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Missense mutations in the gene encoding the microtubule-associated protein TAU (current and approved symbol is MAPT)

cause autosomal dominant forms of frontotemporal dementia. Multiple models of frontotemporal dementia based on trans-

genic expression of human TAU in experimental model organisms, including Drosophila, have been described. These models

replicate key features of the human disease but do not faithfully recreate the genetic context of the human disorder. Here we

use CRISPR-Cas-mediated gene editing to model frontotemporal dementia caused by the TAU P301L mutation by creating

the orthologous mutation, P251L, in the endogenous Drosophila tau gene. Flies heterozygous or homozygous for Tau P251L

display age-dependent neurodegeneration, display metabolic defects, and accumulate DNA damage in affected neurons. To

understand the molecular events promoting neuronal dysfunction and death in knock-in flies, we performed single-cell

RNA sequencing on approximately 130,000 cells from brains of Tau P251L mutant and control flies. We found that expres-

sion of disease-associated mutant tau altered gene expression cell autonomously in all neuronal cell types identified. Gene

expression was also altered in glial cells, suggestive of non-cell-autonomous regulation. Cell signaling pathways, including

glial–neuronal signaling, were broadly dysregulated as were brain region and cell type–specific protein interaction networks

and gene regulatory programs. In summary, we present here a genetic model of tauopathy that faithfully recapitulates the

genetic context and phenotypic features of the human disease, and use the results of comprehensive single-cell sequencing

analysis to outline pathways of neurotoxicity and highlight the potential role of non-cell-autonomous changes in glia.

[Supplemental material is available for this article.]

The neuronal microtubule–associated protein TAU (current and ap-
proved symbol is MAPT) forms insoluble deposits termed neurofi-
brillary tangles and neuritic threads in neuronal soma and
processes in a diverse group of age-dependent neurodegenerative
diseases, including Alzheimer’s disease and frontotemporal demen-
tia. These disorders have collectively been termed “tauopathies”
(Feany and Dickson 1996; Goedert 2004; Götz et al. 2019).
Although wild-type TAU is deposited in Alzheimer’s disease and
othermore common tauopathies,missensemutations inTAU occur
in rarer familial forms of tauopathy, causing neurodegeneration and
insoluble TAU deposition. Autosomal dominant disease-causing
mutations occur throughout the TAU protein but are particularly
frequent in exon 10, which contains one of four microtubule bind-
ing repeats (Ghetti et al. 2015). These repeats mediate microtubule
(Lee et al. 1989; Butner and Kirschner 1991) and actin (Cabrales
Fontela et al. 2017) binding and are important determinants of

TAU aggregation (von Bergen et al. 2000). Experimental models of
tauopathy have been created in diverse model organisms, from
yeast to non-human primates, by expressing wild-type or fronto-
temporal dementia–associated mutant forms of human TAU in
transgenic animals. Mutant forms of TAU are typically more toxic
than wild-type TAU in transgenic model organisms. Work in these
models has implicated a number of cellular pathways in mediating
TAU neurotoxicity, including mitochondrial dysfunction (Rhein
et al. 2009; DuBoff et al. 2012), oxidative stress (Dias-Santagata
et al. 2007; Dumont et al. 2011), and aberrant cell-cycle reentry of
postmitotic neurons (Andorfer et al. 2005; Khurana et al. 2006).

However, although transgenic models have been useful, they
do not faithfully replicate the genetic underpinnings of the au-
thentic human disorders and thus may not allow the identifica-
tion and study of the full complement of important mediators of
tauopathy pathogenesis. We have therefore used CRISPR-Cas9
gene editing to model familial frontotemporal dementia caused
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by missense mutations in TAU more precisely in Drosophila.
Mutation of proline 301 to leucine in exon 10 is themost common
mutation of TAU in frontotemporal dementia patients (Poorkaj
et al. 2001) and has been frequently modeled in transgenic ani-
mals (Goedert and Jakes 2005). The overall structure and expres-
sion of TAU are conserved from mammals to Drosophila (Heidary
and Fortini 2001), with proline 251 being orthologous to human
proline 301. We have therefore replaced Drosophila Tau proline
251 with leucine (P251L) and phenotypically analyzed the resul-
tant homozygous andheterozygous animalswith age.Wehave ad-
ditionally performed single-cell sequencing to identify cell
populations, networks, and signaling systems altered by mutant
tau expression.

Results

Phenotypic analysis of a Drosophila knock-in model of

frontotemporal dementia

WeusedCRISPR-Cas9 gene editing to recapitulate the genetic basis
of human frontotemporal dementia in the powerful genetic exper-
imental organismDrosophila bymodeling the disease-causing pro-
line 301 to leucine in fly Tau. Protein sequence alignment shows
that the microtubule-binding domains, including human TAU
proline 301, are evolutionary conserved from Drosophila to hu-
mans (Supplemental Fig. S1). The homologous residue of the hu-
man TAU proline 301, Drosophila Tau proline 251, was mutated to
leucine using a highly efficient guide RNA along with single-strand-
ed oligodeoxynucleotides (Fig. 1A,B). Mutant Tau was expressed at
equivalent levels to wild-type Tau (Supplemental Fig. S2A).

The expression of frontotemporal dementia-linked forms of
mutant TAU, including P301L, leads to age-dependent neuronal
loss in patients and in transgenic models (Götz et al. 2001; Lewis
et al. 2001; Yoshiyama et al. 2007; Ghetti et al. 2015). We thus ex-
amined the histology of brains of heterozygous (P251L/+) and ho-
mozygous (P251L) Tau knock-in animals with age. We found
increased numbers of cortical and neuropil vacuoles in knock-in
animals (Fig. 1C,D). Neurodegeneration inDrosophila is frequently
accompanied by the formation of brain vacuoles (Heisenberg and
Böhl 1979; Buchanan and Benzer 1993; Wittmann et al. 2001;
Ordonez et al. 2018). Increasing numbers of vacuoles were ob-
served with advancing age, as well as with two copies of the
P251L compared with one copy (Fig. 1C,D). Inappropriate neuro-
nal cycle reentry is a feature of human tauopathy (Husseman et al.
2000) and human TAU transgenic animals (Andorfer et al. 2005;
Khurana et al. 2006). We stained control and Tau P251L knock-
in brains with an antibody directed to proliferating cell nuclear an-
tigen (PCNA) to assess cell-cycle activation (Khurana et al. 2006).
We observed increasing cell-cycle reentry with age in Tau P251L
knock-in brains, with more cell-cycle activation in homozygotes
compared with heterozygotes (Fig. 1E; Supplemental Fig. S2B).

Metabolic alterations andmitochondrial dysfunction are per-
vasive features of neurodegenerative diseases, including tauopa-
thies (DuBoff et al. 2013; Götz et al. 2019). We thus performed
metabolic analysis on intact whole-fly brains using the Seahorse
XFe96 analyzer (Neville et al. 2018). We observed a reduced basal
oxygen consumption rate (OCR) and a shift in mitochondrial
bioenergetics to quiescent metabolic state in Tau 251L knock-in
animals, with homozygotes showing more impairment than
heterozygotes (Fig. 2A,B).

Oxidative stress accompanying mitochondrial dysfunction re-
sults indamage to key cellular substrates, includingDNA.DNAdam-

age commonly occurs in age-related neurodegenerative diseases
(Welch and Tsai 2022), including tauopathies (Khurana et al.
2012; Shanbhag et al. 2019; Thadathil et al. 2021).We took two ap-
proaches to examining DNA damage in Tau P251L knock-in ani-
mals. First, we used the comet assay, in which DNA single- or
double-strandbreaks are showed using single-cell gel electrophoresis
(Khurana et al. 2012; Frost et al. 2014).Weobserved that nuclei from
the brains of Tau P251L knock-in flies displayed almost twofold lon-
ger comet tails than those of controls (Fig. 2C, arrowheads, D).

As a second measure of DNA damage, we immunostained for
the histone variant H2Av phosphorylated at serine 137 (pH2Av), a
marker of DNA double-strand breaks (Madigan et al. 2002;
Khurana et al. 2012; Frost et al. 2014). We found significantly in-
creased numbers of double-strand breaks within neurons (Fig.
2E, arrows, arrowheads, F,G). DNA double-strand breaks were ele-
vated with age and in homozygous compared with heterozygous
Tau P251L knock-in flies (Fig. 2E–G). Increased DNA damage was
assessed by counting both the numbers of Kenyon cell nuclei con-
taining pH2Av foci and the numbers of Kenyon cell nuclei con-
taining more than two foci (Fig. 2E, arrows, G), which correlate
with increased numbers of DNA double-strand breaks (Hong and
Choi 2013; Lapytsko et al. 2015).

Single-cell RNA sequencing reveals gene expression changes

mediated by pathologic Tau

Our Tau P251L knock-in flies replicate important features of hu-
man tauopathies and transgenicmodels of the disorders.We there-
fore performed single-cell RNA sequencing (scRNA-seq) to
investigate transcriptional programs and cellular pathways altered
by expression of mutant Tau. Using an optimized brain dissocia-
tion method, 10x library preparation, sequencing, and a bioinfor-
matics analysis pipeline, we implemented scRNA-seq on Tau
P251L knock-in and control Drosophila brains at 10 d of age (Fig.
3A). The 10-d time point was chosen to identify early perturba-
tions related to neuronal dysfunction and degeneration (Figs. 1,
2). After stringent quality control, 130,489 high-quality cells
were retained in the final integrated data set, and 29 clusters of
cells were identified. We annotated 26 clusters using a published
fly cell atlas (Li et al. 2022). We used the most highly expressed
marker genes within each cluster to identify clusters. For instance,
we used dac, crb, and jdp to annotate Kenyon cells; Yp1, Yp2, and
Yp3 for mushroom body output neurons (MBONs); Mtna,
CG8369, andCG1552 for glia;CG34355,Gad1, andmamo formed-
ullary neurons; and acj6, Li1, and sosie for T neurons
(Supplemental Figs. S3–S5). The clustered dot plot illustrates en-
richment of marker genes in annotated neuronal and glial clusters
(Fig. 3C; Supplemental Fig. S4C). Based on prior published analy-
ses (Croset et al. 2018; Davie et al. 2018; Li et al. 2022), we further
outlined major groups of cells, including Kenyon cells, medullary
neurons, MBONs, astrocytes, and perineurial glia (Fig. 3B;
Supplemental Fig. S3; Supplemental Table S1). As previously ob-
served (Davie et al. 2018), cholinergic neurons were the most
common neuronal type defined by neurotransmitter
phenotype, followed by GABAergic and glutamatergic neurons
(Supplemental Fig. S3). Less abundant clusters of dopaminergic
neurons were also identified (Supplemental Fig. S3). In summary,
our scRNA sequencing in a precisely edited Drosophila tauopathy
model, yielded 130,489 high-quality cells and identified
cellular populations throughout diverse brain regions and cell
types, including rarer cell populations such as astrocytes and peri-
neurial glia.

Drosophila knock-in tauopathy model
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After sample integration, quality
control, and cluster annotation, we per-
formed differential gene expression (DEG)
analysis to identify genes modulated by
precise pathologic mutation modeling
of tauopathy in the Drosophila brain.
DEG analysis of all the 26 annotated clus-
ters revealed that Tau P251L knock-in al-
tered genes throughout the Drosophila
brain, in both neurons and glia (Fig. 4A;
Supplemental Table S2). We found that
472 genes were up-regulated across all
clusters in Tau P251L knock-in brains,
whereas 1145 geneswere down-regulated
(Supplemental Table S3). Transposable
elements (FBti0020120 RR48373-transpo-
sable-element, FBti0063007, FBti0019000,
FBti0019150, RR50423-transposable-ele-
ment, FBti0019148) were frequently up-
regulated in P251L knock-in brains
(Fig. 4B), consistent with findings from
Drosophila human TAU overexpression
models and human Alzheimer’s disease
brain tissue (Guo et al. 2018; Sun et al.
2018). The set of commonly down-regu-
lated genes was notable formultiple ribo-
somal protein genes (Fig. 4C), suggesting
a translational defect in tauopathy.
Multiple nuclear and mitochondrially
encoded respiratory chain subunits and
other mitochondrial proteins were nota-
bly present in the commonly up-regulat-
ed and down-regulated genes, as were
genes encoding cytoskeletal and associat-
edproteins (Arc1,Msp300,Ank2,unc-104,
Amph, brp, alphaTub84B). Both categories
of genes fit well with knownmediators of
tauopathy pathogenesis (DuBoff et al.
2013; Schulz et al. 2023).

As expected, gene enrichment anal-
yses (Fig. 4D; Supplemental Fig. S6) high-
lighted mitochondrial and cytoskeletal
processes. In addition, diverse metabolic
and neuronal function pathways, in-
cluding associated learning, previously
associated with Alzheimer’s disease and
related tauopathies emerged from Gene
Ontology (GO) enrichment analyses.
Enrichment analysis for human disease–
associated genes revealed predominantly
neurodegenerative disorders, including
tauopathy (Fig. 4E).

Distinct and shared region- and cell-

specific transcriptional programs in Tau

P251L knock-in brains

Significant anatomic and cell type selec-
tivity characterizes human neurodegen-
erative diseases, including tauopathies.
We therefore analyzed gene expression
changes separately in anatomically and
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Figure 1. CRISPR-Cas9-mediated knock-in model of frontotemporal dementia in Drosophila. (A)
CRISPR-Cas9 gene editing strategy to knock-in the human TAU P301L homologous mutation in
Drosophila, Tau P251L, located in exon 5 of Drosophila tau. (B) Successful mutation in homozygous
Tau P251L knock-in flies. (C,D) Hematoxylin and eosin staining reveals evidence of neurodegeneration
as seen by an increased number of brain vacuoles (arrowheads) with age in homozygous and heterozy-
gous knock-in animals. (C ) Scale bar represents 10 µm. (E) Neurodegeneration is accompanied by abnor-
mal cell-cycle reentry as marked by proliferating cell nuclear antigen (PCNA) staining. Flies are 30 d old in
C and the age indicated in the figure labels in D,E. (D,E) n = 6 per genotype and time point. Data are pre-
sented as mean± SD. (∗∗∗) P<0.001, one-way ANOVA with Tukey post-hoc analysis.

Bukhari et al.

592 Genome Research
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.278576.123/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.278576.123/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.278576.123/-/DC1


A

C

D

GF

E

B

D

Figure 2. Mitochondrial dysfunction and DNA damage in Tau P251L knock-in brains. (A,B) Decreased oxygen consumption rate (OCR; A) and shift to a
quiescent metabolic phenotype as indicated by plotting the OCR versus the extracellular acidification rate (ECAR; B) in homozygous and heterozygous Tau
P251L knock-in brains compared with controls. n = 6 per genotype. (C,D) Elevated levels of DNA damage in Tau P251L knock-in brains as indicated by
increased tail length (arrowheads) following electrophoresis of nuclei from dissociated brains in the comet assay. n = 3 per genotype. (E) Increase in the
number of Kenyon cells neurons (identified by the neuronal marker elav) containing DNA double-strand breaks as marked by pH2Av foci (arrowheads;
arrows indicate neuronal nuclei with more than two foci) in histological sections of mushroom bodies (Kenyon cells) from Tau P251L knock-in animals,
as quantified in F,G. n = 6 per genotype and time point. Scale bars represent 5 µm. Flies are 10 d old in A–D, 30 d old in E, and the age indicated in the
figure labels in F,G. Data are presented as mean± SD. (∗∗∗) P<0.001, one-way ANOVA with Tukey post-hoc analysis.
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Figure 3. Single-cell RNA sequencing (scRNA-seq) of Tau P251L knock-in brains. (A) Schematic of the scRNA-seq analysis pipeline. Following dissection,
brains were dissociated in the enzymatic solutions, and the single-cell suspension was encapsulated by the 10x Genomics Chromium platform. The 10x
libraries were prepared and sequenced, and after quality control, data were analyzed. (B) UMAP representation of the six integrated scRNA-seq runs: three
control and three Tau P251L knock-in. The integrated data set contains 130,489 cells, and 26 clusters out of 29 were annotated. (C) Percentage expression
heatmap of the highly expressed marker genes within all clusters. Flies are 10 d old.
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Figure 4. Differential gene expression and enrichment analysis of the scRNA-seq data set in Tau P251L knock-in brains compared with controls. (A) The
number of differentially expressed genes (DEGs), both up-regulated and down-regulated genes, in all the annotated clusters of Tau P251L knock-in brains
compared with controls. Results are displayed across three major anatomic and functional classes of cells: (1) central body containing three clusters of
Kenyon cells (KCs), mushroom body output neurons (MBONs) and pox neurons; (2) optic lobe neurons containing lamina, medullary, and lobula neurons
clusters; and (3) glia cells containing astrocytes and perineurial clusters. (B,C) Heatmaps of the top 50 up-regulated (B) and down-regulated (C) genes in all
the clusters of Tau P251L knock-in brains comparedwith controls (Supplemental Table S3). (D) Gene Ontology (GO) enrichment analysis identified top up-
regulated and down-regulated biological processes (BPs), molecular functions (MFs), and cellular components (CCs). (E) Analysis of human disease–asso-
ciated genes revealed top up-regulated and down-regulated disease-associated gene sets. Score represents the combined score c = log(p) × z (Chen et al.
2013).
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functionally related groups of cells, including the central body
(Kenyon cells, MBON, and Pox neurons), optic lobe (lamina, me-
dulla, and lobula neurons), and glia (astrocytes and perineurial
glia). Volcano plots in Supplemental Figure S7, A, C, and F, pre-
sent up-regulated and down-regulated genes in each group of
cells. Transposable element were the top up-regulated genes in
each of the three groups. GO enrichment analyses (Supplemental
Fig. S7B,D) identified distinct biological processes altered by mu-
tant tau expression in the central body compared with the optic
lobe. Both associative learning and cAMP metabolic process
were specifically identified in the central body, correlating with
the importance of Kenyon cells in learning and memory in flies
and with the central role for cAMP underlying learning and mem-
ory (Feany and Quinn 1995; Guven-Ozkan and Davis 2014). Het-
erochromatin organization and DNA repair, both processes
strongly implicated in tauopathy pathogenesis (Fig. 2; Khurana
et al. 2012; Frost et al. 2014; Welch and Tsai 2022), emerged as en-
riched processes following analysis of the central body and optic
lobe separately (Supplemental Fig. S7D). Direct comparison of dif-
ferentially regulated genes in the central body compared with the
optic lobe neurons revealed 239 commonly regulated genes and
562 distinct genes (Supplemental Fig. S7E). Consistent with anal-
ysis of the total transcriptome (Fig. 4), shared biological processes
included down-regulation of mitochondrial genes and up-regula-
tion of axon guidance–associated genes (Supplemental Fig. S7E;
Supplemental Table S4).

Because tau is a predominantly neuronally expressed gene
(Heidary and Fortini 2001; Goedert 2004; Götz et al. 2019), the ob-
served changes in neuronal transcriptomes may reflect cell-auton-
omous effects of the frontotemporal dementia associated mutant
TAU protein. Our single-cell approach also revealed significant
changes in gene expression in glial cells in Tau P251L knock-in
brains (Supplemental Fig. S7F,G). Expression of mutant tau may
thus exert non-cell-autonomous control on glial transcriptional
programs. Metabolic processes (Supplemental Fig. S7G) were
down-regulated in glia in response to neuronal expression of mu-
tant tau, consistentwith the importanceof glialmetabolism in sup-
porting a wide array of neuronal functions (Nedergaard and
Verkhratsky 2012; Verkhratsky et al. 2012). The top two GO pro-
cesses identified by analysis of up-regulated glial genes were associ-
ative learning and regulation of neuronal remodeling, suggesting
that coordinate changes in neurons and glia may lead to impair-
ment of critical neuronal functions when mutant tau is expressed
by neurons.

We next constructed protein interaction networks to explore
further the biological pathways altered in Tau P251L knock-in
brains compared with controls. We used the solution of the
prize-collecting Steiner forest algorithm (Tuncbag et al. 2013) to
map differentially expressed genes onto a network of physical pro-
tein interactions usingDrosophila interactome data. Networks con-
structed from the central body, optic lobe, and glial cells were
substantially distinct (Fig. 5), consistent with differential effects
of mutant Tau on different anatomic regions and cell types. The
electron transport chain was identified in subnetworks from
both the optic lobe and glia, raising the possibility that mutant
Tau can influence mitochondrial function in both a cell-autono-
mous and a non-cell-autonomous fashion (Figs. 2, 5). Regulation
of nuclear function was commonly identified in both central
body and optic lobe neurons, consistent with a strong influence
of neuronally expressed Tau on chromatin structure mediated
through the linker of nucleoskeleton and cytoskeleton (LINC)
complex (Frost et al. 2014, 2016).

Protein catabolism was a subnetwork in both central body
and glial networks. Protein catabolism was connected to multiple
other subnetworks in the central body network and contained
multiple proteins previously implicated in Alzheimer’s disease, in-
cluding Appl (fly ortholog of APP), beta-site APP-cleaving enzyme
(Bace; a fly homolog of BACE1), three members of the cathepsin
family (CtsB1, cathD, CtsF/CG12163), and Tau itself identified
as a computational network-inferred node. As expected from GO
analysis (Supplemental Fig. S7G), multiple metabolic subnetworks
were identified in the glial network, consistent with the role of glia
in providing metabolic support to neurons (Nedergaard and
Verkhratsky 2012; Verkhratsky et al. 2012). A subnetwork enriched
for nodes associated with fatty acid metabolism was identified in
the glial network (Fig. 5), correlating with the important role of
glia in lipid metabolism and signaling in both flies and mammali-
an systems (Lee et al. 2021; Goodman and Bellen 2022). Detailed
protein interaction networks identified in the central body, optic
lobe, and glia are shown in Supplemental Figures S8 through S10.

Cell–cell communication and pseudotime trajectory analyses

highlight the role of glial cells in Tau P251L knock-in brains

Altered gene expression (Supplemental Fig. S7) and protein inter-
action networks (Fig. 5) in glia driven by neuronal-predominant
expression of P251L mutant Tau suggest perturbed intercellular
communication in P251L knock-in brains.We therefore calculated
the interaction scores for 196 manually curated ligand–receptor
pairs using the FlyPhoneDB quantification algorithm (Liu et al.
2022) in Tau P251L knock-in brains and controls.We found signif-
icant alterations predicted in major cellular signaling pathways
(Fig. 6; Supplemental Fig. S11). Altered signaling is indicated in cir-
cle plots in Figure 6 (A,C,E,G) by nodes representing unique cell
types and by edges representing a communication event. The
thickness of an edge reflects the interaction strength of the com-
munication event. Dot plots in Figure 6 (B,D,F,H) display the cal-
culated score of selected ligand–receptor pairs from one cell type
to another, with the shading of the dot indicating the interaction
score and with the size of the dot indicating the the P-value. Many
of predicated signaling changes support altered communication
between glia and neurons. For instance, synaptic plasticity signal-
ing, assessed by expression of the ligand spatzle and kekkon recep-
tors, was mainly driven by perineurial glia in the control brain.
However, perineurial glial cells in Tau P251L knock-in animals
had reduced expression of the ligand spatzle 5, whereas recipient
cells down-regulated kekkon receptors (Fig. 6B). Similarly, expres-
sion of the JAK-STAT ligand upd2 was significantly down-regulat-
ed in perineurial glia in Tau P251L knock-in brains compared with
those of controls, whereas the receptor dome was reduced in ex-
pression in widespread target neuronal clusters (Fig. 6D). There
was a predicted up-regulation of JAK-STAT signaling from
MBONs to a restricted set of neuronal clusters in brains of flies ex-
pressing P251L mutant Tau (Fig. 6C). In contrast, predicted hippo
signaling fromMBONs to perineurial glial based on decreased lev-
els of the ds ligand and receptor fat was decreased in Tau P251L
knock-in brains compared with controls (Fig. 6E).

Astrocytic signaling also showed predicted changes in Tau
P251L knock-in brains compared with controls. JAK-STAT signal-
ing perineurial glia to astrocytes was reduced in mutant Tau-ex-
pressing brains (Fig. 6C), whereas hippo signaling from
astrocytes to multiple neuronal subtypes was increased in Tau
P251L knock-in brains (Fig. 6E,F). TNF-α signaling from astrocytes
was also increased in flies expressing mutant Tau, as suggested by
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increased levels of the ligand eiger and receptor wengen (Fig. 6G,
H). Altered astrocyte integrin, hedgehog, and insulin signaling
was also suggested by changes in expression of ligand and cognate
receptor pairs (Supplemental Fig. S11A,D,E).

Given the altered gene expression (Fig. 4; Supplemental Fig.
S7), protein interaction networks (Fig. 5), and predicted signaling
(Fig. 6) in glia, we next examined gene expression profiles in these
nonneuronal cells in more detail (Fig. 7). Transposable elements
were significantly up-regulated in both types of glia (Fig. 7A,C;
Supplemental Table S5), although one transposable element was
highly down-regulated in both glia subsets (RR48361). GO enrich-
ment analysis highlighted differentmetabolic pathways in the two
cell types. Amino acid and glutamate metabolism pathways were
enriched in perineurial glia, whereas L-cysteine, acyl-CoA, and
cAMP metabolic pathways were enriched in astrocytes (Fig 7B,D).

Because we observed significant alterations in glial signaling
in Tau P251L knock-in brains (Fig. 6; Supplemental Fig. S11), we
investigated glial gene trajectories in our scRNA-seq, focusing on
astrocytes because we obtained a large number (nearly 5800) of
these cells (Supplemental Table S1). We first subclustered astro-
cytes into four groups (Fig. 7E). We then calculated the entropy
of these clusters (Guo et al. 2017) and used cluster 1, which showed

the highest entropy (Fig. 7F), as the root for trajectory analysis
(Street et al. 2018). A single lineage starting from cluster 1 and pro-
gressing sequentially from cluster 2 through cluster 3 and finally to
cluster 0 emerged (Fig. 7G). We then clustered differentially ex-
pressed genes along the calculated trajectory as presented in the
heat map, in which pseudotime is represented in columns from
left to right (Fig. 7H). Our pseudotemporal analysis suggests differ-
ent stages of astrocytic response to tauopathy.

GO analysis across pseudotime revealed multiple genes in-
volved in signaling pathways (FMRFa,NimB5), particularly in cho-
linergic signaling (nicotinic acetylcholine receptor subunit NtR,
mAChR-A, ChAT) early in the glial trajectory. Cellular stress re-
sponse emerged later in the trajectory with up-regulation of heat
shock proteins (Hsp68, Hsp70Ab), whereas altered mitochondrial
gene expression (mt:ND5, mt:Col) characterized astrocytes late in
the calculated trajectory. These findings suggest that altered astro-
cyte signaling (Fig. 6; Supplemental Fig. S11) may emerge early in
tauopathy pathogenesis and drive subsequent cell-autonomous
and non-cell-autonomous stress responses and cytotoxicity. A
complete list of all differentially expressed glial genes, genes asso-
ciated with GO biological processes, and trajectory-associated
genes is provided in Supplemental Table S5.

Figure 5. Protein interaction networks enriched in the central body, optic lobe, and glia in Tau P251L knock-in brains compared with controls. Protein
interaction networks are largely distinct among central body neurons, optic lobe neurons, and glia. Subnetworks including nodes enriched for protein ca-
tabolism (central body), electron transport chain (optic lobe), or fatty acid metabolism (glia) are highlighted. Interaction strength displayed in gray shows
the stringency of the interaction: The lower the strength, the stronger the interaction.
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Figure 6. Cell–cell communication analysis predicts altered signaling in Tau P251L knock-in brains compared with controls. (A) Altered ligand and re-
ceptor expression predicts regulation of synaptic plasticity signaling mainly via perineurial glial cells in control brains. (B) Signaling from perineurial glia is
significantly reduced in Tau P251L knock-in brains, as predicted by levels of spaetzle ligand and kekkon receptor. (C,D) JAK-STAT signaling, as predicted by
expression of the upd2 ligand and dome receptor, mediated by perineurial glia in control brains (C ), is substantially reduced in brains from Tau P251L
knock-in animals (D). (E,F ) Hippo signaling, indicated by expression of ds ligand and fat receptor, is up-regulated in astrocytes of flies expressing P251L
mutant Tau compared with controls. (G,H) Predicted TNF-α signaling from ligand eiger to receptor wengen is increased in astrocytes of Tau P251L
knock-in flies. In panels B,D,F,H, the interactions from and to the specified cell types are indicated on the x-axis, the size of the circle indicates the P-value,
and the intensity of the blue color illustrates the interaction score as defined in the figure label below the panels.
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Gene regulatory networks in control and Tau P251L knock-in

Kenyon cells

Kenyon cells are a major defined neuronal component of the cen-
tral body of the Drosophila brain (Fig. 4). Together with their out-
put neurons (MBONs), Kenyon cells play a central role in
learning and memory in the Drosophila brain (Heisenberg 2003;
Modi et al. 2020); memory loss is a key feature of human tauopa-
thies (Grossman et al. 2023). Kenyon cells are cholinergic
(Barnstedt et al. 2016), a neuronal type that is selectively vulnera-
ble in previously described fly tauopathy models (Wittmann et al.
2001), and a pathway altered early in our trajectory analysis (Fig.
7). Our cell–cell communication analyses suggested altered signal-
ing in Kenyon cells, or their output neurons, viamultiple signaling
pathways (Fig. 6; Supplemental Fig. S11). We therefore focused
next on gene expression in Kenyon cells. We identified three
Kenyon cells clusters: gamma-Kenyon cells, alpha/beta-Kenyon
cells, and alpha′/beta′-Kenyon cells (Fig. 8A). Transposable ele-
ments were up-regulated in all Kenyon cell clusters in Tau P251L
knock-in brains (Supplemental Fig. S12A,C,E), as observed in other
neuronal and glial clusters (Fig. 7; Supplemental Fig. S7). Analysis
of biological pathways associated with common up-regulated and
down-regulated genes in all three Kenyon cell clusters identified
key biological processes previously linked to tauopathy pathogen-
esis (Frost et al. 2015; Götz et al. 2019), including control of DNA
and RNA structure andmetabolism (Fig. 8B), as well as many path-
ways without prior links to tauopathy. A complete list of differen-
tially expressed genes and associated biological processes is given
in Supplemental Table S6.

Given the multiple lines of evidence connecting tauopathy
pathogenesis to Kenyon cell function, we next determined the
gene regulatory networks controlling disease-associated changes
in gene expression in Kenyon cells. We implemented the single-
cell regulatory network inference and clustering (SCENIC) (Aibar
et al. 2017) workflow on gene expression data from control and
Tau P251L knock-in Kenyon cells. The top 10 regulons identified
in control cells compared with tauopathy model Kenyon cells are
show in columns in the heat maps in Figure 8, C (control Kenyon
cells) and D (Tau P251L knock-in Kenyon cells). Regulons were
largely distinct in the two genotypes (Fig. 8C,D; Supplemental
Table S7). The shared transcription factors among the top 10 regu-
lonswere lola and pur-alpha. Even for the shared regulons, the gene
expression patterns per cell clustered and coexpressed with differ-
ent transcription factors and are different among Kenyon cells of
control versus Tau P251L knock-in animals. The distinct gene reg-
ulatorynetworks illustrated in theheatmap are concordantwith al-
teredgene expression (Fig. 8B) and cell–cell communication (Fig. 6)
between control and Tau P251L knock-in Kenyon cells. The in-
crease in HSF, Stat92E, and Parp expression (Supplemental Fig.
S13) and regulons (Fig. 8D) in brains of tauopathy model flies are
consistent with elevated cellular stress, DNA damage, and cell
death in aging neurons exposed to mutant Tau P251L (Figs. 1, 2).

Discussion

Here we present a new model of tauopathy in the experimentally
facile model organism Drosophila based on precise gene editing
of the endogenous tau gene to introduce a mutation orthologous
to human proline 301 to leucine (P301L), the most common
TAU mutation in frontotemporal dementia patients (Poorkaj
et al. 2001). We observe age-dependent neurodegeneration in
our knock-in animals (Fig. 1C,D). Homozygous knock-in flies dis-

play early and greater total levels of degeneration compared with
heterozygous animals. These findings are compatible with a toxic
gain-of-functionmechanism, as generally posited in familial fron-
totemporal tauopathies (Goedert et al. 2012; Frost et al. 2015;
Bardai et al. 2018b; Götz et al. 2019). However, given the impor-
tant role of microtubules in neurodevelopment, a loss-of-function
component contribution cannot be excluded, even given the lack
of clear neurodegeneration in Tau knockout mice (Harada et al.
1994; Dawson et al. 2001; Morris et al. 2013) and flies (Burnouf
et al. 2016). As expected given that levels of mutant Tau are con-
trolled by the endogenous tau promotor in our model compared
with the strong exogenous promotor systems used in prior trans-
genic models, neurodegeneration in knock-in animals is observed
at older ages and is milder (Wittmann et al. 2001; Bardai et al.
2018b; Law et al. 2022). However, we do observe key biochemical
and cellular pathologies previously described in transgenic
Drosophila tauopathy models, including metabolic dysfunction
(Fig. 2A,B), elevated levels of DNA damage (Fig. 2C–G), and abnor-
mal cell-cycle activation (Fig. 1E; Khurana et al. 2006; 2012;
DuBoff et al. 2012; Bardai et al. 2018a). Importantly, these path-
ways are also perturbed inmouse tauopathymodels and tauopathy
patients (Herrup and Arendt 2002; Andorfer et al. 2005; Khurana
et al. 2012; DuBoff et al. 2013; Frost et al. 2015; Götz et al. 2019;
Welch and Tsai 2022).

The similarities of our knock-inmodel to human tauopathies
and prior overexpression tauopathy models, recapitulated in a
more faithful genetic knock-in context, motivated us to perform
a comprehensive transcriptional analysis in our Tau P251L
knock-in brains using scRNA-seq. We recovered a large number
(130,489) of high-quality cells, which allowed us to identify the
majority of previously annotated neuronal and glial groups from
prior single-cell sequencing analyses in the adult fly brain (Davie
et al. 2018; Li et al. 2022). Comparing gene expression profiles be-
tween control and Tau P251L knock-in animals revealed pervasive
dysregulation of genes in neuronal (Figs. 4,8) and glial (Fig. 7)
subtypes and throughout different anatomic regions (Fig. 4,
Supplemental Fig. S6). These findings are consistent with prior sin-
gle-cell sequencing studies in flies overexpressing mutant human
TAU (Praschberger et al. 2023;Wu et al. 2023).We observed regula-
tion of both common and distinct biological pathways when
comparing differentially expressed genes across cell subtypes.
Transposable elements were notably up-regulated in the complete
gene expression set, aswell as in specific anatomic regions andneu-
ronal subtypes. These findings correlatewithapreviouslydescribed
functional role for transposable elementmobilization inDrosophila
models of tauopathy and in tauopathy patients (Guo et al. 2018;
Sun et al. 2018). Mitochondrial function has been strongly linked
to neurotoxicity in tauopathies (DuBoff et al. 2013; Frost et al.
2015; Götz et al. 2019) and is a feature of our current model (Fig.
2). We accordingly observed altered expression of mitochondrial
genes and biological processes in the complete expression data
set (Fig. 4), as well as in separate analyses of the central body, optic
lobe (Supplemental Fig. S7), andKenyoncells (Fig. 8; Supplemental
Fig. S12). More importantly, we observed significant alterations in
multiple metabolic, cellular communication, and biological path-
ways not previously implicated in tauopathy pathogenesis (Figs.
4–6), which can nowbe assessed in tauopathymodels and patients
for mechanistic relevance and ultimately therapeutic targeting.

Cell type selectivity is a fundamental, and poorly understood,
feature of human neurodegenerative diseases, including tauopa-
thies.Our protein interactionnetworks highlighted regionally spe-
cific biology with predominantly distinct nodes appearing in the
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Figure 7. Gene expression and trajectory analysis in glia. (A) Differentially regulated genes, both up-regulated and down-regulated, in perineurial glia of
Tau P251L knock-in brains comparedwith controls. (B) GO analysis shows biological processes associatedwith the up-regulated and down-regulated genes
in perineurial glia from Tau P251L knock-in brains compared with controls. (C) Differentially regulated genes, both up-regulated and down-regulated, in
astrocytes of Tau P251L knock-in brains compared with controls. (D) GO analysis shows biological process associated with up-regulated and down-regu-
lated genes in astrocytes of Tau P251L knock-in brains. All dots on the volcano plots are significant at FDR<0.05 and log2FC>0.25 for up-regulated and
log2FC<−0.25 for down-regulated genes. Score represents the combined score c = log(p) × z (Chen et al. 2013). Astrocytes from both control and Tau
P251L knock-in brains were further subclustered into four groups. (E,F ) Entropy analysis to define the root for trajectory analysis revealed cluster 1 to
have the highest entropy. (G) Slingshot trajectory analysis on astrocyte clusters identified a single lineage passing sequentially from clusters 1 to 2, 3,
and 0. (H) Differential gene expression between astrocyte subclusters adjacent in pseudotime were used to cluster genes along the pseudotime trajectory.
Each row in the heat map represents a gene. The columns are astrocyte subclusters arranged according to pseudotime from left to right. Examples of differ-
entially regulated genes from enriched GO biological processes are shown on the calculated trajectory.

Bukhari et al.

600 Genome Research
www.genome.org



central body compared with the optic lobe (Fig. 5). Comparative
analysis of genes differentially expressed in the central body com-
pared with the optic lobe is consistent with substantial regional
differences in the response tomutant tau expression with substan-
tially greater numbers of unique compared with common genes
up-regulated in the central body versus the optic lobe
(Supplemental Fig. S7E). Even within subgroups of Kenyon cells,
there are equivalent numbers or more uniquely up- or down-regu-
lated genes compared with commonly regulated genes (Fig. 8B).
Our data set thus highlights a substantial set of genes that may
contribute to selective neuronal susceptibility in neurodegenera-
tion, including many differentially regulated genes and processes
not previously linked to TAU pathobiology.

Although TAU is a predominantly neuronal protein (Heidary
and Fortini 2001; Goedert 2004; Götz et al. 2019), we observed sig-
nificant alteration of glial gene expression in Tau P251L knock-in
brains compared with controls (Figs. 4, 7), suggestive of non-cell-
autonomous control of glia cell function by neuronally expressed
Tau. GO (Fig. 7A,B) and protein interaction network (Fig. 5) analy-
ses highlighted a number of metabolic processes altered in glia by
expression of toxic Tau in neurons, including glutamate, lipid,
and amino acid metabolism (Figs. 5, 7). Glial uptake and detoxifi-
cation of neurotransmitters and their metabolites, as well as toxic
lipid species, maintain neuronal function and viability. Lipid me-
tabolism is further central to energy production by glial cells,
which support highly energy consuming neurons with active syn-
aptic transmission (Smolič et al. 2022; Jiwaji and Hardingham
2023). In addition to glial processes previously implicating in con-
trolling neuronal health, our transcriptional analysis revealed new
metabolic and signaling pathways in glia regulated by the expres-
sion of mutant Tau (Fig. 7A–C), which can now be explored as
non-cell-autonomous mechanisms regulating neuronal function
and viability in tauopathy.

An effect ofmutant tau expression enriched inneurons on gli-
al gene expression implies signaling, andpossiblyperturbed signal-
ing, between the two cell types. Examination of the expression of
196 ligand–receptor pairs (Liu et al. 2022) indeed supported broad
alterations in glial–neuronal communication in Tau P251L knock-
in flies (Fig. 6; Supplemental Fig. S11), with mutant tau expression
perturbing synaptic plasticity, JAK-STAT, hippo, TNF-α, integrin,
and EGFR signaling between perineurial cells, astrocytes, andmul-
tiple neuronal subtypes. Although prior studies have implicated
glial signaling, for example, the JAK-STAT pathway (Colodner
and Feany 2010), in non-cell-autonomous control of neurotoxici-
ty, the pervasive nature of the altered signaling suggested by our
single-cell transcriptional analyses is unexpected and provides
multiple targets for functional testing.Our findings further suggest
that a systematic and broad perturbation of intercellular signaling
is present in tauopathy,whichmay requiremanipulation ofmulti-
ple pathways to correct and system-level analysis to monitor.

Trajectory analysis has been widely used to order temporal
events along developmental pathways but has less often been ap-
plied to neurodegenerative disease progression (Fitz et al. 2021;
Karademir et al. 2022; Wang et al. 2022; Dai et al. 2023). Given
the evidence for altered glial–neuronal communication in our
Tau knock-in model, we assessed possible trajectories in the four
distinct subgroups of astrocytic glial cells that we defined. Using
the astrocyte cluster with the highest entropy as the root (Guo
et al. 2017), we identified a single astrocyte trajectory (Fig. 7G).
DEG and GO analyses across the trajectory revealed altered expres-
sion of neurotransmitter and cell signaling genes first, followed by
altered cell stress responses, and finally mitochondrial changes

(Fig. 7H; Supplemental Table S5). A number of genes involved in
cholinergic signaling were changed early in the glial trajectory.
We have previously shown that cholinergic terminals are preferen-
tially vulnerable and degenerate early in a tauopathy model based
on transgenic human TAU expression in flies (Wittmann et al.
2001). Our trajectory analysis may thus help identify early events
in glial-mediated neurodegeneration, including pathways not pre-
viously associated with tauopathy (Supplemental Table S5). Glial
pathways contributing to neurodegeneration are increasingly rec-
ognized as attractive and understudied avenues for therapeutic
intervention (Jiwaji and Hardingham 2023). Identifying and
intervening in early glial–neuronal signaling events may prevent
later, and possibly irreversible, neuronal damage.

Reversing pathological neuronal cell-autonomous programs
may provide an alternative or additional method of preventing
neuronal dysfunction and death in tauopathies. We focused on
Kenyon cells as a group of neurons involved in the behaviorally
relevant process ofmemory and composed of cholinergic neurons,
a vulnerable cell type inDrosophila (Wittmann et al. 2001) and hu-
man (Whitehouse et al. 1981; Ishida et al. 2015) tauopathies, to
define transcriptional programs driving neurodegeneration in re-
sponse tomutant Tau expression. As expected by themultiple neu-
ropathological and cell biological abnormalities present in our
knock-inmodel flies (Figs. 1, 2), we observed substantially distinct
regulons in Tau P251L knock-in Kenyon cells compared with con-
trols (Fig. 8C,D).We identified regulons involved in stress respons-
es (Hsf, Stat92E), including the DNA damage response (Parp), as
would be expected from the presence of elevated DNA damage
in Kenyon cells in our knock-in flies (Fig. 2E–G). We recovered
nej, the fly ortholog of vertebrate CREB binding protein (also
known as CBP), as a top regulon induced in knock-in flies.
Increasing levels of nej/CBP are beneficial in fly (Cutler et al.
2015) and vertebrate (Caccamo et al. 2010) models relevant to
Alzheimer’s disease, suggesting that up-regulation of nej may rep-
resent a protective response in Kenyon cells. We also identified
multiple regulons not previously associated with neurodegenera-
tive tauopathies (Fig. 8C,D). Therapeutic manipulation of these
programs or key transcriptionally regulated mediators will be at-
tractive candidates for evaluation in patient tissue, patient-derived
cellular models, and vertebrate models of tauopathy.

The mechanisms transducing the effects of mutant Tau on
gene expression are likelymultiple and, as yet, only partially charac-
terized. We have previously defined a cascade in which cytosolic
Tau binds and stabilizes F-actin (Fulga et al. 2007), leading to signal
transduction through the LINC complex, nuclear lamin disruption
(Frost et al. 2016), and consequent chromatin relaxation (Frost et al.
2014), promoting aberrant transposable element activation and
neurodegeneration (Sun et al. 2018). Other cytosolic targets of
Taumay promote transcriptional regulation through parallel mech-
anisms. For example, Tau-mediated actin hyperstabilization pro-
motes mitochondrial dysfunction and excess production of
oxidative free radicals by interfering with mitochondrial dynamics
(DuBoff et al. 2012). Oxidative stress may directly contribute to ele-
vated DNA damage in tauopathy (DuBoff et al. 2013; Frost et al.
2016; Bardai et al. 2018b; Götz et al. 2019). However, although
TAU is best known as a cytosolic protein involved in regulation of
the cytoskeleton, a number of studies have shown that TAU can
also be detected in the nucleus (Loomis et al. 1990; Thurston
et al. 1996; Cross et al. 2000), where the protein binds DNA (Hua
et al. 2003; Sjöberg et al. 2006; Wei et al. 2008; Bukar Maina et al.
2016). Thus, TAU may play a direct role in instructing the nuclear
transcriptional programs we have defined (Fig. 8C,D).
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In summary, here we develop a genetically precise model of
frontotemporal dementia caused by themost common TAUmuta-
tion found in patients and present a comprehensive picture of
gene expression changes and derived protein interaction, cell sig-
naling, and transcriptional networks. We recapitulate neurode-
generation, metabolic dysfunction, and DNA damage, common
features of human tauopathies (Goedert 2004; Götz et al. 2019;
Welch and Tsai 2022), and confirm that cellular pathways per-
turbed in overexpression tauopathy models are also dysregulated
in the more faithful genetic knock-in context. More importantly,
our work suggests previously unsuspected, pervasive alterations
in glial–neuronal signaling in tauopathy pathogenesis, implicates
many new genes and pathways, and provides a genetic model sys-
tem in which to test the new hypotheses our data suggest.

Methods

Genetics and CRISPR-Cas9 editing

The Drosophila tau gene is located on the third chromosome. The
guide RNAs targeting the tau gene tomutate proline 251 to leucine

were identified using Harvard Medical School’s DRSC/TRiP “find
CRISPRs” tool. The gRNA 5′-CCGGGAGGCGGGGACAAGAAGA
T-3′ was cloned into the pCDF3.1 plasmid and injected into the
embryos of the TH_attP40 nos-Cas9 strain along with a single-
stranded oligo nucleotide donor. The single-stranded oligo nucle-
otide donor was 150 bp in length and contained a C-to-T transi-
tion that resulted in alteration of the codon CCG (proline) to
CTG (leucine). Embryoswere injected (BestGene) and founder flies
obtained. Founder flies were then balanced to obtain homozygous
knock-in animals. Themutationwas confirmed by PCR. The geno-
type of knock-in animals in most experiments (Figs. 1, 2C–E, 4–8)
was elav-GAL4/+; tau-P251L knock-in (homozygous or heterozy-
gous for tau-P251L knock-in as specified in figures and legends).
In these experiments control animals were elav-GAL4/+. In Figure
2, A and B, the genotype of knock-in flies was w1118; tau-P251L
knock-in/tau-P251L knock-in (homozygous) or w1118; tau-P251L
knock-in/+ (heterozygous) as specified in the figure. In Figure 2, A
and B, the genotype of control flies was w1118. The elav-GAL4
line was obtained from the Bloomington Drosophila Stock
Center. Patrik Verstreken kindly provided tau knockout flies. All
crosses and aging were performed at 25°C.

C D

BA

Figure 8. Gene expression and regulatory networks in Kenyon cells (KCs). (A,B) Three KC clusters—gamma-KC, alpha/beta-KC, and alpha′/beta′-KC—
and biological process based on the common up-regulated and down-regulated genes in KC clusters in Tau P251L knock-in brains. Score represents the
combined score c = log(p) × z (Chen et al. 2013). Control and Tau P251L knock-in Kenyon cells were clustered separately using SCENIC gene regulatory
network analysis to identify regulons. (C,D) The top 10 regulons identified by SCENIC gene regulatory network analysis in control (C) and Tau P251L knock-
in (D) KCs are presented in the heatmaps. Each row represents a KC; each column is a regulon.

Bukhari et al.

602 Genome Research
www.genome.org



Assessment of neurodegeneration and metabolism

For sectioning, adult flies were fixed in formalin at 1, 10, and 30 d
of age and embedded in paraffin. Vacuole, PCNA, and pH2Av
levels were examined using previously described methodology
(Fulga et al. 2007; Frost et al. 2014) with additional details pro-
vided in the Supplemental Methods. Primary antibodies used in-
clude pH2Av (Rockland 600-401-914, 1:100), elav (DSHB 9F8A9,
1:5), GAPDH (Thermo Fisher Scientific MA5-15738, 1:1000),
and PCNA (DAKO MO879, 1:500). A polyclonal antibody to
Drosophila Tauwas prepared in rabbits immunizedwith full-length
recombinant Tau protein (Thermo Fisher Scientific) and was used
at 1:5,000,000 for western blotting. For all histological analyses, at
least six brains were analyzed per genotype and time point. The
comet assay and assessment of bioenergetics were performed as
previously described (Frost et al. 2014; Sarkar et al. 2020) with ad-
ditional details provided in the Supplemental Methods. The sam-
ple size (n), mean, and SEM are given in the figure legends. All
statistical analyses were performed using GraphPad Prism 5.0.
For comparisons across more than two groups, one-way ANOVA
with Tukey post-hoc analysis was used. For comparison of two
groups, Student’s t-tests were performed.

scRNA-seq and downstream analyses

A standard sample preparation (Li et al. 2017; Davie et al. 2018),
raw data processing (Satija et al. 2015), and downstream analyses
such as cell cluster annotation (Hu et al. 2021) GO analysis
(Kuleshov et al. 2016), protein–protein interaction network analy-
sis (Tuncbag et al. 2016), cell–cell communication analysis (Liu
et al. 2022), trajectory analysis (Street et al. 2018), and gene regu-
latory network analysis(Van de Sande et al. 2020) were performed
as previously described. Detailed methods are presented in the
Supplemental Methods.

Data access

All raw and processed sequencing data generated in this study have
been submitted to the NCBI Gene Expression Omnibus (GEO;
https://www.ncbi.nlm.nih.gov/geo/) under accession number
GSE223345. R code (R Core Team 2016; Butler et al. 2018) that
was used to perform Seurat-based integration, trajectory, cell–cell
interaction, and PPI network analyses is available at GitHub
(https://github.com/bwh-bioinformatics-hub/Single-cell-RNA-
seq-of-the-CRISPR-engineered-endogenous-tauopathy-model)
and as Supplemental Code.
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