05) enrichedmotifs in either our up- or down-regulated gene
sets. We next performed Gene Ontology (GO) analysis, revealing
many statistically enriched pathways for both up-regulated (Fig.
1D) and down-regulated genes (Fig. 1E).We noted that these path-
ways appear to be general cellular processes rather than aging-relat-
ed, chromatin-related, or immune-system specific processes,
suggesting that the gene regulation is not a result of disruption
of a particular cellular pathway.

Genes regulated by Suv39-dependent H3K9me3 loss lie

in euchromatic regions, despite reduced LADs

We were intrigued by the predominant down-regulation of genes
following the loss of Suv39-dependent H3K9me3 so we next per-

formed ChIP-seq against various histone modifications associated
with both active (H3K4me3, H3K27ac) and repressive (H3K9me3,
H3K27me3) regions, first confirming antibody specificity of the par-
ticular lots used by histone peptide array (Supplemental Fig. S3). Of
note, H3K9me3 ChIP-seq was unable to be performed on
Suv39DKO DP thymocytes owing to the lack of detectable
H3K9me3 in these cells (Keenan et al. 2020). Remarkably, relatively
few DE gene promoters (defined in 2 kp upstream of to 500 bp
downstream from the transcription start site [TSS]) were marked
by H3K9me3 (<25%), with the vast majority (∼85%) of DE genes
marked by either the active marks H3K27ac and/or H3K4me3, re-
gardless of whether genes are up-regulated (Fig. 1F; Supplemental
Fig. S4A) or down-regulated (Fig. 1G; Supplemental Fig. S4B). Of
note, both up- anddown-regulated genes show lower levels of active
marks (H3K27ac and H3K4me3) and higher levels of repressive
marks (H3K27me3 and H3K9me3) at gene promoters compared
withnon-DE-expressed genes in control cells (Fig. 1H–J; Supplemen-
tal Fig. S5). Unsurprisingly, down-regulated genes show a reduction
in active marks (H3K4me3 and H3K27ac) and an increase in the re-
pressive mark H3K27me3, and conversely, up-regulated genes show
the opposite (Fig. 1H–J). We next performed ATAC-seq to assess
chromatin accessibility in control and Suv39DKO DP thymocytes
and similarly found DE genes to predominantly lie in accessible re-
gions, with accessibility significantly increased at the promoter of
up-regulated genes anddecreased at the promoter of down-regulated
genes in the Suv39DKO (Fig. 1H–J). Taken together, these results
suggest the loss of Suv39-dependent H3K9me3, the classical mark
of heterochromatin, is affecting gene expression in euchromatic
regions.

Given the role of the SUV39H-H3K9me3pathway in facilitating
association of heterochromatic domains with the nuclear periphery,
we next performed Lamin B1 ChIP-seq on control and Suv39DKO
DP thymocytes. As expected, the LaminB1 signalwas highly concor-
dantwith that ofH3K9me3 in control cells (Fig. 2A) andwas discord-
ant with accessible, H3K27ac-, H3K4me3-enriched regions (Fig. 2A).
Using the enriched domain detector (EDD) algorithm (Lund et al.
2014) specifically developed for Lamin ChIP-seq to call LADs, we
found a reducednumberof LADs inDKOcells (Fig. 2B; Supplemental
Table 3), and those LADs thatwere retainedwere significantly smaller
in size compared with the control cells (Fig. 2C; Supplemental Table
3). Given the binary nature of the EDD analysis in calling LADs, we
also identified LADs using circular binary segmentation (CBS) to seg-
ment DNA with the DNAcopy package (Seshan and Olshen 2023)
and the methods in LADetector (Harr et al. 2015; Luperchio et al.
2017). We used this method to assign a quantitative score that can
be interpreted as LAD strength. Of note, we found a significant loss
of LAD strength in the DKO cells using the CBS algorithm (Fig.
2D). We then classified LADs as disrupted if the LAD score was re-
duced by at least 0.1 (based on the standard deviation of control
LAD scores) in the DKO compared with the control (Fig. 2A,E,F).
We found a high level of concordance between the EDDandCBS ap-
proaches, with ∼78% overlap between the LADs lost from the EDD
method (i.e., called as a LAD in control cells but not called as a
LAD in DKO cells) and the disrupted LADs from the CBS method.
Disrupted LADs were enriched for both repressive (H3K9me3/
H3K27me3) and active marks (H3K4me3/H3K27ac) compared with
nondisrupted LADs, and LAD/inter-LAD (iLAD) boundaries showed
an expected enrichment for H3K9me3 in LAD regions, as well as
depletion of H3K27ac/H3K4me3 and reduced chromatin accessibili-
ty (Fig. 2E,F). Of note, disrupted LADs showed higher levels of his-
tone marks (both active and repressive) across LAD boundaries
compared with nondisrupted LADs (Fig. 2E).

Suv39h heterochromatin as regulator of euchromatin
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Figure 1. Suv39-dependent H3K9me3 loss causes predominant gene repression in euchromatic regions. (A) Heatmap showing change of expression
(logRPKM) of differentially expressed (DE) genes between Suv39h1 and Suv39h2 double-knockout (DKO) and control cells. The proportions of genes
down-regulated and up-regulated in Suv39DKO cells versus control are annotated. (B) Barcode enrichment plot showing ranking of aging-related genes
from the GenAge database (deMagalhaes et al. 2009) among the DE genes. Genes are ranked right to left frommost up-regulated tomost down-regulated
in DKO cells. The rank of genes associatedwith increased lifespan is marked by red vertical bars and that of genes associatedwith decreased lifespan by blue
vertical bars. Red and blueworms show relative enrichment. ROAST gene set test P-values tests correlation. (C ) Same asD butwith directionality removed to
include genes with contradictory annotated life span effects. (D,E) Gene Ontology (GO) enrichment in up-regulated (D) and down-regulated (E) DE genes.
(F,G) quantification of overlap between up-regulated (F) and down-regulated (G) DE gene promoters (2 kbp upstream/500 bp downstream) and
H3K4me3, H3K27ac, H3K27me3, and H3K9me3 ChIP-seq peaks from control DP thymocytes as called by HOMER. (H) Example tracks of the region sur-
rounding the promoter of a down-regulated DE gene (Itga4) showing ATAC-seq, ChIP-seq (H3K4me3, H3K27ac, H3K27me3, H3K9me3, IgG), and RNA-
seq data. (I) Plots of mean coverage from 3 kb upstream of the transcription start site (TSS) to 3 kb downstream of the transcription end site (TES) of up-
regulated (DE Up), down-regulated (DE Down), and non-DE (divided into expressed and nonexpressed genes based on expression level in control cells)
showing chromatin accessibility (ATAC) and H3K4me3, H3K27ac, H3K27me3, H3K9me3 H3K27ac, H3K9me3 ChIP-seq data. (J) Boxplots of ATAC,
H3K4me3, H3K27ac, and H3K27me3 logRPKM across gene promoters (2 kbp upstream/500 bp downstream) that are up-regulated (DE Up), down-reg-
ulated (DE Down), and non-DE (divided into expressed and nonexpressed genes based on expression level in control cells). Box plots depict the interquar-
tile range (IQR) ± 1.5 × IQR with median annotated. Distributions were compared by Wilcoxon test.
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Figure 2. Suv39DKO reduces lamina-associated domains (LADs) without inducing gene activation. (A) Example tracks of Lamin B1 ChIP-seq from control
and Suv39DKO DP thymocytes overlayed with H3K9me3, H3K27me3, H3K4me3, and H3K27ac ChIP-seq and ATAC-seq from control DP thymocytes.
Disrupted LADs, not-disrupted LADS, DE genes, and expressed genes are also annotated. LADs are divided into LADs lost in DKO and LADs retained or
gained. Lamin B1 ChIP-seq tracks are shown at 50-kb resolution, and all other tracks are shown at 10-kb resolution. (B) Number of LADs called by the en-
riched domain detector across all chromosomes in control and Suv39DKODP thymocytes. (C) Distributions of LAD size from B in control and Suv39DKODP
thymocytes. Box plot depicts the IQR ±1.5 × IQR and median annotated. Distributions were compared by Wilcoxon rank-sum test with continuity correc-
tion. (D) LAD strength score (seg.mean) from CBS algorithm in control and Suv39DKO DP thymocytes. Control and DKO scores were compared using a
paired t-test. (E) Median coverage of H3K9me3, H3K27me3, H3K4me3, H3K27ac, and ATAC across LAD boundaries from CBS analysis showing disrupted
LADs and nondisrupted LADs. (F) Distributions of H3K9me3, H3K27me3, H3K4me3, H3K27ac, and ATAC logRPKM in disrupted LADs (CBS score reduced
by >0.1 in DKO vs. CON), not-disrupted LADs, and inter-LAD (iLAD) regions. Distributions are shown as box plots depicting the IQR±1.5 × IQR with me-
dian annotated. Distributions were compared by Wilcoxon rank-sum test with continuity correction. (G) DNA-FISH against LAD or iLAD loci in control and
Suv39DKO DP thymocytes. (H) Quantification of G showing three-dimensional radial position of FISH foci between nuclear periphery (=1.0) and center of
the nucleus (=0.0). (I) Proportion of DE genes between Suv39DKO and control cells that overlap disrupted LADs and nondisrupted LADs.
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We further validated our Lamin B1 ChIP-seq results by
performing DNA-FISH on control and Suv39DKO primary DP thy-
mocytes. As expected, probes against loci predicted to be lamina-
associated in control cells (probes 1, 3, and 5) (Supplemental Fig.
S6) showed a higher distance fraction than those predicted to be
non-lamina-associated (probes 2 and 4) (Fig. 2G,H; Supplemental
Fig. S6). Moreover, probes that target loci in disrupted LADs
(probes 1, 3, and 5) showed a significant radial shift from the pe-
riphery to the nuclear interior, whereas the non-lamina-associated
probes were not significantly shifted in radial position in the DKO
(Fig. 2G,H; Supplemental Fig. S6).

Finally, we explored whether DE genes lie in regions of LAD
disruption and observed the vast majority of both up-regulated
and down-regulated genes are in iLAD regions (Fig. 2I). Given
the canonical role of Suv39-dependent H3K9me3 in gene silenc-
ing, we were surprised to find that a greater proportion of down-
regulated genes in LAD-disrupted regions compared with up-regu-
lated genes (Fig. 2I).

Heterochromatin loss causes switching of active to repressive

compartments

To investigate howother forms of genomeorganization other than
lamina-association were altered following the loss of heterochro-
matin, we performed in situ Hi–C on Suv39DKO and control DP
thymocytes. We obtained high-quality libraries of about 120 mil-
lion read pairs per biological replicate (after filtering) with two in-
dependent replicates per condition (Supplemental Fig. S7;
Supplemental Table 1). First, we examined the large-scale genomic
compartments of the interaction space comprising the euchromat-
ic, gene-dense, so-called A compartment and the gene-poor,
heterochromatic B compartment. We found a relatively large
amount of compartment switching between the Suv39DKO and
control DP thymocytes (∼1.5% of the genome) (Fig. 3A). However,
despite the disruption of LADs in the Suv39DKO (Fig. 2A–C), most
of this compartment switchingwas from an active A compartment
in control cells to a repressive B compartment in the DKO (Fig. 3B).
We found that no up-regulated DE genes fall in compartment-
switched regions (Fig. 3C). However, a subset of down-regulated
genes (7.5%) overlap compartment-switched regions, with all of
these regions switching from A to B (Fig. 3C), consistent with
the decrease in expression of these genes.

Heterochromatin loss weakens genome organization

in euchromatic regions, particularly in TAD boundaries

We next used the diffHic package (Lun and Smyth 2015) to iden-
tify discrete regions of altered three-dimensional genome organi-
zation between Suv39DKO and control cells. diffHic uses the
statistical framework of the edgeR package (Robinson et al. 2010)
to model biological variability and test for significant differences
(termed differential interactions [DIs]). Using a resolution of 50
kb, we foundmore than 3000DIs (FDR<0.05) between Suv39DKO
and control cells, with the majority of DIs identified as a weaken-
ing of structure (logFC<0) rather than a gain of structure (Fig. 3D;
Supplemental Table 4). We found that the majority of weakened
DIs had both anchors (the physically interacting genomic regions
mapped from the Hi-C read pairs) of the DI in the A compartment
(Fig. 3D). Furthermore, a significant proportion of weakened DIs
overlapped A-to-B compartment-switched regions even when
only one DI anchor was in this region (Fig. 3E).

We next performed TFmotif analysis in the anchors of the DI
loops in order to identify putative regulatorsmediating these alter-

ations in 3D genome organization. We found twomotifs to be sig-
nificantly enriched in weakened DI anchors, including that of
CCCTC-binding factor (CTCF), the canonical regulator (together
with cohesin complex) of chromatin architecture (Fig. 3F; Ong
and Corces 2014; Rao et al. 2014; Tang et al. 2015). To explore
whether CTCF occupancy affects which regions alter structure in
the Suv39DKO, we overlayed downloaded publicly available
CTCF ChIP-seq from DP thymocytes (Shih et al. 2012). However,
we foundno evidence that CTCF bindingwas enriched or depleted
in structure altered in the Suv39DKO (Fig. 3G).

Visualization of our top differential interacting regions re-
vealed that the altered structure in the Suv39DKO is of an impres-
sive scale in the order of entire topologically associated domains
(TADs) at 0.4–1 Mb size (Fig. 3H,I). We therefore next explored
whether TAD structures are altered in the Suv39DKO using the
TADbit package (Serra et al. 2017). We found slightly reduced
TADnumbers in the DKO and a commensurate increase in average
TAD size (Fig. 3J). To further explore the dynamics of TAD changes,
we identified regions of changing contrast, that is, strengthening
or weakening of TAD boundaries. The TAD caller TADbit uses a bi-
nary approach that cannot identify subtle changes in chromatin
architecture such as the weakening of a boundary as opposed to
its complete absence. Therefore, we used a different approach to
identify regions where the TAD boundaries change in strength
by adapting the statistical strategy recently described for differen-
tial methylation (Chen et al. 2017) and the diffHic package (Lun
and Smyth 2015). This method directly assesses differential boun-
dary strength relative to biological variation without needing to
make TADs calls in individual samples. We first segmented the en-
tire genome into 200-kb regions and then assessed whether the
boundary strength at this region changed by assessing the contrast
in upstream and downstream intensity. The ratio of upstream to
downstream intensity in Suv39DKO and control cells was then
compared using edgeR in a statistically robust manner. We found
that TAD boundaries are more frequently weakened in the
Suv39DKO regardless of whether the TADs are lamina-associated
or not (in control cells) (Fig. 3K; Supplemental Table 5).
Disruption of the TAD boundaries in the DKO was also associated
with reducedH3K27me3 andH3K27ac histonemarks and reduced
chromatin accessibility, regardless of whether the TAD boundaries
are strengthened or weakened in the DKO (Fig. 3L). Of note, 62%
of DE genes fall in genomic regions where these TAD boundaries
aremodulated. Exploring the directionality of differential gene ex-
pression in relation to the strengthening or weakening of TAD
boundaries, we found that genes that overlap weakened boundar-
ies are more likely to be repressed compared with DE genes that
overlap strengthened TAD boundaries or with DE genes that fall
in other genomic loci (Fig. 3M).

Higher-order modeling of the 3D nucleome in Suv39DKO cells

reveals heterochromatin loss affects the expression of genes

positioned closer to the nuclear periphery in 3D space

We next explored whether higher-order chromatin organization
was altered in Suv39DKO cells by assessing the clustering of non-
contiguous TADs into so-called cliques (Paulsen et al. 2019). As
has previously been reported in adipose progenitor cells, we could
detect TAD cliques containing up to 11 interacting TADs in control
DP thymocytes (Fig. 4A). However, in Suv39DKO cells, the detect-
ed TAD cliques near-uniformly-contained fewer interacting TADs
(Fig. 4A,B). In contrast to what has previously been observed in ad-
ipose cells (Paulsen et al. 2019), the majority of TAD cliques were
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Figure 3. Heterochromatin loss causes a loss of chromatin interactivity in active regions and significant switching from active to repressive compartments.
(A) Integrative Genomics Viewer (IGV) tracks of A/B compartments fromHi-C analysis of control and Suv39DKODP thymocytes overlayed by H3K9me3 and
H3K27ac ChIP-seq. (B) Proportion of genome that switches A/B compartments in Suv39DKOversus control cells (shown as a percentage ofwhole genome).
(C) Overlap of down-regulated DE genes with compartment-switched regions. (D) Number of unclustered differential interactions (DIs) (FDR<0.05) be-
tween Suv39DKO and control cells. Strengthened interactions (logFC >0) are annotated as “up” and weakened (logFC <0) as “down.” Overlap of the
DI anchors with compartments A and B in control cells in shown. DIs in which both anchors are not contained in the same compartment or in which
one or more anchor overlaps both compartments are annotated as “mixed.” (E) The proportion of DIs with anchors that overlap switched compartments.
(F) Transcription factor (TF) bindingmotifs enriched in the anchors of DIs as determined by the HOMER pipeline. (G) CTCF ChIP-seq (Shih et al. 2012) cov-
erage of the anchors of DIs versus the rest of the genome. Box plot depicts the IQR ±1.5 × IQR and median annotated. Distributions were compared by
Wilcoxon rank-sum test with continuity correction. (H) Hi-C contact matrices at 50-kbp resolution showing the top three DI regions between Suv39DKO
and control cells. Color scale indicates the number of read bins per bin pair with visualization scaled to total library size to allow appropriate visual compar-
ison. Unclustered DIs (FDR <0.05) are shown as arcs (blue indicate a decrease in logFC, red an increase in logFC) in which the vertical axis is the −log10(P-
value) of the DI. (I) The linear span between genomic anchors of strengthened (“up”) and weakened (“down”) DIs. Data shown as boxplot as in G. (J)
Number and size of topologically associateddomains (TADs) in each replicate sampleof control andSuv39DKOcells.Data statistically comparedbyunpaired
t-test with equal variance between the median of the TAD sizes and number of TADs. Boxplot for TAD size plotted as in G. (K) Number of TAD boundary
changes between Suv39DKO and control cells divided into those overlapping LAD and non-LAD regions in control cells. (L) Density of ATAC, H3K27ac,
H3K27me3, H3K27ac, H3K4me3, and H3K9me3 sequencing density (shown as logRPKM) of strengthened and weakened TAD boundaries in
Suv39DKOand control cells. Data shownasboxplot as inG and comparedbyWilcoxon rank-sum testwith continuity correction. (M) ProportionofDEgenes
up-regulated versus down-regulated overlapping altered TAD boundaries and the rest of the genome. Data analyzed by chi-squared test.
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found in compartment A in our data
from DP thymocytes (Fig. 4A,C). In the
Suv39DKO, we saw a similar numerical
reduction in the number of cliques
from both compartments A and B (Fig.
4C). However, given cliques are predom-
inantly in compartment A in control
cells, those in compartment B were pro-
portionally much more disrupted in the
Suv39DKO (Fig. 4C).

We next modeled the 3D nucleome
of control and Suv39DKO cells using
the computational platform Chrom3D
(Paulsen et al. 2017, 2018). Chrom3D
simulates the spatial position of chromo-
some domains as defined by TADs rela-
tive to each other from the Hi-C data
and relative to the nuclear periphery
from Lamin B1 ChIP-seq data. We pro-
duced 100 independent models for
both control and Suv39DKO cells (for
an example model for each cell type,
see Fig. 4D). We examined higher-order
structure of the chromosome domains,
including LADs, TAD–TAD interactions,
and TAD–TAD–LAD interactions, reveal-
ing a loss of TAD–TAD interactions
(shown by an increase in “other” counts
in the Suv39DKO), as well as a loss of
TAD–TAD–LAD interactions from the
nuclear periphery (Fig. 4E).

Quantification of the median posi-
tion of domains with LAD interactions
in each independent simulation of the
control and Suv39DKOnucleome accords
with our expectations showing LADs in
control cells positioned closer to the nu-
clear periphery than non-LADs regardless
of whether they are lost, retained, or
gained in the Suv39DKO (Fig. 4F). More-
over, LADs lost in the Suv39DKO show a
highly significant shift toward thenuclear
interior (Fig. 4F).Whenwe thenoverlayed
our DE genes onto the Chrom3Dmodels,
we found that DE genes were positioned
closer to the nuclear periphery compared
with expressed non-DE genes (Fig. 4G,H),
regardless of whether they were up- or
down-regulated (Fig. 4H).

Altered 3D genome organization in

LAD-proximal regions correlates with

transcriptional regulation

We were intrigued by the mechanism by
which these genes near the nuclear pe-
ripherywere affectedby the loss of hetero-
chromatic structure. We hypothesized
that the loss of LADs could be disrupting
the 3D chromatin interactivity around
nearby genes, thereby disrupting their
expression. We therefore adapted our

A

D

F G H

E

B

C

Figure 4. Higher-order modeling of the 3D nucleome in Suv39DKO cells reveals heterochromatin loss
affects the expression of genes positioned closer to the nuclear periphery in 3D space. (A) Representative
Hi-C contact matrices at 200-kbp resolution showing a loss of higher-order TAD–TAD cliques in
Suv39DKO cells. Color scale indicates the number of read bins per bin pair with visualization scaled to
total library size to allow appropriate visual comparison. A/B compartments are also annotated as are dif-
ferentially expressed genes (DEGs; blue is down-regulated and red is up-regulated). (B) Number of high-
er-order TAD–TAD cliques detected in Suv39DKO and control cells. Data statistically compared by two-
way ANOVA. (C) Number of higher-order TAD–TAD cliques in compartment A and compartment B in
Suv39DKO and control cells. Proportion of cliques in each compartment data statistically compared
by chi-squared test. (D,E) Representative Chrom3D modeling of the 3D nucleome of control and
Suv39DKO cells colored as individual chromosome territories (each chromosome is arbitrarily colored;
D) or higher-order TAD–TAD, TAD–TAD–LAD, or LAD interactions (E). (F) Measurements of LAD position-
ing from Chrom3D modeling in Suv39DKO and control cells. Box plot depicts the IQR±1.5 × IQR with
median annotated from 100 independent modeling simulations from a separate seed value, with each
simulation containing 5 million iterations. Distributions were compared by a Welch’s unequal variances
t-test. (G,H) Measurements of DE gene positioning from Chrom3D modeling as in F. Distributions were
compared by a Welch’s unequal variances t-test.
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previously published gene-centric DI analysis (Chan et al. 2021) to
explore this hypothesis. This approach calculates interaction counts
between the promoters of coding genes and the rest of the genome
in 15-kbp bins, filters these interaction counts using a distance-de-
pendent approach, and then aggregates these counts for each
gene. Gene-centric differential interactivity is then detected be-
tween samples using the quasi-likelihood (QL) framework of the
edgeR package (Fig. 5A; Supplemental Fig. S8). We found that chro-
matin interactivity showed a similar pattern to transcriptional regu-
lation (Fig. 1A), with interactivity at coding genes more frequently
reduced in Suv39DKO cells (Fig. 5B; Supplemental Table 6). Similar-

ly, interactivity around aging-associated genes showed a significant
enrichment for weakened interactivity in this gene set (Fig. 5C),
consistent with what we observed for gene expression (Fig. 1C).
We next examined whether differential interactivity was related
to proximity to the nuclear periphery. To do this, we divided the ge-
nome into bins based on the linear distance to the closest LAD (in
control cells) and explored the differential interactivity (as LogFC
between Suv39DKO and control) of genes within each bin. We
found that genes on LADs show the largest loss of interactivity in
Suv39DKO cells (although this gene number is relatively few),
with proximal genes showing an intermediate loss of interactivity,

A B C

D

G H

E F

Figure 5. Altered euchromatic genome interactivity near LAD domains correlates with transcriptional dysregulation in Suv39DKO cells. (A) Schematic of
gene-centric interactivity analysis. (B) Heatmap of the interactivity (log2CPM) of differentially interacting genes between Suv39DKO and control cells (FDR
<0.05). (C) Gene set enrichment analysis of genes with differential interactivity relative to aging-related genes from the GenAge database. Barcode enrich-
ment plot shows the correlation of aging-related genes relative to differential interactivity. Genes are ordered on the plot from right to left (x-axis) frommost
increased in interactivity tomost decreased in interactivity according to themoderated F-statistic. The P-valuewas calculatedwith the fry test. (D) The logFC
of gene-centric interactivity for DE genes shown relative to linear genomic distance to the nearest LAD and statistically compared byWilcoxon rank-sum test
with continuity correction. (E) Coverage of RNA expression across iLAD/LAD boundaries with disrupted LADs in the Suv39DKO plotted separately from
retained LADs. Summary plot shown as themedian of the coverage. (F) Barcode enrichment plot showing the correlation of DE genes relative to differential
interactivity. Genes are ordered on the plot from right to left (x-axis) from most up-regulated to most down-regulated according to the moderated F-sta-
tistic. The P-value was calculated with the fry test. (G) The logFC of gene-centric interactivity relative to logFC of transcriptional change for DE genes. (H)
Schematic of putative mechanism by which the loss of heterochromatin causes transcriptional repression in euchromatic regions.
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with this effect being lost∼3Mb from the nearest LAD (Fig. 5D). Ex-
ploring the expression of all genes relative to adjacent LADs, we can
similarly seeRNAexpression is diminished in the Suv39DKOwithin
∼3Mb of an iLAD/LAD boundary when the LAD is disrupted, but it
is unchanged when the LAD is retained (Fig. 5E). Of note, we found
a significant correlation between the altered expression of genes in
Suv39DKO cells and the altered interactivity of these genes (Fig. 5F),
with interactivity predominantly lost and gene expression predom-
inantly repressed (Fig. 5G). Together, these results suggests that the
loss of lamina-associated heterochromatin could be disrupting eu-
chromatic gene expression through a disruption of nearby 3D chro-
matin interactivity (Fig. 5H).

Discussion

We have here revealed that loss of Suv39-dependent H3K9me3
causes paradoxical gene repression, with DE genes principally in
euchromatic regions rather than heterochromatic regions. We de-
termined that DE genes are closer to the nuclear periphery and are
highly correlated with altered 3D genome interactivity, which ap-
pears to be driven by the loss of lamina-association of Suv39DKO
chromatin. Together, our results suggest that the nuclear lamina-
tethering of Suv39-dependent H3K9me3 domains provides an es-
sential scaffold to support euchromatic genome organization and
the maintenance of gene transcription for healthy cellular
function.

It is now well accepted that most genes within a genome are
controlled by long-range cis-regulatory elements physically loop-
ing to interact with their target gene, even though these regulatory
elements may lie many kilobases or megabases away (Sanyal et al.
2012; Dekker et al. 2013; Dixon et al. 2015). Our data showed a
high level of concordance between differential gene expression
and differential interactivity of that gene, suggesting either that
gene expression per se is highly correlated to the interactivity of
that genewith other genomic elements such as enhancers or other
gene promoters or that themechanism causing gene expression to
alter similarly affects the interactivity around that gene. Given
there are many complex regulatory mechanisms controlling the
expression of individual genes, it seems implausible that chroma-
tin interactivity could be the sole determinant of gene expression.
Indeed, a study exploring cis-regulatory elements through ATAC-
seq profiling has found that although the expression ofmost genes
is dependent on long-range enhancers, a significant fraction is not,
particularly for housekeeping and cell-cycle-related genes (Yoshida
et al. 2019). Moreover, a study exploring chromatin interactivity
and gene expression in T cell development found that only a sub-
set of genes showed correlation between interactivity and expres-
sion, although these genes were deemed critical to the T cell
development process (Hu et al. 2018). We therefore contend that
the mechanism by which the loss of Suv39-dependent H3K9me3
causes altered transcription similarly affects the interactivity
around that gene, especially given these differentially regulated
genes are predominantly not marked by H3K9me3.

The temporal or causal relationship between chromatin inter-
activity and gene transcription has been challenging to untangle
owing to the complex interdependency between the two processes.
Some groups propose that genome reorganization often precedes
gene expression changes (Stadhouders et al. 2018), whereas others
propose that these interactions form concomitantly with gene ex-
pression (Oudelaar et al. 2020). Here, we propose that the structural
alterations in chromatin organization caused by a disruption of
LADs in the Suv39DKO are the driving force for the transcriptional

change and are not a consequence of transcriptional alterations. Al-
though we have not shown direct causality, we provide evidence
that themagnitude of alteration of genome interactivity is inversely
proportional to the proximity to a LAD, and we believe that this is
readily explained by biophysical connectedness. It may be argued
that we also show DE genes to be similarly proximal to the nuclear
periphery through ourmodeling of the 3Dnucleome. However, it is
less obvious what mechanism would affect the transcription of
nearby genes in the absence of an intermediate effect on genomeor-
ganization. Increased levels of DNA damage may be a contributing
factor (Nava et al. 2020). Indeed, we have previously shown that
γH2AX levels are increased in bone marrow cells from Suv39DKO
chimeric mice. However, it is not clear that DNA damage would re-
sult in the predominant down-regulation of gene expression we
have observed in the absence of an intermediate effect on genome
organization. Relocalization of CBX5 that has been liberated by
the loss of H3K9me3 could also plausibly explain gene repression.
However, in a previous study, we have shown CBX5 to be diffusely
located throughout the nucleoplasm by immunofluorescence in
Suv39DKO cells (Keenan and Allan 2019; Keenan et al. 2020) rather
than adjacent to the nuclear periphery; therefore, we do not believe
this mechanism can explain the phenomena observed. We ex-
plored thehypothesis that dysregulationof particular TFsmay cause
the altered gene transcriptional profile in the Suv39DKO given our
laboratory and others have shown that TFs can alter both gene tran-
scription and genome organization (Hu et al. 2018; Johanson et al.
2018; Stadhouders et al. 2018). However, we found no enriched TF
motifs in the promoters of the DE genes. Therefore, we believe that
the dysregulated gene expression we observe is not a result of sec-
ondary effects from TF dysregulation. Further, although we have
previously shown that the primary DP thymocytes we investigate
in this study develop normally (Keenan et al. 2020), there may be
developmental defects that manifest from our previously observed
hematopoietic stem cell dysfunction that contribute to the ob-
served phenotypes.

Our findings here using our unique model of H3K9me3 loss
in primary immune cells complement several recent papers in dif-
ferent models and systems. In particular, one study used mechan-
ical stress to disrupt heterochromatin stability in skin epidermis
stem/progenitor cells (Nava et al. 2020). The study also found a
predominant down-regulation of gene expression, reduced lami-
na-association of heterochromatin domains, but was unable to
find a correlation between H3K9me3-regulated regions and gene
transcriptional changes (Nava et al. 2020). The vast majority of
studies exploring H3K9me3-marked heterochromatin have been
performed in mesenchymal cells, including mouse embryonic fi-
broblasts (MEFs) (Montavon et al. 2021; Fukuda et al. 2023), hu-
man mesenchymal progenitor cells (Liu et al. 2022), and the
human BJ fibroblast cell line (Zhang et al. 2021). In these studies,
loss of lamina association of chromatin was universally reported,
as well as altered TAD boundaries and LAD/iLAD boundaries, con-
sistent with what we have observed here in DP thymocytes and
consistent with previous data suggesting that senescence of the
IMR-90 lung fibroblast cell line affects the chromatin structure
around LADs through the down-regulation of Lamin B1 (Shah
et al. 2013). However, H3K27me3 appears to compensate for the
loss of H3K9me3 in both mouse and human fibroblasts (Zhang
et al. 2021; Fukuda et al. 2023), but we see minimal evidence of
this in Suv39DKO DP thymocytes, suggesting cell type specificity
in the epigenetic wiring of mechanisms of heterochromatin stabil-
ity. Indeed, our in-house-generated Suv39DKO MEFs only show a
reduction of H3K9me3 by 50%–60%, unlike DP thymocytes,
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which show >95% reduction, suggesting altered reliance on
H3K9me3 methyltransferases in different cell types. A separate
study examined the formation of senescence-associated hetero-
chromatin foci (SAHF) in the oncogene-induced senescence of fi-
broblast cells, in which they found a gain of interactivity within
3 Mb of a newly formed heterochromatin domain (Sati et al.
2020). This perfectly complements our findings that genes within
3 Mb of LAD showed an overall decrease in interactivity compared
with genes further away. Moreover, our conclusions are broadly
complementary to the recent study suggesting heterochromatic re-
gions drive the phase separation of active and inactive chromatin
(Falk et al. 2019).

We have here revealed that down-regulated genes in the
Suv39DKO are enriched for aging-associated roles, providing a
new perspective on the potential molecular causes of cellular dys-
function in aging. This is not to suggest that a predominant down-
regulation of genes occurs in physiological aging as we have seen
here, as many studies have shown that different cell types and or-
ganisms do not show such a clear transcriptional effect but rather
show an increased transcriptional variability (Bahar et al. 2006;
Martinez-Jimenez et al. 2017).We instead contend that themolec-
ular consequences of H3K9me3-marked heterochromatin loss are
more complex than a simple derepression of silenced elements
and that this transcriptional regulation in LAD-adjacent regions
occurs with “physiological” heterochromatin instability, as is
seen in aging; it was just hitherto unseen. Given we have focused
on the transcriptional regulation of protein-coding genes, we do
not know whether repetitive elements such as transposable ele-
ments have been activated as has been observed in other contexts
(DeCecco et al. 2013a,b; Li et al. 2013;Wood et al. 2016). However,
it is likely thatmultiplemolecularmechanisms act in concert to re-
sult in the cellular dysfunction associated with aging. Through
adding to our understanding of the molecular consequences of
heterochromatin loss in different cell types, we hope intervention
strategies may be designed to restore cellular function and prevent
age-associated diseases.

Methods

Mice

Suv39h1 and Suv39h2 null mice (a generous gift from Thomas
Jenuwein, Max Planck Institute) were backcrossed to the C57BL/6J
strain on which background the Suv39 double-deficient (DKO) ge-
notype was found to be embryonic-lethal (Keenan et al. 2020). We
therefore used 8- to 12-wk-old chimeric mice for this study as
previously described (Keenan et al. 2020). Briefly, chimeric mice
were generated using Suv39h1 and Suv39h2 double-deficient
(DKO) CD45.2+ fetal liver or bone marrow donor cells, which
were injected into the tail vein of lethally irradiated (2 ×550 Gy)
congenic (CD45.1+) recipient mice. These DKO cells are compared
with littermate control cells (designated CON) of the
Suv39h1+/ySuv39h2+/− genotype, as we used a mating strategy un-
able to producewild-type cells to increase the frequency of the sub-
mendelian DKO genotype. Our previous studies have shown no
defects in the development, function, or heterochromatin struc-
ture of Suv39h2−/− mice, making the Suv39h2+/− a reasonable sur-
rogate for a true wild type. All mice were maintained at The
Walter and Eliza Hall Institute animal facility under specific-path-
ogen-free conditions. All animal experiments were approved in ad-
vance by the Walter and Eliza Hall Institute animal ethics
committee and conducted in accordance with published
guidelines.

Flow cytometric sorting

Single-cell suspensions were generated frommouse thymus by me-
chanical homogenization following by red blood cell lysis (156mM
NH4Cl, 11.9 mM NaHCO3, 97 μM EDTA). Fluorochrome-conjugat-
ed antibodies against the following mouse antigens were then
used for sorting by flow cytometry: CD45.2-FITC (clone 104) and
CD19-PECy7 from BD Pharmingen and CD4-PE (clone GK1.5)
and CD8α-APC (clone 53.6.7), which were generated internally.
Surface staining was performed for 30 min at 4°C. Live (propidium
iodide [Thermo Fisher Scientific] negative), CD45.2+CD19−CD4+

CD8+ cells were sorted using a BD FACSAria cell sorter (Supple-
mental Fig. S1).

RNA-seq

RNA was extracted using an RNeasy plus mini kit (Qiagen) and
quantified in a TapeStation 2200 using RNA ScreenTape
(Agilent). Libraries for sequencing were prepared using the
TruSeq RNA sample-preparation kit (Illumina) from 500 ng RNA,
amplified with KAPA HiFi HotStart ReadyMix (Kapa Biosystems),
size-selected to 200–400 bp, and cleaned up with AMPure XPmag-
netic beads (Beckman). Final libraries were quantified with
TapeStation 2200 using D1000 ScreenTape for sequencing on
the Illumina NextSeq 500 platform to produce 81-bp paired-end
reads. Around 35 million read pairs were generated per sample.

All read pairs were aligned to themouse genome, buildmm10,
using align from the Rsubread package (Liao et al. 2019) v1.24.0 inR
(R Core Team 2023). Over 91% of all read pairs were successfully
mapped for each sample. The number of read-pair-overlapping
genes were summarized into counts using Rsubreads featureCounts
(Liao et al. 2014). Of those successfully mapped, an average of 89%
of these read pairs were assigned to a gene. Geneswere identified us-
ing GENCODE annotation to the mm10 genome, version M22.
Differential expression analyses were then undertaken using the
limma (Ritchie et al. 2015) and edgeR (Robinson et al. 2010) soft-
ware packages, versions 3.42.2 and 3.28.1, respectively.

Before analysis, all genes with no symbol, non-protein-cod-
ing, and Riken genes were removed. Expression-based filtering
was also performed. All genes were required to achieve a count
per million reads (CPM) greater than 0.4 in at least three samples
to be retained. Following filtering 11,036 genes remained.
Compositional differences between samples were then normalized
using the trimmed mean of M-values (TMM) method (Robinson
and Oshlack 2010). All counts were transformed to log2-CPM
with associated precision weights using voom (Law et al. 2014).
Differential expression between the knockout and wild-type sam-
ples was evaluated using linear models and robust empirical Bayes
moderated t-statistics relative to a fold-change threshold of 1.2
(McCarthy and Smyth 2009; Phipson et al. 2016). P-values were
adjusted to control the false-discovery rate (FDR) <5% using the
Benjamini and Hochberg method.

Analyses of the GO terms (The Gene Ontology Consortium
2019) was performed using limma’s goana function. Gene set
testing of the aging signature and corresponding barcode plots
were generated using limma’s roast and barcodeplot functions.
The aging signaturewas evaluated using both directional and non-
directional roast tests with 9999 rotations. The heatmap was gen-
erated using the pheatmap package available through CRAN.

Lamin B1 ChIP-seq

Cells (>5M) for LaminB1ChIP-seqwere fixed in 1% formaldehyde
for 20 min at room temperature with mixing and then quenched
by the addition of glycine to a final concentration of 125 mM.
Fixed cells were washed twice with ice-cold PBS and then the cell
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membrane was lysed by incubation in ChIP buffer (150 mMNaCl,
50mMTris, 5mMEDTA, 0.5% (v/v) NP-40, 1% (v/v) TritonX-100)
containing 1× protease inhibitors (Roche) on ice for at least 10min
before Dounce homogenization. Chromatin within intact nuclei
was then digested for 5 min with micrococcal nuclease (NEB
M0247, 500 U/1 M cells) before nuclei lysis by Covaris sonication.
Nuclear lysate was then cleared by centrifugation (>15,000g for
1 min); a small aliquot was taken as a whole-cell extract (WCE)
control; and Lamin B1 antibody (Abcam ab16048, 3 μg) was
added to the remaining cleared lysate and incubated overnight at
4°C with rotation. Immunoprecipitation was performed using
ProteinGDynabeads (ThermoFisher Scientific), and then chroma-
tinwas eluted frombeads using elution buffer (1% (v/v) SDS, 0.1M
NaHCO3). ChIP andWCE samples were then adjusted to 200 mM
NaCl, digestedwith RNase A (20 μg/sample) overnight at 65°C, and
then digested with Proteinase K (20 μg/sample) for a further 1 h at
65°C. DNA was then extracted using a Zymo ChIP DNA clean
and concentrator kit (D5205), and sequencing libraries were pre-
pared using an Illumina TruSeq DNA sample prep kit using
half volumes of all reagents. Libraries were sequenced on an
Illumina NextSeq 500 to produce 81-base-length paired-end reads.
Independent biological duplicates were prepared for each condi-
tion and sequenced to a depth of about 50 million reads.

Lamin B1 ChIP-seq processing and peak calling

Biological replicate FASTQ files were combined for ChIP and WCE
samples. FASTQ files were aligned to the mouse genome (mm10)
withRsubread package v1.28 (Liao et al. 2019). BAM files were sorted
with Rsamtools, and duplicate reads were removed withMarkDupli-
cates (Picard suite v1.117) (https://broadinstitute.github.io/picard/).
WCE samples were down-sampled to the size of the corresponding
ChIP libraries (about 53 million reads) using DownsampleSam
from Picard tools with strategy chained and accuracy 0.001. For
viewing and plotting, bedGraph files of the log of the ratio of the
ChIP coverage to theWCE coveragewere created with bamCoverage
from deepTools (Ramírez et al. 2016) and R (R Core Team 2023).
Tracks were visualized in IGV (Robinson et al. 2011). Enriched
domain detector (EDD) (Lund et al. 2014) was used to call LADs
on the control and DKO samples separately using theWCE as input
for the corresponding ChIP. EDD was run 10 times without specify-
ing the bin size and gap penalty. Themean of the estimated bin size
and gap penalty from the 10 trials was used to call LADs (wild-type:
gap penalty 4.79 andbin size 6 kbp; KO: gap penalty 9.1 and bin size
8 kbp). LADs called on the Y and scaffold chromosomeswere exclud-
ed from subsequent analyses. LADs were also defined with methods
based on circular binary segmentation (CBS) and LADetector (Harr
et al. 2015; Luperchio et al. 2017). With the down-sampled BAM,
we used featureCounts to create the log2 ratio of the ChIP to WCE
in10-kbpbins. Bins overlappingblacklisted regions or gaps in the ge-
nome (e.g., telomere, centromere) were excluded. We partitioned
this ratio using the DNAcopy package in R (Seshan and Olshen
2023) with alpha=0.001. LADs were classified as regions>100 kb
in size of positive signal (seg.mean), allowing for smaller regions of
negative signal <10 kb in size on autosomes and Chr X; iLADs
were classified the same but with negative signal. After defining
LADs in the CON sample, we calculated the median seg.mean in
eachLAD forDKOandCON. LADswith amedian seg.mean decreas-
ing by more than 0.1 were classified as “disrupted,” and all other
LADs were classified as “nondisrupted.”

Histone mark ChIP-seq

ChIP-seq was performed as previously described (Lee et al. 2006)
with amendments. Briefly, 2 × 106–5×106 cells per IP were cross-

linked by adding 1/10 volume of fresh 11% formaldehyde solution
(50 mMHEPES-KOH at pH 7.4, 100 mMNaCl, 1 mM EDTA, 1 mM
EGTA, 11% formaldehyde) to a 1×106 cells/mL cell suspension for
20min at room temperaturewithmixing. Then, 1/12.5 volumes of
2.5 M glycine was added to quench formaldehyde, and cells were
washed twice in ice-cold PBS. Cross-linked cells were lysed in lysis
buffer 1 (50 mM HEPES-KOH at pH 7.5, 140 mM NaCl, 1 mM
EDTA, 10% [v/v] glycerol, 0.5% [v/v] IGEPAL CA-630, 0.25%
[v/v] Triton X-100, 1× Roche cOmplete, EDTA-free protease inhib-
itor cocktail) for 10min at 4°Cwith rocking, pelleted at 1350g for 5
min at 4°C and then with lysis buffer 2 (10mMTris-HCl at pH 8.0,
200 mM NaCl, 1 mM EDTA, 0.5 mM EGTA, 1× Roche cOmplete,
EDTA-free protease inhibitor cocktail) for 10 min at room temper-
ature with rocking, pelleted again at 1350g for 5 min at 4°C, then
resuspended in lysis buffer 3 (10 mM Tris-HCl at pH 8.0, 100 mM
NaCl, 1 mM EDTA, 0.5 mM EGTA, 0.1% [w/v] sodiam deoxycho-
late, 0.5% [v/v] N-lauroylsarcosine, 1× Roche cOmplete, EDTA-
free protease inhibitor cocktail), and transferred to Covaris
miniTUBEs. Cell lysates were sonicated using a Covaris S220 fo-
cused-ultrasonicator with the following settings to shear DNA to
a size of 300–500 bp suitable for high-throughput sequencing:
fill level 10, duty cycle 10, PIP 175, cycles/burst 200 for 60 sec.
Then 1/10 volume of 10% (v/v) TritonX-100was added to the son-
icated lysate, and cellular debris was pelleted at 20,000g for 10min
at 4°C. Immunoprecipitationwas then performed overnight at 4°C
with rotation using ProteinG Dynabeads (50 μL per IP) precoupled
with antibody (5 μL per IP) in 0.5% BSA/PBS for >5 h. Antibodies
used were H3K9me3 Rabbit pAb (Abcam 8898 lot GR3217836-1),
H3K27ac (Abcam ab4729 lot 3357415-3), H3K27me3 (Cell
Signaling Technology 9733S lot 16), H3K4me3 (EMD Millipore
07-472, lot 3746), and rabbit IgG pAb (Abcam ab46540).
Antibody specificity was empirically confirmed by MODified his-
tone peptide array (Active Motif) (Supplemental Fig. S3).
Following immunoprecipitation, beads were collected using a
magnet and washed five times with wash buffer (50 mM HEPES-
KOH at pKa 7.55, 500 mM LiCl, 1 mM EDTA, 1% (v/v) IGEPAL
CA-630, 0.7% (w/v) sodium deoxycholate) and then one time
with Tris-EDTA-NaCl buffer (10 mM Tris-HCl at pH 8.0, 1 mM
EDTA, 50 mMNaCl). DNA was then eluted from beads by incuba-
tion in elution buffer (50mMTris-HCl at pH 8.0, 10mMEDTA, 1%
(w/v) SDS) for 30 min at 65°C with shaking. Bead-free supernatant
was reverse crosslinked by incubation for 6–15 h at 65°C, diluted
with equal volume of TE buffer (10 mM Tris-HCl at pH 8.0, 1
mM EDTA), and then digested sequentially with RNase A (0.2
mg/mL) for 2 h at 37°C and Proteinase K (0.2 μg/mL) for 2 h at
55°C. Final immunoprecipitated DNA was then purified using a
Zymo ChIP DNA clean and concentrator kit and prepared for se-
quencing using an Illumina TruSeq ½ reaction library preparation
kit. Final libraries were quantified using an Agilent TapeStation us-
ing a D1000 screentape. Libraries for H3K9me3were sequenced on
an Illumina NextSeq 500, generating 76-bp paired-end reads, and
all other libraries were sequenced on an Illumina NextSeq 2000,
generating 66-bp paired-end reads.

Histone mark ChIP-seq processing and peak calling

FASTQ files of H3K27ac, H3K27me3, H3K4me3, H3K9me3, and
IgG from CON and H3K27ac, H3K27me3, H3K4me3, and IgG
from DKO-aligned were with Rsubread with the mm10 reference
genome. Duplicate reads were removed with Picard tools. The
HOMER pipeline was used to call peaks (Heinz et al. 2010). Tag di-
rectories were created for each library with the genome specified.
For ChIP-seq samples, the findPeaks function was used to find
peaks with style as histone, size as auto, and the corresponding
IgG sample as input.
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ATAC-seq

ATAC-seq was performed using the Omni-ATAC method (Corces
et al. 2017). Briefly, 50,000 cells were pelleted at 500g for 5 min
at 4°C and then lysed on ice for 3 min in 50 μL ATAC-RSB buffer
(10 mM Tris-HCl at pH 7.4, 10 mM NaCl, 3 mM MgCl2) also con-
taining 0.1% (v/v) IGEPAL CA-630, 0.1% (v/v) Tween-20, and
0.01% (w/v) digitonin. After lysis, 1 mL of ATAC-RSB containing
only 0.1% (v/v) Tween-20 but no IGEPAL CA-630 or digitonin
was added, and nuclei were pelleted at 500g for 10 min at 4°C.
All supernatant was aspirated and discarded, and each pellet of nu-
clei was resuspended in 50 μL of transposition mix (25 μL 2× TD
buffer, 2.5 μL Tn5 transposase [100 nM final], 16.5 μL PBS, 0.1 μL
5% digitonin, 0.5 μL 10% Tween-20, 5 μL H2O) and incubated
for 30 min exactly at 37°C in a thermomixer with 1000 RPM mix-
ing. DNA was then purified using a Zymo DNA clean and concen-
trator-5 kit to generate 20 μL of product, which was preamplified
for five cycles using NEBNext 2X master mix (E7649A) and in-
dexed primers as previously described (Buenrostro et al. 2013).
Five microliters of preamplified DNA was then used in a 15 μL
qPCR reaction using Promega GoTaq qPCR master mix to deter-
mine the required number of additional cycles to yield minimally
amplified DNA for optimal library diversity for massively parallel
sequencing. Amplified DNA was then purified using NucleoMag
NGS clean-up and size select beads (Macherey-Nagel) using a
0.5× ratio of beads to DNA to initially clear large DNA fragments
from the library and then a 1.5× ratio of beads to supernatant to
adsorb DNA fragments of appropriate size for sequencing. DNA-
bound beads were then washed twice with 80% EtOH, and size-se-
lected DNA was eluted in nuclease-free water. Final libraries were
quantified using an Agilent TapeStation using a D5000 screentape
and sequenced using an Illumina NextSeq 2000 to generate about
50 million paired-end 165-bp reads per library.

ATAC-seq data were analyzed as previously described
(Milevskiy et al. 2023). Briefly, Nextera adapter sequences were
trimmed with trim_galore (https://github.com/FelixKrueger/
TrimGalore), and then reads were mapped to the mm10 genome
with Bowtie 2 with arguments ‐‐maxins 2000 ‐‐minins 38 ‐‐very-
sensitive -p 48 -k 10. Duplicates were marked with sambamba
(Tarasov et al. 2015). SAMtools (Danecek et al. 2021) was used to
remove reads on Chr M and reads with FLAG 1804 (including du-
plicates and multi-mapped reads). BAM files of the biological rep-
licates weremergedwith SAMtools. TheHOMERpipelinewas used
to call peaks with the findPeaks function with style as factor and
size as auto.

DNA fluorescence in situ hybridization

DNA fluorescence in situ hybridization (DNA-FISH) was performed
oncontrol and Suv39DKOprimaryDP thymocytes as previously de-
scribed (Tapia Del Fierro et al. 2023) with 40- to 48-h hybridization
time. BAC DNA (BACPAC resources) was isolated using a large-con-
struct kit (Qiagen) and converted to fluorescently labeledDNA-FISH
probes by a nick translation reaction (Abbott Laboratories). BACs
used in this study are RP24-263I20 (Chr 12: 19,359,827–
19,451,909), RP23-277F6 (Chr 2: 31,162,711–31,356,593), RP24-
284I15 (Chr 1: 99,904,338–100,058,959), RP23-305P17 (Chr 6:
30,032,262–30,187,634), and RP24-391L20 (Chr 3: 72,874,595–
73,009,096). Stained cells were visualized on an LSM880 (Zeiss)mi-
croscope with Airyscan processing.

Microscopy data were analyzed automatically with a custom
written macro in FIJI (Schindelin et al. 2012). Briefly, nuclei were
segmented from the background with a 3D autothreshold and la-
beled on a scaled-down version of the DAPI channel. FISH foci
were detected and assigned to a location within the nuclei via
the 3D maxima detector and the EVF calculator in the 3D ImageJ

suite (Ollion et al. 2013). The radial position was computed as
the fractional distance of all detected foci between the nuclear pe-
riphery and center, with amaximumof two foci per nucleus (based
on intensity) used in analysis. The P-value between groups was de-
termined with a Wilcoxon test.

Hi-C

In situ Hi-C was performed on fixed cells as previously described
(Johanson et al. 2018). Libraries were sequenced on an Illumina
NextSeq 500 to produce 81-base-length paired-end reads.
Independent biological duplicates were prepared for each condi-
tion and sequenced to a depth of about 200 million reads
(Supplemental Table 1).

Hi-C data processing

Data preprocessing and analysis were performed as previously de-
scribedwith changes in the parameters (Johanson et al. 2018). Sam-
ples were aligned to the mm10 genome using the diffHic package
v1.14.0 (Lun and Smyth 2015), which uses cutadapt v0.9.5 (Martin
2011) and Bowtie 2 v2.2.5 (Langmead and Salzberg 2012) for align-
ment and Picard suite v1.117 (https://broadinstitute.github.io/
picard/) for fixing mate pair information and marking duplicate
reads. Dangling ends and self-circling artifacts were identified and
removed if the pairs of inward-facing or outward-facing reads were
separated by <1000 bp (inward-facing) or 2000 bp (outward-facing).
Read pairs with fragment sizes >1000 bpwere removed. The propor-
tion of reads removed through each processing step is tabulated in
Supplemental Table 1.

The HOMER Hi-C pipeline (Heinz et al. 2010, 2018) was also
used for Hi-C analysis. After processing with the diffHic pipeline,
libraries in HDF5 format were converted to the Hi-C summary for-
mat with R. Then input-tag directions were created for each library
with the makeTagDirectory function, with the genome (mm10)
and restriction-enzyme-recognition site (GATC) specified.
Summed biological-replicate tag directories for each cell type
were also created.

To confirm the reproducibility of the libraries, the HiCRep R
package was used to quantify the similarity between all libraries
with the stratum adjusted correlation coefficient (SCC) (Yang
et al. 2017). For every combination of libraries, the raw contactma-
trices (50-kbp resolution) of individual chromosomes for each rep-
licate were used to compute the SCC with a smoothing parameter
of three and a maximum distance considered at 5 Mbp. For each
pairwise comparison, a median SCCwas calculated across all chro-
mosomes (Supplemental Fig. S7).

Plaid plots were constructed using the contact matrices and
the plotHic function from the Sushi R package (Phanstiel et al.
2014). The inferno color palette from the viridis package
(Garnier et al. 2024; https://sjmgarnier.github.io/viridis/) was
used. The range of color intensities in each plot was scaled accord-
ing to the library size of the sample to facilitate comparisons be-
tween plots from different samples. DI arcs were plotted with the
plotBedpe function of the Sushi package. The z-score shown on
the vertical access was calculated as −log10 (P-value).

Detection of A/B compartments

A/B compartments were identified at a resolution of 100 kbp with
the method outlined by Lieberman-Aiden et al. (2009) using the
HOMER Hi-C pipeline (Lin et al. 2012). With the summed biolog-
ical replicate tag directories, the runHiCpca.pl function was used
on each library with −res 100,000 and the genome (mm10) speci-
fied to perform principal component analysis to identify compart-
ments. To identify changes in A/B compartments between
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libraries, the getHiCcorrDiff.pl function was used to directly cal-
culate the difference in correlation profiles. A region was consid-
ered to flip compartment if the difference in correlation profile
was <−0.1 and was determined from control cell A/B compart-
ments. Chr Y was excluded from the analysis.

Detecting DIs

DIs between the different libraries were detected using the diffHic
package v1.16.0 (Lun and Smyth 2015). Read pairs were counted
into 50-kbp bin pairs for all chromosomes. Bins were discarded if
they had a count of fewer than 10, contained blacklisted genomic
regions as defined by ENCODE for mm10 (The ENCODE Project
Consortium 2012), or were within a centromeric or telomeric re-
gion. Filtering of bin pairswas performedusing the filterDirect func-
tion, in which bin pairs were only retained if they had average
interaction intensities more than threefold higher than the back-
ground ligation frequency. The ligation frequency was estimated
from the interchromosomal bin pairs from a 1-Mbp bin pair count
matrix. Diagonal bin pairs were also removed. The counts were nor-
malized between libraries using a loess-based approach with bin
pairs <100 kbp from the diagonal normalized separately from other
bin pairs. Tests for DIs were performed using the QL framework
(Lund et al. 2012; Chen et al. 2016) of the edgeR package v3.26.5
(Robinson et al. 2010). A design matrix was constructed using a
one-way layout that specified the group to which each library be-
longed. Amean-dependent trendwas fitted to the negative binomi-
al dispersions with the estimateDisp function. A generalized linear
model (GLM) was fitted to the counts for each bin pair (McCarthy
et al. 2012), and the QL dispersion was estimated from the GLM
deviance with the glmQLFit function. The QL dispersions were
then squeezed toward a second mean-dependent trend, using a ro-
bust empirical Bayes strategy (Phipson et al. 2016). A P-value was
computed against the null hypothesis for each bin pair using the
QL F-test. P-values were adjusted for multiple testing using the Ben-
jamini–Hochbergmethod. ADIwas defined as a bin pair with a FDR
<5%. DIs adjacent in the interaction space were aggregated into
clusters using the diClusters function to produce clustered DIs.
DIs were merged into a cluster if they overlapped in the interaction
space. The significance threshold for each bin pair was defined such
that the cluster-level FDR was controlled at 5%. Cluster statistics
were computed using the csaw package v1.18.0 (Lun and Smyth
2016). Overlaps between unclustered bin pairs and genomic inter-
vals were performed using the InteractionSet package (Lun et al.
2016). Differential interactivity for DE genes was calculated from
50-kbp interactions with P-value<0.05 before clustering andmulti-
ple testing. For each DE gene, the mean logFC from overlapping in-
teractions was calculated.

Detecting TAD boundaries

TAD breakpoints were detected in each Hi-C library with TADbit
v0.2.0.5 (Serra et al. 2017). Read pairs were counted into 50-kbp
bin pairs (with bin boundaries rounded up to the nearest MboI re-
striction site). The TADbit tool find_tad was run on the raw counts
specifying normalized = false. Only TAD boundaries with a score of
seven or higher were included in the results.

Detecting differential TADs

Differential TAD boundaries (DTBs) between groups were detected
with the diffHic and edgeR packages (Lun and Smyth 2015) using
the approach described in chapter 8 of the diffHic user’s guide.
This approach adapts the statistical strategy recently described
for differential methylation (Chen et al. 2017) to identify DTBs.
The strength of a putative TAD boundary was assessed based on

the upstream versus downstream intensity contrast at genomic
loci, defined as the ratio of upstream to downstreamHi-C reads an-
chored at that genomic region. edgeR was used to test whether the
ratio at the loci significantly increased or decreased in absolute size
between groups. This method directly assesses differential boun-
dary strength relative to biological variation without needing to
make TADs calls in individual samples. Upstream and downstream
read counts were determined for 200-kbp genomic regions and for
2 Mbp up- and downstream. Low-abundance regions with average
log2-counts per million below two were removed along with re-
gions in blacklisted regions, telomeres, or centromeres. Tests for
DTBs were performed using the QL framework of edgeR. Regions
with FDR below 0.05 were considered to be DTB.

Detecting differentially interacting promoters

Differentially interacting promoters (DIPs) were detected across all
libraries with the diffHic package (Lun and Smyth 2015) and the
method described previously (Chan et al. 2021) with alterations
in parameters. Gene TSSs were defined with the mouse GENCODE
gene set annotation (v. M24). Promoter regions (upstream 10 kbp
and downstream 5 kbp) were defined with the promoter function
from the GenomicFeatures package v1.36.2. Interactions between
the promoters and the genome in 15-kbp bins were counted with
the connectCounts function. Interchromosomal interactions or in-
teractions in blacklisted regions or with an anchor >20 kbp or in the
diagonal were excluded. A loess curve (span 0.1) was fitted to the av-
erage log counts per million (logCPM) for all libraries as a function
of distance^0.25 (loessFit function from the limma package
v3.40.2) (Ritchie et al. 2015). An interaction was required to have
an abundance larger than the fitted curved plus two times the
mean of the absolute values of the residuals from the loess fit. Inter-
actions for each promoter were then aggregated to produce a count
matrix. Low-abundance promoters were filtered using edgeR’s
filterByExpr function. Only promoters for protein-coding genes
were retained. Obsolete Entrez gene indentifications were removed,
as were mitochondrial, Riken, and olfactory genes. The counts were
normalized between libraries using a loess-based approachwith the
normOffsets function from the csaw package v1.18.0 (Supplemen-
tal Fig. S7).

DIPs were detected with the QL framework (Lund et al. 2012;
Chen et al. 2016) of the edgeR package. A design matrix was con-
structed with a one-way layout that specified the cell type. Using
the promoter counts, the estimateDisp function was used to max-
imize the negative binomial likelihood to estimate the common
dispersion across all promoters with trend=none and robust =
TRUE (Chen et al. 2014). A GLM was fitted to the counts
(McCarthy et al. 2012), and the QL dispersion was estimated
from the GLM deviance with the glmQLFit function with robust
=TRUE and trend.method=none. The QL dispersions were then
squeezed toward a second mean-dependent trend, with a robust
empirical Bayes strategy (Phipson et al. 2016) to share information
between genes. A P-value was calculated for each promoter using a
moderated t-test with glmQLFTest. The Benjamini–Hochberg
methodwas used to control the FDR <5%. Heatmaps of the filtered
and normalized logCPM value were plotted with the coolmap
function from the limma package. Gene set enrichment was tested
using limma’s fry function and visualized using limma’s barcode
enrichment plot.

Coverage plots and coverage of genomic features

For viewing and plotting, bedGraph files were created for ChIP-seq
samples with bamCoverage from deepTools with arguments:
normalizeUsing RPGC, bs 10, -e, and effectiveGenomeSize
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2652783500. For bedGraph files from ATAC-seq samples, the argu-
ments usedwere as follows: normalizeUsing RPGC, bs 10, and effec-
tiveGenomeSize 2652783500. Coverage plots were created with
computerMatrix and plotHeatmap from deepTools. For genes, the
arguments used were as follows: scale-regions -S, -a 3000 -b 3000,
-bs 10 –, and regionBodyLength 8000. For LAD boundaries with
ChIP, the arguments used were as follows: reference-point -S, -a
500000 -b 500000, -bs 10000, and ‐‐averageTypeSummaryPlot me-
dian. For LAD boundaries with RNA-seq the argument -bs was
changed to 20,000. Blacklisted regions were excluded.

ChIP-seq and ATAC-seq read coverage (log2 of the read per ki-
lobase per million) of different genomic features (gene promoters,
LADs, iLADs, and TAD boundaries) was determined with
featureCounts from Rsubread with allowMultiOverlap=TRUE
and the rpkm function from R package edgeR with log =TRUE.
The read coverage of genes was determined from regions that are
2 kbp upstream of and 500 kbp downstream from the TSS.
Nondifferentially expressed genes survived filtering in the DE
analysis and adjusted P-value> 0.05. For LADs/iLADs, DIs and dif-
ferential TAD boundary regions the genome regions excluded
blacklisted regions. The P-value between groups was determined
with a Wilcoxon test.

Overlaps between genomic features

Overlaps between genomic regions were identified with the
overlapsAny function of the IRanges package v2.20.2 (Lawrence
et al. 2013). Distances between nearest genomic features was
calculated with the distanceToNearest function from the
GenomicRanges package (Lawrence et al. 2013).

Motif enrichment

Motif enrichment was performedwith the HOMERpipeline on ge-
nomic regions with the findMotifsGenome.pl function and speci-
fying the genome as mm10 and size given and for genes with the
findMotifs.pl function with mouse specified as the genome. For
DIs, enrichment was performed on the unique anchor regions of
unclustered DIs relative to a background of the same number of
not-significant DI anchors (FDR>0.05).

Identification of TAD cliques and modeling with Chrom3D

The Chrom3D pipeline was used to analyze the clique structure
and model the 3D chromosome structure of the wild-type and
DKO cells (Paulsen et al. 2017, 2018) with some modifications.
For creating the input GTrack file we used the following: intrachro-
mosomal interactions at 100 kbp, interchromosomal interactions
at 1 Mbp, the LADs as determined by EDD in the wild-type and
DKO libraries separately, and a diploid cell. Beads were created
from TADbit segmentation at 50 kbp of summed biological repli-
cates of the wild-type libraries excluding the Y Chromosome
with the boundary rounded down to the nearest 50 kbp. As there
were no overlapping TADs, we did notmerge beads. For calculating
the significance of the intrachromosomal interactions, we used
fdr_bh with a cutoff of 1.5 and threshold of 0.05; for interchromo-
somal interactions, a cutoff of two and threshold of 0.05. TAD cli-
ques were identified as previously described (Paulsen et al. 2019).
For each sample type, we simulated 100 independent Chrom3D
models, each with a separate seed value. We ran each simulation
for 5 million iterations with a 5-μm radius, the nucleus flag, and
0.3 scale. Beadmeasurements were calculated as themedian radius
of beads of each feature type for a given model. Distributions of
thesemeasurements were compared byWelch’s unequal variances
t-test.

Data access

All raw andprocessed sequencing data generated in this study have
been submitted to the NCBI Gene Expression Omnibus (GEO;
https://www.ncbi.nlm.nih.gov/geo/) under accession number
GSE156297.
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