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tools have been developed to probe the STAT pathway,Abstract. The spectrum of biological systems which
e.g., mutant receptors, dominant-negative STATs, chem-makes use of the signal transducers and activators of
ically dimerizable STATs, and mice lacking STATtranscription (STAT) paradigm extends beyond the inter-
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which STATs are activated by each stimulus, investiga- STAT-regulated genes involved. The cellular events cur-
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be grouped according to those which affect cell growth,processes and the genes regulated by the STAT pathway.
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The role of signal transducers and activators of
transcription (STATs) in cell growth

The first STAT was described as a transcription factor
involved in the expression of interferon (IFN)-induced
genes [1–4]. However, the rapid characterization of other
STAT family members, and the discovery that many of
these STATs are constitutively activated in transformed
cells suggested they have additional roles in regulating
cell growth. Under normal circumstances proliferation is
tightly controlled by cytokines or growth factors, and
STAT transcription factors have been implicated in the
signalling mechanisms utilized by such growth regula-
tors. While the consequence of STAT1 or 3 activation can
be positive or negative depending on the stimulus and cell
type involved, STAT4, 5 and 6 have mainly been de-
scribed as transducing positive cell growth signals.

STAT1 and proliferation
The ability of IFN-g to inhibit the growth of a number
of cell types is STAT1 dependent. For example, the
STAT1-difficient U3A fibroblast line is resistant to the
anti-proliferative action of IFN-g but transfection of
STAT1 into these cells restores their sensitivity to IFN-g

growth inhibition [5]. Further studies indicated that
STAT1 mediates this inhibition through regulation of the
expression of cell cycle inhibitors. The mammalian cell
cycle is controlled by cyclins and their catalytic partners,
the cyclin-dependent kinases [6] which are subject to
negative regulation by two families of cell cycle inhibitors
including the WAF1/CIP/KIP and the INK4 proteins [7].
The ability of IFN-g to induce p21waf1 mRNA expression
correlates with its ability to inhibit cell growth and
requires the presence of STAT1 [5]. Furthermore, STAT1
was shown in an electrophoretic mobility shift assay to
be able to bind to oligonucleotide probes corresponding
to the potential STAT-binding sites in the p21waf1 pro-
moter. Whether the p21waf1 promoter is directly regulated
by STAT1 remains to be determined, but these data
strongly suggest that one way in which IFN-g inhibits cell
growth is through STAT1-dependent expression of
p21waf1. Other investigators have suggested that in addi-
tion to p21waf1, the expression of another STAT1-regu-
lated gene, IRF-1, may also contribute to IFN-g-elicited
growth arrest [8]. Sustained activation of STAT1 is also
required for IFN-a inhibition of malignant melanoma
cells [9].
Epidermal growth factor (EGF) and fibroblast growth
factor (FGF), although generally considered mitogens,
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will inhibit proliferation of many cell types in a STAT1-
dependent manner. For example, EGF treatment of
A431 fibroblasts, which unlike normal fibroblasts ar-
rests growth in response to EGF, activates STAT1 [5,
10] and induces p21waf1 expression [5]. Expression of a
dominant-negative STAT1 in A431 cells reverses the
anti-proliferative action of EGF, suggesting that
STAT1 is necessary for growth arrest [10], though
whether p21waf1 levels are also reversed has not been
examined. The growth of MDA468 breast carcinoma
cells is also inhibited by EGF, and this is likewise
associated with p21waf1 induction; however, in these
cells, EGF activates both STAT1 and STAT3, so
whether one or both are involved in p21waf1 transcrip-
tion remains to be determined [11]. FGF-induced
growth arrest of another breast cancer cell line, MCF-7,
is similarly correlated with STAT1 activation and
p21waf1 [12]. The authors speculate that FGF may nor-
mally play a beneficial role by limiting the growth of
malignant breast cancer cells and note that decreased
levels of parenchymal FGF correlate with tumor pro-
gression. In contrast, the sustained STAT1 activation
and p21waf1 elevation in chrondrocytes due to expres-
sion of a constitutively active FGF receptor (TDII
FGFR3) may be detrimental and responsible for the
lethal condition, thanatophoric dysplasia type II
dwarfism [13]. However, whether additional pathways
activated by FGF3 may contribute to the observed
growth inhibition observed in this disease has not been
ruled out.

STAT3 and proliferation
The involvement of STAT3 in the growth arrest elicited
by interleukin (IL)-6 in M1 myeloleukemia cells [14] or
IL-10 in J774.1 macrophage cells [15] was suggested by
reversal of the inhibition by dominant-negative STAT3
expression. Furthermore, the inhibitory action of IL-10
was shown to be mimicked by a STAT3-GyrB fusion
protein which undergoes dimerization in the presence of
the drug coumermycin A1 [15]. Examination of cell
cycle protein expression has suggested that induction of
the cell cycle p19INK4d may contribute to both IL-6- and
IL-10-dependent growth arrest [14, 15]. The transcrip-
tion of p19INK4d is likely to be directly regulated by
STAT3 since induction is independent of de novo
protein synthesis and a 1.6-kb p19INK4d promoter frag-
ment, which contains two potential STAT-binding sites,
responds to IL-10 in a luciferase-reporter assay [O’Far-
rell et al., unpublished data].
On the other hand, STAT3 activation is also associated
with IL-3 stimulation of myeloid 32Dcl13 cells [16, 17],
angiotensin II (Ang II)-induced vascular smooth muscle
cell proliferation [18], and IL-6-driven growth of BAF/
B03 cells. In the 32D system, v-src-mediated abrogation

of the IL-3 dependence is accompanied by activation of
STAT3 and its physical association with the v-src en-
coded protein [16]. The relevance of these findings to
normal IL-3 signalling has been substantiated by the
observation that IL-3 activates endogenous the c-src
kinase, and that inducible expression of a dominant-
negative c-src inhibits both STAT3 phosphorylation
and IL-3-driven proliferation. The authors also con-
clude that Janus kinase (JAK)2, in contrast to previous
studies [19], plays no role in IL-3-dependent prolifera-
tion because constitutive expression of a kinase-dead
JAK2 in 32Dcl13 cells was found to have no effect on
either STAT3 activation or cell growth. However, the
constitutive expression of the dominant-negative JAK2
may have allowed selection of a population of cells
adapted to growth in the presence of diminished levels
of endogenous JAK2 activity. In another approach to
assess the contribution of STAT activity, neutralizing
anti-STAT antibodies were introduced into vascular
smooth muscle cells (VSMCs) by electroporation [18].
The presence of these antibodies significantly reduced
VSMC proliferation in response to Ang II but not
platelet-derived growth factor (PDGF), suggesting that
STAT1 and 3 are necessary for Ang-II- but not PDGF-
stimulated growth. STAT3 activation has also been
suggested to contribute to IL-6-dependent BAF/B03
cell growth through binding to the cis-regulatory region
of the c-myc gene [20].

STAT5 and proliferation
STAT5 (STAT5 refers to both STAT5a and STAT5b
isoforms) is activated by many receptors including those
for IL-2, IL-3, or erythropoietin (EPO). Studies explor-
ing the role that STAT5a/b may play in proliferation
stimulated by these cytokines have made use of domi-
nant-negative STAT constructs, receptor mutants lack-
ing STAT5-interacting tyrosines and, more recently,
STAT5a−/− or b−/− mice. Some investigators
have concluded that STAT5 is not necessary for prolif-
eration, but an alternate interpretation of the current
data suggests that although STAT5a/b is not absolutely
required for proliferation, it does contribute to the
growth response.
The IL-2 receptor (IL-2R) consists of a, b, and gc

subunits, the b subunit being responsible for interacting
with and leading to the activation of STAT5. Early
studies reported that truncation mutants of the IL-2Rb

chains lacking the STAT5 activation domain are still
able to transduce IL-2-dependent proliferative signals in
Ba/F3 cells [21]. However, closer examination of the
data has revealed that the ability of the relevant mutant
(H-4) to support IL-2-driven thymidine incorporation is
reduced relative to the wild-type receptor by a statisti-
cally significant amount. Similarly, significant attenua-
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tion was observed by other investigators [22], who also
concluded that the STAT5 pathway acts in concert with
other signalling pathways to maximize proliferation.
Other evidence suggesting a proliferative function for
STAT5 comes from the observation that wild-type re-
placement of a naturally occurring EPO receptor (EPOR)
mutant, impaired for STAT5 activation, restored the
ability of EPO to support TF-1 cell proliferation [23].
Directed substitution of the tyrosines in the human
EPOR responsible for STAT5 activation also diminished
the ability of the receptor to support EPO-dependent
growth [24, 25], the effect being most evident at lower
EPO concentrations [24]. At concentrations of EPO
greater than 1 U/ml, receptors defective in the STAT5
pathway behaved like wild-type receptors [24, 26]. This
result is not surprising since EPOR-associated, non-
STAT5 pathways are sufficient to support considerable
proliferation [27]. However, the relevance of STAT5 to
EPO-driven growth is further strengthened by the recent
observation that the synergism between insulin-like
growth factor-1 (IGF-1) and EPO for proliferation of
myeloid F-36P cells may be mediated through IGF-1
enhancement of STAT5 tyrosine phosphorylation [28].
A role for STAT5 in mediating proliferative responses to
IL-3 has also been indicated. The IL-3 receptor consists
of a ligand-specific subunit, and a signalling component
referred to as bc which is also utilized by the receptor
complexes for IL-5 and granulocyte-macrophage-colony-
stimulating factor (GM-CSF). Mutational analysis of bc

has suggested that none of the receptor tyrosines are
necessary for STAT5 activation [29, 30], consistent with
subsequent reports indicating that STAT5 can be acti-
vated by direct association with JAK2 [31, 32]. For this
reason, the receptor tyrosine substitution approach to
selectively abrogate STAT5 activation could not be
applied to the study of STAT5 function in IL-3 signalling.
As an alternative, dominant-interfering, C-terminally
truncated STAT5a molecules were inducibly expressed in
the IL-3-dependent Ba/F3 cell line. Expression of the
dominant-negative STAT5 suppressed, though did not
abolish, IL-3-driven growth, suggesting that the STAT5
pathway contributes to the proliferative response. The
molecular basis of this impairment is not clear. The ease
with which cells adapt and compensate for the growth
retardation, after a short time in culture (A. L.-F. Mui,
unpublished data), may be the reason why constitutive
expression of a similarly truncated STAT5 in another
IL-3-dependent cell resulted in no apparent growth defect
[26]. In addition to the cytokine systems described above,
a recent study has suggested that ligation of the T cell
antigen receptor (TCR) also activates STAT5. Blocking
the STAT5 pathway using dominant-interfering
molecules inhibited TCR-driven proliferation in a man-
ner independent of autocrine IL-2 production [33].

Caveats associated with the use of mutant receptors or
dominant-interfering STATs to probe signalling path-
ways include the possibility that pathways other than the
one of interest may be affected. One way to address this
concern is to analyze mice with one or both of the STAT5
genes disrupted [34–36]. The phenotypes of these mice
are discussed in detail in the contribution by D. E. Levy.
Briefly, mice disrupted for STAT5a, originally character-
ized as a prolactin-activated factor, exhibit impaired
mammary lobuloalveolar outgrowth during pregnancy
[34], whereas disruption of STAT5b, the major isoform
expressed in liver, results in defective growth-hormone-
regulated liver gene expression [36]. The effects of
STAT5a or STAT5b deletion on the function of cytoki-
nes previously shown by in vitro studies to utilize STAT5
are beginning to be reported. Macrophages from
STAT5a−/− mice are impaired in their response to
GM-CSF [37], a defect reminiscent of the diminished
proliferative response observed in vitro in the related
IL-3-signalling system [29]. T cells from STAT5a−/−
mice fail to upregulate IL-2Ra in response to IL-2, a
process previously shown to be STAT5 dependent [38,
39]. This suggests an indirect role for STAT5a in enhanc-
ing IL-2-induced T cell proliferation. However, the pos-
sibility of an additional intrinsic IL-2 response defect
cannot be ruled out until T cells with equivalent high-
affinity IL-2Rs from wild-type and STAT5a−/− are
compared. The double STAT5a and STAT5b targeted
animals [35] possess mammary gland and liver develop-
mental failures similar to the single disruptants. Deficien-
cies in T cell proliferation and IL-3/IL-5- and
GM-CSF-driven in vitro colony formation are also ob-
served. It will be interesting to characterize the mechanis-
tic basis for these defects and determine whether they can
be related to the in vitro studies performed with mutant
receptors and dominant-negative STAT proteins.

STAT6 and proliferation
Initial studies describing the STAT6−/− phenotype
[40–42] reported the loss of IL-4-dependent functions in
T and B cells, including mitogenesis, T-helper (Th) cell
differentiation, and immunoglobulin isotype switching.
The diminished proliferative capacity was unexpected
since earlier analysis of IL-4R-deletion mutants had
suggested that although the membrane proximal region
of the receptor responsible for phosphorylation of a
protein called 4PS (IL-4 phosphorylated substrate, also
IRS-2) was required for cell growth, the membrane distal
domain responsible for STAT6 activation was dis-
pensable [43–45]. An essential role for the 4PS protein
in IL-4-stimulated mitogenesis is also consistent with
earlier cell reconstitution experiments [46]. For these
reasons, the decreased mitogenic response to IL-4
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was speculated to be secondary to the failure of
STAT6−/− mice to upregulate IL-4R numbers in
response to IL-4. However, the IL-4R tyrosine neces-
sary for 4PS phosphorylation is able to activate STAT6,
albeit to a much lesser extent than the membrane distal
tyrosines [46]. Furthermore, an IL-4R-expression-level-
independent role for STAT6 in enhancing IL-4-depen-
dent lymphocyte proliferation was recently shown by
more detailed examination of cells from STAT6−/−
animals [47]. Lymphocytes expressing equivalent
amounts of IL-4R were isolated by flow cytometry from
wild-type and STAT6−/− animals and tested for their
proliferative response to IL-4. Despite expressing simi-
lar levels of IL-4R, cells from Stat6−/− mice were
impaired in their ability to undergo IL-4-dependent
growth and this appeared to be due to the inability of
IL-4 to downregulate expression of the cell cycle in-
hibitor p27KIP1 [47]. Disruption of IL-12-dependent pro-
liferation in STAT4−/− lymphocytes [48, 49]
appeared also to be, at least in part, due to a failure to
downregulate p27KIP1 [47]. IL-4 downregulation of
p27KIP1 in lymphocytes occurs post-transcriptionally,
but how STAT6 regulates this process is not clear [47].

The role of STATs in differentiation

In addition to their roles in cell growth, STAT proteins
also participate in differentiation and or functional mat-
uration of many cell types. While STAT3 and STAT5
have been implicated in myeloid cell development and
appear themselves to be regulated in a cell type or
developmental manner, STAT4 and STAT6 are best
characterized for their central role in Th cell
differentiation.

STAT3 and differentiation
An essential role for STAT3 in IL-6-induced
macrophage differentiation of myeloid M1 cells was
first suggested by the inability of the IL-6R-signalling-
subunit (gp130) mutants, lacking the YXXQ STAT3-
binding motif, to generate growth arrest and
differentiation [50]. Subsequently, dominant-negative
forms of STAT3 were found to inhibit IL-6 induction of
differentiation-associated markers such as Fcg recep-
tors, ferritin light chain and lysozyme in these cells [51].
Interestingly, the presence of dominant-negative STAT3
converted the action of IL-6 from a differentiation to
proliferative agent [52], suggesting that IL-6 generates
antagonistic signals and STAT3 activation is pivotal in
determining whether cells differentiate or proliferate in
response to this cytokine. IL-6-induced differentiation
of B cells, as assessed by IgM secretion, is also STAT3
dependent [53]. Granulocyte-colony-stimulating factor

(G-CSF)-induced neutrophil differentiation of LGM-1
cells could also be inhibited by expression of a domi-
nant-negative STAT3 [54]. However, although both G-
CSF-elicited neutrophilic morphological changes and
myeloperoxidase (MPO) induction are abolished by
phenylalanine replacement of the tyrosine in the G-
CSFR responsible for STAT3 activation (i.e., Tyr703)
[55], the dominant-negative STAT3 constructs only ab-
rogated the morphological changes, without affecting
MPO levels [54]. This suggests MPO induction is (i) not
as sensitive to dominant-negative STAT3 expression,
and low-level or residual wild-type STAT3 activation is
sufficient for expression, (ii) regulated by STAT3 in a
manner independent of its dimerization or DNA-bind-
ing ability, or (iii) regulated by a non-STAT3 pathway
also emanating from Y703. However, ciliary neuro-
trophic factor (CNTF), another cytokine that utilizes
gp130, clearly signals through STAT3 to induce the
differentiation of neuroepithelial precursors into astro-
cytes [56, 57]. STAT3-dependent pathways also con-
tribute to morphogenic processes. HGF-induced
tubulogenesis [58], and leukemia inhibitory factor
(LIF)-stimulated cardiac myocyte hypertrophy [59] can
both be reversed by dominant-negative STAT3
expression.
Conversely, STAT3 activation can also suppress differ-
entiation. For example, the ability of LIF to keep
embryonic stem (ES) cells in a pluripotent state is
abrogated by overexpression of a dominant-negative
STAT3. Furthermore, the ability of retinoic acid treat-
ment to overcome the effect of LIF and induce differen-
tiation of ES cells is characterized by a rapid decline in
the levels of tyrosine phosphorylated STAT3 [60]. Ade-
novirus-E1A-mediated inhibition of ES cell differentia-
tion is likewise associated with a block in LIF-induced
STAT3 DNA-binding activity [61]. GM-CSF inhibition
of EPO-induced erythroid differentiation of the human
leukemia line UT-7, on the other hand, correlates with
the activation of STAT1 and STAT3 [62, 63] and this
can be mimicked by overexpression of either STAT1 or
STAT3 [64].
The dual roles for STAT3 in both induction and inhibi-
tion of differentiation probably reflect the contribution
of other modulating signalling pathways, or the status
of the cell being regulated. However, an additional
possibility arises from the existence of two STAT3
splice variants, STAT3a and STAT3b. STAT3b, the
short form, differs from the originally described
STAT3a in lacking 55 C-terminal amino acids and
having an additional 7 STAT3b-specific residues [65].
The two also differ in functional properties; for exam-
ple, overexpression of STAT3b but not STAT3a results
in constitutive transcriptional activity on an IL-6-re-
sponsive promoter [65], while STAT3a exhibits greater
transcriptional activity in response to external stimuli
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[66]. In some cells, STAT3b behaves in a dominant-neg-
ative manner towards STAT3a [67]. Although the levels
of STAT3b mRNA predominate in most tissues,
STAT3a transcripts could be detected in brain, lung,
heart, ovary and spleen [66]. The significance of the
observed distribution is not clear. Intriguingly, how-
ever, CD34+ hemopoietic progenitor cells and
leukemic myeloid cell lines which differentiate with G-
CSF treatment activate STAT3b in response to this
cytokine, whereas leukemic cell lines refractory to dif-
ferentiation activate both STAT3a and STAT3b [68].

STAT5 and differentiation
STAT5 has been implicated in differentiation in a vari-
ety of systems. A role for STAT5 in mammary gland
development and milk protein expression was indicated
by the increase in STAT5a/b transcripts and DNA-
binding activity during late pregnancy, and their rapid
decline during mammary gland involution [69, 70]. This
hypothesis was subsequently proven by the mammary
gland differentiation defects in STAT5a−/− mice
[34]. In addition, despite the established importance of
STAT3 deactivation on ES cell differentiation, recent
studies suggest that the concomitant upregulation of
STAT5 mRNA and activity are also important during
this process [60, 71]. Furthermore, a transcription factor
complex designated differentiation-induced factor and
involved in macrophage differentiation of promonocytic
U937 cells [72] was found to contain STAT5 [73]. Simi-
larly, the differentiation of human myeloid HL60 cells
and chick myeloid progenitor cells correlated with en-
hanced STAT5 activation [74]. Apart from the milk
protein genes expressed in mammary gland cells, the
differentiation-related, molecular targets of STAT5 are
not yet defined.
STAT5 has also been reported to be involved in throm-
bopoietin (TPO)-dependent maturation of megakary-
ocytes. Differentiation is usually accompanied by
growth arrest in the G1 phase of the cell cycle and TPO
treatment of the CMK megakaryoblastic leukemia cell
line results in megakaryocytic differentiation and induc-
tion of the cell cycle inhibitor p21CIP1. In general,
whether the loss of growth arrest is a consequence or
cause of differentiation is not clear; however, in the
CMK cell system, ectopic expression of the p21CIP1 cell
cycle inhibitor is sufficient to induce differentiation [75].
TPO activates both STAT3 and STAT5, but only
STAT5 was able to react with oligonucleotide probes
corresponding to STAT-binding sites in the p21CIP1

promoter. This suggests that one mechanism operating
during TPO-directed megakaryocyte differentiation is
STAT5-dependent induction of p21CIP1, although the
coordinate action of STAT3-regulated events may also
contribute [76].

Studies making use of EPOR mutants and dominant-in-
terfering STAT5 constructs to examine the role of
STAT5 in EPO-dependent differentiation have gener-
ated puzzling results. Murine erythroleukemic SKT6
cells undergo hemoglobinization upon EPO stimulation
and this response is abrogated by either mutation of the
STAT5 interaction motif in the EPOR, or by expression
of a dominant-negative STAT5 [77, 78]. EPORs lacking
the ability to activate STAT5 are likewise impaired for
differentiation of other erythroleukemia cell lines [79,
80]. These studies suggest STAT5 is involved in ery-
throid differentiation. However, other studies demon-
strate that chimeric receptors, consisting of the
extracellular domain of the EPOR and the intracellular
domain of a receptor that normally inhibits erythroid
differentiation (IL-3R), can also drive differentiation
[81, 82]. Furthermore, the EPOR mutant that best re-
constitutes definitive erythropoiesis in fetal liver cells
derived from EPOR−/− mice is not the one that is
best able to activate STAT5 [83].
Recent reports provide a possible explanation for the
apparent paradox by suggesting that although STAT5
is involved in erythroid maturation, high-level activa-
tion may be inhibitory. The endogenous EPOR in the
human TF1 erythroleukemia cell line carries a mutation
in the STAT5-binding site, which impairs its ability to
activate STAT5, and EPO stimulation of these cells
sustains only short-term proliferation before differentia-
tion ensues. Introduction of a wild-type receptor into
TF1 cells restores high-level STAT5 activation and this
is accompanied by a switch from a predominantly dif-
ferentiative to a proliferative response [23]. The correla-
tion of high-level STAT5 activation with proliferation
has been observed in other systems. Ligation of the
c-ErbB receptor on erythroid progenitors is able to
induce a STAT5-responsive reporter gene and sustain
proliferation, while EPO treatment, which fails to stim-
ulate reporter gene activation, results in erythroid dif-
ferentiation [84]. More strikingly, the ability of chimeric
receptor constructs to signal b-globin expression corre-
lates not with their possession of EPOR domains, but
rather with their support of only low-level STAT5 acti-
vation [85]. These data can be drawn together into a
model in which a certain amount of STAT5 activation
is required for differentiation, but above a critical
threshold, genes are induced which are not compatible
with differentiation. Expression- or activation-level-de-
pendent biological outcomes for other transcription fac-
tors have previously been proposed [86]. A molecular
basis for this threshold effect might be varying binding
affinities of STAT-responsive elements in the promoters
of different genes. Thus different levels of STAT activa-
tion may induce a different spectrum of genes. Regard-
less of the mechanism, a quantitative model of STAT5
action is consistent with other observations: the sup-
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pression by IL-3 (a strong STAT5 activator) of EPO-
dependent differentiation, and the ability of a tyrosine
null EPOR (weak STAT5 activator) but not of a cy-
toplasmic-domain-truncated EPOR (no STAT5 activa-
tion) to induce b-globin expression [87]. This model
can also accommodate the reported ability of an
EPOR containing only one cytosolic tyrosine residue,
Y479, to support proliferation and differentiation of
primary erythroid progenitors [83]. Although Y479 is
not primarily responsible for STAT5 activation, the
Y479 EPOR would still activate low levels of STAT5
[24, 25]. This low-level STAT5 activation may act in
combination with Y479-dependent pathways to sup-
port erythroid development. A challenge to this
model, however, is the apparently normal erythroid
development in STAT5a/b−/− mice [35]. It will be
of interest to examine whether EPO utilizes alternate
STAT proteins in cells lacking STAT5.
In addition to the strength of activation, the choice of
STAT5 isoform utilized can also determine the genes
regulated and thus the overall biological consequence.
That STAT5a and STAT5b have separate as well as
redundant functions has best been shown by the phe-
notypes of the mice disrupted for the two genes [34–
36]. However, in vitro studies have also pointed out
instances of cytokine and cell-type-specific utilization
of STAT5a or STAT5b. For example, GM-CSF acti-
vates STAT5b but not STAT5a in neutrophils [88]
despite the expression of both. IFN-g utilizes STAT5a
in myeloid U937 cells and IFN-a activates STAT5b,
but only in HeLa epithelial cells [73]. The mechanism
by which the receptors for these cytokines are able to
specifically select one of the STAT5 proteins, and the
consequences of differential usage to biological func-
tion remain to be established.
Adding to the complexity of STAT5 signalling is the
occurrence of naturally truncated STAT5 protein
products. A carboxyl-truncated transcriptional splice
variant of STAT5a that acts as a dominant-negative
has been described [89], although neither tissue distri-
bution nor the regulation of expression of this natu-
rally occurring mutant has been reported. Both
STAT5a and STAT5b are also subject to post-tran-
scriptional processing to smaller, approximately 80-
kDa isoforms [90, 91]. Whereas IL-3 stimulation of
phenotypically more mature myeloid cell lines leads to
tyrosine phosphorylation and activation of DNA-
binding activity of full-length, �90-kDa STAT5
proteins, similar treatment of more immature cell
types induces only the �80-kDa products [90]. Bio-
chemical analysis of this phenomenon suggests the
presence of a STAT5-specific protease in immature
but not mature myeloid cells [91]. The IL-3-related
cytokine, GM-CSF, also activates an 80-kDa STAT5
molecule in freshly isolated monocytes, and expression

of this 80-kD protein likewise disappears upon differ-
entiation into macrophages [92]. Murine macrophage
lines representing various stages of macrophage differ-
entiation also express either full-length or truncated
STAT5 depending on their state of maturation [93].
The 80-kDa isoforms of STAT5 have also been re-
ported in peritoneal macrophages [94] and Nb2 T
cells [95]. It has not as yet been determined whether
the smaller forms of STAT5 observed in these studies
result from transcriptional or post-transcriptional pro-
cessing. Regardless of how they are generated, the ex-
istence of these multiple forms of STAT5 may provide
another mechanism by which cell- or maturation-
stage-specific actions of STAT5 are controlled, since
truncated STATs have different functional properties
to the full-length molecule [29, 89, 96, 97]. Indeed,
examination of IL-3-induced immediate-early gene ex-
pression confirmed that genes previously characterized
in mature myeloid cell lines to be STAT5 regulated
were not elevated in response to IL-3 in the immature
myeloid lines expressing the 80-kDa isoform of
STAT5 [91].

The role of STAT4 and STAT6 in differentiation
The contribution of the STAT pathway to differentia-
tion has been most definitively shown for STAT4 and
STAT6 in Th cell maturation. STAT4 and STAT6 are
required for the IL-12- and IL-4-dependent develop-
ment of Th1 [48, 49] and Th2 [40–42] cells, respec-
tively, from a common precursor [98]. However,
although IL-12 and IL-4 are commonly referred to as
cytokines that ‘drive’ Th cell differentiation, they may
function primarily to expand and enhance the differ-
entiation of precursors already committed towards
Th1 or Th2. In fact, GATA-3 expression may be the
key regulator of differentiation, since ectopic expres-
sion of GATA-3 in naive T cells is sufficient to skew
development towards Th2 and conversely to inhibit
Th1 differentiation [86, 99–101]. Elegant studies using
cells from mice deficient for both STAT4 and STAT6
have also suggested the existence of a STAT4-inde-
pendent pathway for Th1 development [47]. Thus, al-
though STAT4 and STAT6 are clearly involved in
expression of phenotypic markers of Th1 (IFN-g)
[102] and Th2 (IL-4R) [40] cells, whether activation of
either STAT is sufficient to directly induce differentia-
tion requires further study. For example, examining
whether activation of the recently described inducibly
dimerizable STAT6 [103] alone is able to drive Th2
development will be of great interest. STAT6 is also
required for CD23 expression and IgE switching in B
cells [41, 42].
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Role of STATs in apoptosis

Although proliferation involves progression through the
cell cycle and cytokines can control this by modulating
expression of cell cycle proteins, long-term cell growth
also requires inhibition of apoptosis or programmed cell
death. In some cytokine systems, this cell survival signal
is provided by Ras [104], Akt [105], or other non-STAT
[106, 107] pathways; however, STAT5 [107] and STAT3
[108, 109] have been shown to contribute to IL-2 and
IL-6 anti-apoptotic signals, respectively. Apoptosis is
additionally important as a means of regulating im-
mune responses and also serves as an effector mecha-
nism for the elimination of malignant or virally infected
cells. Recently, several cytokines have been found to
direct apoptosis through STAT1-dependent activation
of the pro-apoptotic caspase cascade [110, 111].

STATs and protection from apoptosis
As described above, STAT5 has been implicated in
IL-2-dependent proliferation. Further examination of
this phenomenon has suggested that the STAT5 path-
way does not regulate cell cycle progression. Instead, its
major function appears to be suppression of apoptosis
[107]. In contrast, STAT3 activation appears to con-
tribute both proliferative [20] and cell survival signals
[108] towards IL-6-dependent BAF/B03 cell growth.
Analysis of gp130 mutants has shown that the tyrosine
residue essential for activation of STAT3 is also neces-
sary for prevention of apoptosis in BAF-B03 cells [108].
Studies performed in STAT3-deficient T cells have
confirmed the STAT3 requirement in IL-6-mediated
prevention of apoptosis [109]. The mechanism by which
STAT5 and STAT3 activation inhibits apoptosis is not
clear. Although induction of the anti-apoptotic protein
Bcl-2 has been shown to correlate with STAT3 activa-
tion and cell survival in the IL-6/BAF-B03 system,
Bcl-2 does not appear to be involved in either STAT5-
dependent protection of IL-2-stimulated 32D cells [107],
or in IL-6- and STAT3-dependent survival of primary T
cells [109]. STAT3 activation may also be involved in
the ability of an activated ras allele to protect rat
intestinal epithelial cells from ultraviolet-irradiation- or
mitomycin-C-induced apoptosis [112]. Protection of
these epithelial cells correlated with Bcl-2 expression.

STATs and induction of apoptosis
IFN-g-elicited epithelial and immune cell apoptosis is
associated with elevation of caspase-1 transcripts in a
JAK1- and STAT1-dependent mechanism [110]. Cells
deficient for any of these proteins are resistant to IFN-
g-induced cell death. Similarly, the ability of EGF to
induce apoptosis rather than mitogenesis in different

cell lines correlates directly with the ability of EGF to
activate STAT1. STAT1 is also important for maintain-
ing basal level expression of caspase family members in
serum-dependent epithelial cell lines. STAT1-null U3A
cells could not be killed by tumor necrosis factor
(TNF)-a treatment, but reconstitution of these cells
with STAT1 restored basal caspase expression and sen-
sitivity to TNF-a-induced apoptosis [111]. Thus,
STAT1 activation appears to be important for trans-
ducing apoptotic signals. However, attempts to deter-
mine whether caspase gene transcription is a direct
target of STAT1 has not yet been conclusive [110]. A
pro-apoptotic role for STAT3 has also been suggested
based on the ability of the C-terminally truncated
STAT3b to attenuate MHC II cross-linking-induced
Jurkat T cell apoptosis [113]. Further studies are needed
to establish whether C-terminally truncated STAT3b

does behave as a dominant-negative molecule in this
system, and to identify the genes regulated by the postu-
lated pro-apoptotic action of STAT3.

STAT involvement in oncogenic transformation

Disregulated proliferation, resistance to differentiation,
or insensitivity to normal death signals can all lead to
oncogenic cell transformation. Thus, the occurrence of
constitutively activated STATs in cancer cells under-
scores the importance of the STAT pathway in regulat-
ing these cellular processes.
Cytokine-independent T cell lines established from hu-
man T cell lymphotropic virus (HTLV)-1 immortalized
T cells contain constitutively tyrosine phosphorylated
STAT3 and STAT5 which can bind DNA [114]. This
activation is associated with constitutively active JAK3
expression and does not appear to be an artifact of
adaptation to growth in tissue culture since similar
findings were obtained from uncultured, ex vivo T cells
from HTLV-1-seropositive patients with adult T cell
leukemia/lymphoma [115]. A slowly migrating isoform
of STAT3 was similarly reported to be constitutively
activated in mycosis fungoides (MF), a low-grade cuta-
neous T cell lymphoma of unknown etiology [116].
However, in contrast to the HTLV-1 disease, STAT3
activation was not accompanied by JAK3 activation in
MF tumor cells. Moreover, STAT3 phosphorylated
constitutively on serine 727, a phosphorylation known
to be important for enhancing the ability of STAT3 to
bind DNA or stimulate transcription [117, 118], was
observed in B cells from 100% of patients with chronic
lymphocytic leukemia [119]. In addition, the CD5+
subset of normal B cells, while not transformed, differs
from the CD5− majority by their susceptibility to
oncogenic transformation and expression of a constitu-
tively nuclear-activated STAT3 [120]. Activated
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STAT1, 3, and 5 have also been observed in myeloid
leukemia cells [121–124] by many investigators.
Cell lines transformed by the oncogenic tyrosine kinases
6-src [125, 126], 6-abl [127], or bcr-abl [123, 124, 127]
have also been reported to express constitutively acti-
vated STAT6, STAT3, or STAT5. This, together with
the findings that STAT3 physically associates with the
v-src protein [125] and that STAT5 phosphorylation
occurs only at the permissive temperature in cells ex-
pressing a temperature-sensitive Bcr-abl [124], suggests
that the STATs could indeed be a direct substrate for
oncogenic kinases. This raises the question as to
whether STAT activation is necessary for, or is merely a
consequence of transformation. Recently, however,
analyses using dominant-interfering mutants of STAT
proteins showed that STAT activation is directly in-
volved in transformation. The ability of 6-src to trans-
form 3T3 fibroblasts is abrogated by co-expression of
STAT3 dominant-negative mutants that either could
not bind DNA, or lack the C-terminal tyrosine neces-
sary for STAT dimerization or Ser727 [128]. Likewise,
expression of a dominant-negative STAT3 lacking the
C-terminal transactivation domain inhibited the ability
of 6-eyk to transform rat fibroblasts [129]. Whether the
central role STATs play in 6-src- and 6-eyk-driven
transformation will hold true for other models of onco-
genesis, and the mechanism by which the STAT path-
way contributes to this process remain to be
determined.

Perspective

Understanding of the role STATs play in biological
responses has progressed considerably from the early
days of cataloguing which stimulus activates which
STAT to identification of cellular responses and target
genes regulated by each STAT in each system. A num-
ber of controversies remain regarding the nature of the
role played by certain STATs in some cytokine systems.
However, the many molecular tools and STAT knock-
out mice now available should help clarify these ques-
tions. Defining how STATs regulate, and how they
themselves are regulated, will provide insight not only
the mechanism by which cytokines and other STAT
activators transduce signals during normal physiology,
but also importantly, into the disregulation that occurs
in disease.
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