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Abstract. Blastokinin or uteroglobin (UG) is a steroid- tion of this gene causes: (i) severe renal disease due to
an abnormal deposition of fibronectin and collagen ininducible, evolutionarily conserved, multifunctional

protein secreted by the mucosal epithelia of virtually all the glomeruli; (ii) predisposition to a high incidence of
mammals. It is present in the blood and in other body malignancies; and (iii) a lack of polychlorinated

biphenyl binding and increased oxygen toxicity in thefluids including urine. An antigen immunoreactive to
UG antibody is also detectable in the mucosal epithelia lungs. The mechanism(s) of UG action is likely to be

even more complex as it also functions via a putativeof all vertebrates. UG-binding proteins (putative recep-
receptor-mediated pathway that has not yet been clearlytor), expressed on several normal and cancer cell types,
defined. Molecular characterization of the UG receptorhave been characterized. The human UG gene is

mapped to chromosome 11q12.2–13.1, a region that is and signal transduction via this receptor pathway may
frequently rearranged or deleted in many cancers. The show that this protein belongs to a novel cytokine/
generation of UG knockout mice revealed that disrup- chemokine family.
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Introduction

Steroid hormones regulate the expression of many
genes. However, only a handful of these proteins has
been thoroughly characterized. More than 3 decades
ago, the laboratory of Joseph Daniel Jr. in the United
States and that of Henning Beier in Germany simulta-
neously discovered a steroid-inducible secreted protein
in the uterus of pregnant rabbits. The former named it
blastokinin [1], whereas the latter coined the term
uteroglobin (UG) [2]. Convincing evidence suggests that
this protein is evolutionarily conserved in all verte-
brates, and it is perhaps one of the most potent endoge-

nous immunomodulatory and antiinflammatory agents
elaborated by the secretory epithelia of all organs that
communicate with the external environment [3]. UG is
expressed not only in the uterine endometrium but also
by the epithelia of many extrauterine tissues [4], includ-
ing the thymus, pituitary gland, respiratory and gas-
trointestinal tracts, pancreas, mammary gland, prostate
and seminal vesicle. UG is also present in the blood [5,
6] and in urine [7], although it is not synthesized in the
kidney. Since its discovery, this protein has been given
numerous names that are based primarily upon the
organ in which it is detected or the type of xenobiotics
with which it interacts. Thus, UG is also known as
progesterone-binding protein [8], Clara cell 10-kDa* Corresponding author.
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protein [9, 10], urine protein-1 [7, 11–13], polychlori-
nated biphenyl-binding protein [14] and retinol-binding
protein [15].
The UG/Clara cell 10-kDa protein complementary
DNAs (cDNAs) from mouse [16, 17], rat [18, 19],
hamster [20] and pig [21] have been isolated and charac-

terized. The presence of a UG-like protein in the human
uterus [22, 23], lung [24] and prostate [25] have been
reported, and the isolation and characterization of the
human UG (hUG) cDNA [26], the 5�-promoter region
[27] and the complete hUG gene have also been accom-
plished [28, 29]. The amino acid sequence of nonhuman
primate UG has been recently reported [30], and a
remarkable sequence similarity between primate and
rodent UGs has been demonstrated (fig. 1a). It has also
been reported that an antigen, immunoreactive to rab-
bit UG antibody, is detectable in the wet (mucosal)
epithelia of virtually all vertebrates [29] (fig. 1b). This
finding suggests that UG is an evolutionarily conserved
protein that may have important physiological func-
tions (reviewed in [31, 32]). Although the results of
numerous in vitro experiments delineated several bio-
logical functions of this protein, its physiological roles,
until recently, remained unclear. In order to determine
the physiological functions of UG, we [33] and others
[34] have performed targeted disruption of the UG gene
in embryonic stem (ES) cells and generated UG knock-
out mice.
In this review, we discuss the structural features of the
UG protein, its molecular biology and hormonal regu-
lation of UG expression. We also describe the current
status of the UG-binding proteins (putative UG recep-
tor) and provide an overview of our present knowledge
on the physiological functions of this protein. Despite
our attempt to incorporate a comprehensive list of
publications in this review, due to the enormous volume
of literature in this field and the limitation of space,
important contributions of some of our colleagues may
have been omitted, for which we offer our sincere
regrets.

Structural features of uteroglobin

Uteroglobin is a homodimeric protein in which the 70
amino acid subunits, in an antiparallel orientation, are
connected by two disulfide bonds. The primary and
quaternary structures of rabbit UG [35–38] were the
first to be resolved. X-ray diffraction studies [39–44]
revealed the structural features of several crystal forms
of rabbit UG. Figure 2A shows a ribbon representation
of the crystal structure of dimeric recombinant hUG.
Each monomer of this protein is made up of four �

helices. The two monomers are held together by two
disulfide bonds: one located between Cys-3 and Cys-69�

and the other between Cys-3� and Cys-69. The work of
Umland et al. [45] and that from our own laboratory
[46] have delineated the crystal structure of hUG. Fig-
ure 2B shows the solvent-accessible molecular surface of
the crystal structure of the recombinant hUG molecule.

Figure 1. (A) Comparison of UG protein sequence among vari-
ous mammalian species. Note the conserved Cys-3 and Cys-69
residues (boxed) in all species. Also, the ‘antiflammin’ region in
the �-helix-3 is identified by a shaded box. (B) Expression of
UG-like antigen in various vertebrate phyla. Immunofluorescence
of tracheobronchial tissues from different phyla: (a) amphibia
(frog), (b) reptilia (turtle), (c) aves (chicken) and (d) mammalia
(rabbit). (Reprinted with permission from: Zhang Z. et al. (1997)
DNA Cell Biol. 16: 73–83. Copyright © 1998, Mary Ann Liebert,
Inc., New York, NY, USA.)
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The outer surface of the molecule, exposed to the sol-
vent, is shown in a lighter color. The inner lining of the
solvent-exposed molecular surface is shown in magenta.
The dimer structure has three cavities: C1, C2 and C3.
The cavity, C1, is formed by the two monomers and is
made up of mostly hydrophobic residues except for the
hydroxyl groups of Tyr-21 and Tyr-21�. This cavity has
the volume to accommodate small molecules such as
progesterone and retinol. Cavities C2 and C3 are lo-
cated within each monomer. These cavities are formed
by the � helices 1, 2 and 3. While the existence of a large
central hydrophobic cavity has been reported [35], the
two smaller cavities were not recognized previously. The
results of these studies uncovered a remarkable similar-
ity in the structure of UG from humans, rabbit and rat.
It is interesting to note that Morize et al. [43] reported
a striking similarity in the surface structures of rabbit
UG with that of the soluble phospholipase A2 (sPLA2).
In fact, these structures are virtually superimposable.
While the significance of this structural similarity be-
tween these unrelated proteins is unclear, it is to be
noted that UG is a potent inhibitor of sPLA2 activity.
This is discussed in further detail under ‘Biological
activities of UG’.

Biological activities of UG

One of the first biological properties of UG to be
discovered was its ability to bind progesterone [8], al-
though the physiological significance of this property
remains to be elucidated. In addition, UG also binds
polychlorinated biphenyls (PCBs) [14] and retinols [15].
Several years ago we proposed that UG may have
immunomodulatory properties [47] and as a result may
protect the implanting embryo from immunological as-
sault that may be mounted by the maternal organism.
Subsequently, in a series of experiments it was demon-
strated that UG has potent antiinflammatory and im-
munomodulatory properties [3, 48, 49]. Levin et al. [50]
demonstrated that this protein is a potent inhibitor of
PLA2 activity and provided an explanation of how UG
may prevent the generation of potent lipid mediators of
inflammation (e.g. prostaglandins, leukotrienes etc.).
Evidence has amassed in support of the concept that
several of its biological properties, including its potent
immunomodulatoty [3, 48, 49] and sPLA2-inhibitory
[50, 51] activities, may reside in the �-helix-3 of UG
[51]. In fact, it has been demonstrated that amino acid
residues 39–47 of rabbit UG are well conserved in all
species studied so far. Using synthetic peptides corre-
sponding to this region of UG, it has been demon-
strated that residues 39–47, at least in part, are
responsible for its PLA2-inhibitory activity [51–54]. Be-
cause of their potent antiinflammatory and im-

munomodulatory activities, these peptides have been
named antiflammins [51], and these effects have been
confirmed using several systems [51–71], although some
contradictory reports [72, 73] have been published. It
has been reported that both intact UG [74] as well as
antiflammin-1 [56] also inhibit thrombin-induced
platelet aggregation. More recently, it has been reported
that antiflammin-1 is a potent inhibitor of chlorpro-
mazine-induced dermal inflammation when this peptide
is administered by iontophoresis into guinea pig skin
[71]. However, these peptides are unstable and are read-
ily degradable under acidic conditions [75, 76] and this,
at least in part, may account for the variable results
obtained by some investigators [72, 73].
In order to determine the possible mechanism(s) of
inhibition of sPLA2 activity by hUG, Andersson et al.
[77] reported that recombinant hUG (rhUG) sequesters
Ca2+ because it binds calcium. Similarly, using hydro-
phobic contrast calculations and molecular graphics,
Barnes et al. [78] showed a putative Ca2+ binding motif
in rhUG and suggested this is the structural basis for
calcium binding by UG. However, these results should
be interpreted with caution for the following reasons: (i)
Andersson et al. [77] produced His-tagged UG and used
this UG in a PLA2-inhibition assay to demonstrate that
UG binds Ca2+, and proposed that this is the reason it
inhibits PLA2 activity. It is known that polyhistidine
has avidity for calcium ions, and thus if the His tag is
not cleaved off the recombinant protein (i.e. rhUG), it
may sequester Ca2+, as Andersson et al. have found.
Indeed, we were unable to find any statement in the
papers of Andersson et al. [77] or in that of Barnes et al.
[78] that they have cleaved off the His tag before this
protein was used in their PLA2-inhibition assays; (ii)
many years ago, when we demonstrated the PLA2-in-
hibitory activity of rabbit UG, we were concerned that
UG might chelate Ca2+ and cause sPLA2 inhibition.
However, in extensive experiments using natural rabbit
UG (purified from uterus), we were unable to demon-
strate that this protein binds 45Ca (unpublished results);
(iii) while sPLA2 requires millimolar concentrations of
Ca2+for its catalytic activity, UG inhibits this enzyme
at nanomolar concentrations [50–52, 79, 80] making it
highly improbable that the disproportionate stoichio-
metric ratio between UG and Ca2+ depletes this ion
sufficiently to cause significant sPLA2 inhibition; (iv) in
our laboratory using pure recombinant UG (both rab-
bit and human), with and without the His tag, we are
currently readdressing this question, and our prelimi-
nary results show that hUG that does not contain His
tag fails to bind Ca2+, contrary to the results of An-
dersson et al. [77]; (v) our structural analyses of UG by
crystallography [46] and by multidimensional nuclear
magnetic resonance (NMR) spectroscopy [81] failed to
show any Ca2+ binding motif in this protein,
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Figure 2. (A) Ribbon diagram of the crystal structure of rhUG
dimer. Four cysteine residues forming two disulfide bridges are
shown as Corey-Pauling-Koltun (CPK) representations. Only the
side chain atoms are shown for CYS residues. (B) Solvent-accessi-
ble molecular surface representation of the crystal structure of the
rhUG dimer. The outer molecular surface is represented by the
pale color, whereas the cavities are represented by cyan. The
cavity labeled as C1 is the largest one formed by the two identical
monomers. Two other (symmetric) smaller cavities, C2 and C3,
are formed by helix-1, helix-2 and helix-3. For the sake of clarity
the front surface of the protein is clipped.

tag was not cleaved, then it is entirely possible that
there was alteration in the quaternary structure of this
protein, and this would make interpretation of the
results of ‘a putative Ca2+-binding motif’ more
difficult; and finally, (v) site-directed mutagenesis stud-
ies in our laboratory have shown that mutation of a
single residue (Lys) in a critical region of the UG
molecule can abrogate its PLA2-inhibitory activity (un-
published results), leaving little doubt that the sPLA2-
inhibitory property is due to a mechanism other than
sequestration of Ca2+.
The electrophoretic mobility of both natural and rhUG/
Clara cell protein is anomalous in that it migrates like a
10-kDa protein in SDS-polyacrylamide gel elec-
trophoresis (PAGE), when its calculated molecular
mass is 15.8 kDa. This was first observed by Singh et al.
[26], who coined the term ‘Clara cell 10-kDa (cc10-
kDa)’ protein, as it was found to be produced by
nonciliated epithelial cells in the bronchioles called
Clara cells. However, it has been found that other cells
in the respiratory tract such as the tracheobronchial
epithelia also secrete this protein. Further advances in
UG research have been facilitated by the high level
expression of recombinant rabbit [79] and human [80]
UGs in Escherichia coli that allowed comparison of
their structural features as determined by X-ray crystal-
lography [46] and by multidimensional NMR [73]. The
results of these and other studies showed that rabbit
[39–43] and human UGs [45, 46] are indistinguishable
proteins both structurally and functionally [79, 80], al-
though there is 68% amino acid sequence identity be-
tween these two proteins. A highly allergenic protein,
FeldI, found in domestic cats, that has local amino acid
sequence similarity to UG, has been described [82].
Recently, a mammary gland protein, mammaglobin,
was also found to have some sequence similarity with
UG and reported to be overexpressed in human breast
cancer cells [83]. Structural similarities of UG with a rat
seminal vesicle sperm-binding protein [84], the C2 chain
of the rat prostate steroid-binding protein [85], colicin A
[86], the CAP domain of haloalkane dehalogenase [87]
and lipophilin [88] have been reported. The significance
of these sequence similarities has not as yet been
clarified, although it has been suggested that these
proteins may belong to the UG superfamily [32, 83].

UG cDNA and gene cloning and tissue-specific expression

The rabbit UG protein was first characterized by sev-
eral groups, and these results facilitated the cloning and
characterization of cDNA and the gene [89, 90] encod-
ing this protein. This was followed by the complete
nucleotide sequencing of the structural gene for pre-UG
[91–96]. The rabbit UG gene spans about 3 kb of DNA

contrary to the results of Barnes et al. [78]. Here again,
we could not determine whether the His tag was cleaved
off before performing the structural studies. If the His
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Figure 3. Graphic structural comparison of mouse, rabbit and the human UG genes (upper panel) and chromosomal localization of the
human UG gene by fluorescent in situ hybridization (FISH) (lower panel). Upper panel, top rows: Open ellipses represent Oct promoter
regions, whereas solid rectangles are the TATA box regions. Upper panel, bottom rows: sequence alignment of homologous regions of
human, rabbit and mouse UG genes. Partial Oct promoter and TATA box sequences are shown. Lower panel: (A) Digital image of the
metaphase chromosomes from a normal donor 46, XY hybridized with a biotin-11-dUTP-labeled hUG genomic probe. Two
medium-sized, apparently homologous submetacentric chromosomes have symmetrical fluorescent labeling on the long arms. (B) The
same metaphase chromosomes after rehybridization with a whole chromosome 11 painting probe. Both labeled chromosomes are
identified as chromosome 11. (C) Regional FISH localization of the hUG locus at 11q12.3–13.1 contrast-enhanced, LUT-inverted and
digital image of DAPI-banded chromosomes. (Reprinted with permission from: Zhang et al. (1997) DNA Cell Biol. 16: 73–83.
Copyright © 1998, Mary Ann Liebert, Inc., New York, NY, USA.)
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and consists of three exons and two introns [94–97].
The 5�-flanking region of the UG gene contains steroid
hormone response elements which regulate the steroid-
induced, tissue-specific expression of the UG gene [94–
97]. Several years later, the human UG cDNA [26] and
subsequently, the human UG gene were cloned and
characterized [28, 29]. The UG gene structures are re-
markably similar among human, rabbit and mouse (fig.
3, upper panel). The location of the UG gene has been
mapped [29] to human chromosome 11q12.3–13.1 (fig. 3,
lower panel), a region in which many candidate disease
genes have been mapped by linkage analyses. Further-
more, the presence of an antigen, immunoreactive to
UG antibody, is detectable in all vertebrate phyla [29],
further suggesting the evolutionary conservation and
importance of this protein.
Although the original discovery of this protein was
made in the rabbit uterus during early pregnancy [1, 2],
investigations that followed revealed that in addition to
the uterus the UG gene is also expressed in numerous
other organs [98–108]. The presence of UG in humans
was initially the subject of conflicting reports [109–112];
however, subsequent studies confirmed its presence in
the human endometrial [22], tracheobronchial [24] and
prostatic [25] epithelia by Western blotting and im-
munohistochemistry. Furthermore, expression of UG in
human uterus was also found to be regulated by proges-
terone and estrogen [22].

UG gene regulation by hormones and other agents

Regulation of UG gene expression by steroid hormones
(e.g. estrogen and progesterone) was experimentally
demonstrated by in vitro translation and nucleic acid
hybridization. These results suggested that both estra-
diol and progesterone profoundly affected the expres-
sion of the UG messenger RNA (mRNA) in rabbit
[113–118] as well as human [119] endometrium. It was
also shown that estradiol increases the level of UG
mRNA by 4-fold, whereas a sequential administration
of estradiol and progesterone to the rabbit increased it
12-fold [116]. This effect was not due to the stability of
the UG mRNA. Recently, it has been reported that
progesterone-induced UG gene expression is further
augmented by prolactin [120, 121]. This nonsteroid hor-
mone appears to enhance progesterone-induced UG
gene expression in the uterus [122–127]. Moreover, it is
now clear that prolactin transcriptionally augments
progesterone-induced UG gene expression in the uterus
via a specific protein that binds to the 5�-flanking region
of the UG gene [124–126, 128]. In the prostate and in
the seminal vesicle, the UG gene is regulated by testos-
terone [129], whereas in the lungs it is constitutively
expressed, although glucocorticoid treatment caused a
three-fold stimulation of UG mRNA expression in the
rabbit [130–132]. Differential activation of lung-specific

CC10 (UG) by two forkhead proteins, FREAC-1 and
FREAC-2, has been reported by Hellqvist et al. [133].
Recently, it has been reported that administration of
IFN� to mice stimulates UG production in the lungs,
and an interferon (IFN)�-response element has been
identified in the 5�-flanking region of the mouse UG
promoter [134]. Interestingly, the production of IFN-�
and its biological activity are also inhibited by UG [135,
136]. More recently, it has been demonstrated that
IFN-� treatment of human bronchial cells induces ex-
pression of UG [137]. Taken together, these results
further suggest that UG has an important role in the
regulation of immunological and inflammatory pro-
cesses. Whether these effects of UG are mediated by the
UG receptor is yet to be determined.

Multifunctional nature of UG

We mentioned earlier in this review that UG has been
given numerous names. These names may suggest the
multiple biological properties of this protein. One of the
first properties reported was its ability to enhance the
growth of preimplantation blastocysts, hence the name
blastokinin [1]. Subsequently, it was found that UG
binds progesterone [8], and it was proposed that UG
acts as a carrier and/or scavenger [138] of this steroid
hormone, reducing its toxicity to the early developing
embryo [139]. Several years later, binding of PCBs [14]
and retinol [15] by UG was also reported. The
significance of these results needs to be clarified.
In 1980, Mukherjee et al. [47] proposed that UG may
provide immunological protection to the developing
embryo, which is an allograft to the maternal organism.
Subsequently, experimental evidence was provided
which, at least in part, lent support to this hypothesis [48,
49]. Furthermore, UG was suggested to be one of the
mediators of pregnancy-related immunosuppressive
effects of progesterone, which Siiteri et al. [140] called
‘Nature’s immunosuppressant’. Interestingly, the
immunomodulatory effects of UG were found to be
further augmented by transglutaminase (TG), an enzyme
that catalyzes the cross-linking of proteins by forming
�-�-glutamyl-lysine isopeptide bonds between lysine and
glutamine residues in them. In fact, further experiments
showed that UG is an excellent substrate of TG [71, 72,
141]. One of the most important properties of UG is its
ability to dramatically inhibit both chemotaxis and
phagocytosis of monocytes and neutrophils [142, 143].
Taken together, these results raised the possibility that
UG alters the immune response against allogenic cells by
masking their surface antigens and directly modulating
phagocyte functions. Recently, this protein has again
been called a ‘natural immunosuppressor’ [136]. These
results, in conjunction with the recent discovery
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that UG has a cell surface receptor [144–146], raise the
possibility that UG may be a multifunctional cytokine.
The cloning and characterization of the UG receptor
cDNA and the gene may further advance our knowl-
edge of the function of this protein.
A well-known dictum in reproductive biology is that
progesterone induces quiescence in the mammalian
uterus during pregnancy and that successful pregnancy
in all mammals requires progesterone. It is also known
that the motility and contraction of the uterine smooth
muscles are induced by lipid mediators of inflammation
(e.g. prostanoids). The production of prostanoids (PGs)
requires arachidonic acid, generated by the hydrolysis
of cellular phospholipids by PLA2s, a diverse family of
acyl esterases [147–151]. Since a family of corticos-
teroid-induced proteins, lipocortins [152–155], exert
their biological effects by inhibiting PLA2 activity, the
possibility that UG may function in a similar manner
was investigated. It was found that UG is a potent
inhibitor [50, 51] of sPLA2 activity. This function ap-
pears to be conserved in UG and can be attributed to
amino acid residues 39–47 of the �-helix-3 of UG [51] in
virtually all mammals [29].
It is interesting that UG is constitutively expressed in the
tracheobronchial epithelia that comes in contact with
myriads of antigens that are present in the external
environment. It is proposed that in this organ UG may
function as a modulator of inadvertent immunological
activation [3]. In addition, UG may have another very
important function, that is inhibition of proliferation of
certain cell types, and this effect may be receptor-
mediated. Recent evidence suggests that the epithelia in
organs that under physiological conditions express the
UG gene may not do so after they undergo
transformation [156–158]. Furthermore, isolated
epithelial cells from those organs when transformed by
an oncogenic virus (e.g. SV40) show drastic reduction in
UG gene expression or do not produce UG at all [156,
157]. These results show that UG production is not
compatible with the transformed phenotype of a cell.
Most interestingly, induced expression of UG in some
cancer cells appears to result in the loss of their
transformed phenotype [158] that typifies these cells. In
addition, the cancer cells that respond to induced UG
expression by losing their malignant transformed
phenotype also appear to express the UG receptor (Z.
Zhang et al., unpublished results). These results not only
define the multifunctional nature of this protein but also
raise the possibility that UG may have a tumor
suppressor-like function. Most important, our
preliminary studies involving UG-knockout mice suggest
that the incidence of cancer in these mice is extremely
high (Z. Zhang et al., unpublished results). Taken
together, these results point to the tumor suppressor-like
activity of UG.

Uteroglobin-binding proteins (putative receptor)

Daniel and his colleague [1] and Kirchner [100, 101]
independently observed that whereas UG is synthesized
and secreted by the endometrial epithelia of the rabbit,
this protein was detectable in the blastocoele cavity.
However, neither how UG is transported across the
trophoblast layer of the blastocyst nor the physiological
function of UG in the blastocoele have been determined.
Robinson et al. [159] first proposed that a transporter
may be involved in migration of UG from the uterus to
the blastocoele. Using 125I-hUG (recombinant) as the
ligand, we found high-affinity UG-binding protein
(putative receptor) on several cell types with a molecular
mass of 190 kDa [145]. Diaz Gonzalez and Nieto [144]
reported specific binding of 125I-UG to proteins on
microsomal and plasma membranes. Since UG is a
homodimer in which the 70-amino acid subunits are
connected by two disulfide bonds, we sought to
determine whether UG monomers also interact with the
190-kDa UG-binding protein and, if so, whether the UG
monomer has the same biological activity as the dimer.
Surprisingly, we uncovered an additional protein, with a
molecular mass of 49 kDa, that binds reduced UG with
high affinity and specificity [146]. Both 49- and 190-kDa
proteins (fig. 4) are readily detectable on nontransformed
NIH 3T3 and some murine cancer cells (e.g.
mastocytoma, sarcoma and lymphoma), while lacking on
others (e.g. fibrosarcoma). Most interestingly, UG
pretreatment of the cells express the binding proteins,

Figure 4. Affinity cross-linking of hUG-binding proteins on NIH
3T3 (lanes 1–3), mastocytoma (lanes 4–5), sarcoma (lanes 6–7) and
lymphoma (lanes 8–9) cells. 125I-hUG was incubated with each of
these cells in the absence or presence of unlabeled hUG for binding
and then cross-linked with disuccinimidyl suberate (DSS). Lane 1:
(− ) DSS; lane 2: (+ ) DSS; lane 3: (+ ) unlabeled hUG, (+ ) DSS;
lane 4: (+ ) DSS; lane 5: (+ ) unlabeled hUG, (+ ) DSS; lane 6:
(+ ) DSS; lane 7: (+ ) unlabeled hUG, (+ ) DSS; lane 8: (+ ) DSS
and lane 9: (+ ) unlabeled hUG, (+ ) DSS. Note a 49-kDa protein
band, in addition to the 190-kDa band and the decreased intensity
of both bands when nonradioactive UG was added to the reaction
mixture for competition. (Reprinted with permission from: Kundu
G. et al. (1998) J. Biol. Chem. 273: 22819–22824. Copyright © 1998,
The American Society for Biochemistry and Molecular Biology.)
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dramatically suppressed extracellular matrix (ECM)
invasion, though such treatment had no effect on
fibrosarcoma cells that also lack the binding proteins.
Tissue-specific expression studies confirmed that
UG-binding proteins are present in bovine heart, spleen,
lung, liver and the kidney but not in the aorta (fig. 5A).
Purification of these binding proteins from bovine spleen
by UG-affinity chromatography and analysis by
SDS-PAGE followed by silver staining identified a 40-
and an 180-kDa protein (fig. 5B), respectively. Treatment
of the NIH 3T3 cells with specific cytokines (i.e. IL-6)
and other agonists [i.e. lipopolysaccharide (LPS)]
substantially increased 125I-UG binding on these cells but
pretreatment with PDGF, TNF�, IFN� and phorbol
myristate acetate (PMA) was ineffective (fig. 6). These
results suggest that (i) two proteins are readily de-
tectable on both normal and malignant cells that bind
UG with high affinity and specificity; (ii) these proteins
are also detectable in bovine heart, lung, spleen and
kidney but not the aorta; (iii) treatment of the NIH 3T3
cells with LPS or IL-6 substantially increases the level
of 125I-UG binding and (iv) UG pretreatment of the

cells, expressing the high-affinity binding proteins,
causes dramatic inhibition of ECM invasion, whereas it
has no such effect on cells lacking UG-binding proteins
[145, 146]. Taken together, these findings raise the pos-
sibility that UG-binding proteins play critical roles in
UG-mediated regulation of cellular motility and inva-
sion of the ECM.

Determination of physiological functions of uteroglobin

by gene targeting in mice

The properties of UG described so far have been
derived primarily from the results of in vitro experi-
ments. While these investigations uncovered important
biological properties of this protein (for review see [3,
31, 32, 160]), more than 3 decades of scientific inquiry
did not uncover the physiological functions of UG.
Thus, it was necessary to inactivate the UG gene to
generate an animal model lacking this protein. Accord-
ingly, the UG gene was disrupted in mice [33] by gene
targeting [161] in ES cells. The resulting phenotype

Figure 5. (A) Tissue-specific expression of hUG-binding proteins using different bovine tissues by affinity cross-linking technique. Note
that the hUG-binding proteins are clearly detectable in bovine heart, spleen, trachea, lung and liver but not in the aorta. (Reprinted
with permission from: Kundu G. C. et al. (1998) J. Biol. Chem. 273: 22819–22824. Copyright © 1998, The American Society for
Biochemistry and Molecular Biology.) (B) Affinity purification of UG-binding protein(s). The UG-binding proteins were purified using
UG affinity chromatography. The purified receptor proteins were resolved by SDS-PAGE under denaturing and reducing conditions,
and the protein bands were visualized by silver staining. Note that there are two protein bands with apparent molecular masses of 180-
and 40-kDa, respectively, that are clearly visible. In addition, a third faint band with an apparent molecular mass of 32 kDa is also
detectable. However, unlike the 180- and 40-kDa proteins, the 32-kDa species had no UG binding (data not shown), suggesting that
this band is either an artifact or a degradation product that lack the UG-binding epitope. (Reprinted with permission from: Kundu G.
C. et al. (1998) J. Biol. Chem. 273: 22819–22824. Copyright © 1998, The American Society for Biochemistry and Molecular Biology.)
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Figure 6. Effect of different cytokines and other agents on the
expression of UG-binding proteins using NIH 3T3 cells. Note the
considerable enhancement in intensity of the radioactive bands
representing the UG-binding protein(s) following treatment of the
cells with LPS and IL-6, respectively, compared with the control.
However, this difference is not apparent when the cells are treated
with PMA, PDGF, TNF� and IFN�. (Reprinted with permission
from: Kundu G. C. et al. (1998) J. Biol. Chem. 273: 22819–22824.
Copyright © 1998, The American Society for Biochemistry and
Molecular Biology.)

The major phenotypic finding in the UG knockout mice
was in the kidneys [33]. This was unexpected, as UG
gene is not reported to be expressed in this organ.
Compared with normal controls (fig. 8A), the UG
knockout mice developed severe glomerulopathy (fig.
8B), either 4–5 weeks after birth (early onset) or when
they were several months old (late onset). The animals
with the late-onset disease, in addition to developing the
Fn-deposit glomerulopathy, had renal parenchymal
fibrosis and distal tubular hyperplasia (fig. 8C, D). The
glomeruli of the early onset mice demonstrated abnor-
mal deposition of predominantly Fn and a moderate
amount of collagen as demonstrated by the presence of
characteristic Fn and collagen fibrils by electron mi-
croscopy (fig. 8E, F). These results were confirmed by
immunofluorescence and Mason’s trichrome staining,
respectively (fig. 8G–J). Biochemically, these Fn
molecules appeared to be multimeric when analyzed by
SDS-PAGE (fig. 9A). In order to determine whether
excessive production of Fn may have resulted in abnor-
mal glomerular deposition, we performed semiquantita-
tive RT-PCR and densitometric analyses of the cDNA
bands obtained by using total RNA from whole kid-
neys, lungs and liver of UG−/− and UG+/+ mice,
respectively. Although these experiments did not show
that Fn production was higher in UG−/− mice, semi-
quantative RT-PCR experiments using RNA from iso-
lated glomeruli of UG null and control mice now show
that Fn production in the glomeruli of UG null mice is
elevated (F. Zheng et al., unpublished results). The
development of glomerulonephritis, an inflammatory
disease [164], in UG gene knockout mice is not surpris-
ing, as UG is an antiinflammatory protein. However,
the development of an inflammatory disease in the
kidney was fully unexpected, as this organ does not
express the UG gene.
As mentioned earlier in this review, UG is a potent
inhibitor of sPLA2 activity [17, 50–52]. Thus, it was
important to determine the plasma PLA2 activities in
UG−/− and UG+/+ mice, and we found that the
specific activities were significantly higher in UG−/−

mice compared with UG+/− or UG+/+ controls. We
also found that lysophosphatidic acid (LPA), a by-
product of PLA2 catalysis, was also elevated in the
plasma of UG-deficient mice. The implications of these
findings will be clear in the following paragraphs. A
high molecular ECM protein, Fn [165–167] is known to
interact with several other polypeptides. According to
the current concepts, during matrix assembly and fibril-
logenesis, self-aggregation of Fn and activation of inte-
grins [165–167], heterodimeric proteins with
receptor-like functions, play critical roles. Fn predomi-
nantly binds to �5�1 integrin present on the surface of
several cell types, including glomerular messangial cells.
Recent reports also indicate that integrin activation and

from one of these studies [33] has recently been re-
viewed [162, 163]. Thus, in this review we will summa-
rize our findings and discuss the implications of the
phenotype of the UG knockout mice, especially the
development of fibronectin (Fn)-deposit glomerulopa-
thy [33] in these animals.
Targeting and disruption of the UG gene were accom-
plished by partial deletion of exon-2 and by inserting a
neomycin resistance gene cassette (neo) as shown in
figure 7A. Standard techniques [161] were employed to
generate UG-deficient mice [33]. The resulting targeting
construct was transfected to the ES cells. Figure 7B
shows a Southern blot of genomic DNA from ES cell
clones in which the UG gene has been successfully
disrupted. In figure 7C and D, the polymerase chain
reaction (PCR) analyses and Southern blotting, respec-
tively, of the genomic DNA from UG gene-targeted
offspring are shown. The UG deficiency was verified
both by reverse-transcriptase PCR (RT-PCR) (fig. 7E)
and Western blotting (fig. 7F) using lung RNA and
protein, respectively. We used the lung RNA, as this
gene is constitutively expressed in this organ. These
results were further confirmed by immunohistochemical
analyses of the tissues (fig. 7G). The UG gene-disrupted
mice were used to analyze the phenotype manifested as
a result of this mutation.
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Figure 7. Generation of UG-knockout mice by gene targeting. (A) Schematic representation of the UG gene locus is shown
in the upper panel. The restriction sites are identified by single letters (B, BamHI, E, EcoRI, H, HindIII). (B) Southern blot
analyses of the targeted ES R1 cell clones. Wt, wild type. (C) Representative PCR analyses of genomic DNA from tail
biopsies of offspring. The genotypes and their corresponding PCR products are as follows: UG+/+, 304 bp; UG+/−, 304
and 667 bp; UG−/−, 667 bp. (D) Southern blot of mouse tail genomic DNA. (E) RT-PCR analyses of total RNA
extracted from the lung tissues of littermates with UG+/+, UG+/− and UG−/− genotypes. Whereas a 273-bp RT-PCR
product was clearly detectable in the lungs of UG+/+and UG+/− mice, it was lacking in those from UG−/− mice. (F)
Western blot analysis. Proteins (30 �g each) from lung lysates were resolved by electrophoresis using 4–20% gradient
SDS-polyacrylamide gels under nonreducing conditions and immunoblotted using rabbit anti-mouse UG. (G) Immunohis-
tochemical localization of UG in bronchiolar epithelial cells. The dark staining over the bronchiolar epithelial cells of a
UG+/+mouse (upper panel) indicates the presence of UG immunoreactivity. Note a complete lack of such immunoreactiv-
ity in the lungs of the UG−/− mouse (lower panel). (Reprinted with permission from: Zhang Z. et al. (1997) Science 276:

1408–1412. Copyright © 1998, American Association for the Advancement of Science.)

self-assembly of Fn are promoted by LPA. Thus, we
studied whether UG may have an effect on Fn self-ag-
gregation. We found that UG binds to Fn with high
affinity, and the formation of Fn-UG heteromer effec-
tively prevents Fn-Fn homomer formation (fig. 9E).
Similarly, Fn-collagen aggregation was also prevented
by UG (fig. 9F). Furthermore, we have found the
presence of Fn-UG heteromers in plasma of UG+/+

but not in those of UG−/− mice (fig. 9D). Moreover, in
vivo we demonstrated that Fn deposition in the
glomeruli of UG−/− mice is undetectable when Fn is
infused in combination with UG, whereas infusion of
Fn alone can easily cause abnormal deposition [33].
Taken together, our results, in conjunction with the
current knowledge of Fn matrix assembly and fibrillo-
genesis, suggest that one of the important physiological
roles of UG is to prevent abnormal deposition of Fn,
which leads to the glomerulopathy observed in UG
gene-disrupted mice. It should be noted that UG gene
knockout mice described by Stripp et al. [34] did not
develop the same phenotype as that of the UG knock-
out mice [33]. While the exact reason(s) for this pheno-

typic difference are not yet clearly understood, at least
in a some instances (for review see [168]) such differ-
ences are caused by inadvertent disruption of a gene
flanking the gene intended to be disrupted.

Transgenic mice expressing antisense UG-mRNA

manifest abnormal deposition of fibronectin and

collagen in the renal glomeruli

As discussed above, targeted disruption of the murine
UG gene in two independent laboratories manifested
two different phenotypes. Phenotypic differences may
arise from (i) unintended disruption of genes flanking a
target gene (e.g. UG), (ii) genetic background or (iii)
production of truncated or fusion gene products as a
result of incomplete disruption of the gene. Therefore,
in order to address the first possibility, we generated
two independent lines of transgenic mice that express
antisense UG mRNA-caused partial UG deficiency,
without the structural alteration of the endogenous
gene. We found that these transgenic mice develop
abnormal glomerular deposition of Fn and collagen (G.
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Kundu et al., unpublished results) virtually identical to
that found in the UG knockout mice [33]. These results
strongly suggest that the cause of the renal disease in
UG gene knockout mice reported previously [33] is due
to UG deficiency caused by UG gene disruption, and it
seems highly unlikely that the observed phenotype of
these mice is due to the disruption of any other gene
flanking the UG locus.

Tumor suppressor-like effects of UG

As indicated earlier in this review, the UG gene,
mapped to human chromosome 11q12.2–13.1 [29], consists
of three exons and two introns and was structurally
conserved during evolution. Interestingly, abnormalities
in this region of chromosome 11 have been correlated
with human cancers [169–172]. It has also been re-
ported that the introduction of chromosome 11 into
HeLa cells completely suppresses the tumorigenic phe-
notype of these cells [173]. Recent reports indicate that
whereas the UG gene is constitutively expressed in the
tracheobronchial epithelia at a high level [3], both ade-
nocarcinoma tissues as well as the cell lines derived
from adenocarcinomas of the lung express the UG gene
either at a drastically reduced level or do not express it
at all [158, 174–176]. The loss of UG gene expression
has also been reported in adenocarcinomas of the
prostate [177], another organ in which the UG gene is
constitutively expressed at a high level [3]. Furthermore,
immortalization of normal epithelial cells from rabbit
lung (K. Momoeda et al., unpublished results), uterus
[156] and prostate (A. B. Mukherjee et al., unpublished
results), by an SV40 mutant virus, causes the cessation
of UG gene expression. Moreover, in some cell types
(e.g. arterial smooth muscle cells) UG treatment inhibits
proliferation (G. Mantile-Selvaggi, et al., unpublished
results). Taken together, these results suggest that the
lack of UG gene expression may be a characteristic
shared by many cancer and transformed cells. By trans-
fecting several adenocarcinoma cell lines with hUG-
cDNA, we demonstrated that induced hUG expression
reverses the transformed phenotype (i.e. anchorage-in-
dependent growth and ECM invasion) of only those
cells that also express the hUG receptor. Treatment of
the receptor-positive cells with purified hUG yields
identical results. These data define both autocrine and
paracrine pathways through which hUG exerts its ef-
fects that reverse the transformed phenotype of cancer
cells that carry its receptor.

Is UG a cytokine?

This question arises with regard to UG for several
reasons: (i) like cytokines, UG is a secreted protein; (ii)

Figure 8. Severe renal glomerular disease in UG−/− mice.
H&E staining of kidney sections from a UG+/+. (A) and its
UG−/− littermate (B). Note the heavy deposit of eosinophilic
material in the glomeruli of the UG−/− mouse with severe renal
disease. (C) Photomicrograph of kidney section of a 10-month-
old mouse with severe parenchymal fibrosis.(D) Photomi-
crograph of a region of the same mouse kidney shown in (C),
showing renal tubular hyperplasia. Magnification approximately
40× . g, glomerulus; f, fibroblasts; t, tubule. (E) Transmission
electron microscopy of the glomerular deposit of a UG−/−

mouse with severe renal disease. Magnification approximately
6000× . (F) The inset in (E) is magnified (60,000× ), which
shows the presence of long striated fibrillar structures consistent
with the presence of collagen (col) and short diffuse ones
consistent with Fn fibrils. (G) Fn immunofluorescence of a
kidney section from a UG+/+ mouse using murine Fn anti-
body. Note the absence of Fn-specific immunofluorescence in the
glomeruli marked ‘g’ of a UG+/+ mouse, (H) Fn immu-
nofluorescence of a kidney section from a UG−/− mouse with
severe renal disease. Note the intense Fn immunofluorescence
over the glomeruli. Mason’s trichrome staining of the kidney
sections from UG+/+ (I) and UG−/− (J) mice. Note the
presence of bluish staining over the glomeruli of UG−/− mouse
kidney section indicating the presence of collagen. Magnification
approximately 40× . (Reprinted with permission from: Zhang
Z. et al. (1997) Science 276: 1408–1412. Copyright © 1998,
American Association for the Advancement of Science.)
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Figure 9. Detection of multimeric Fn in UG−/− mice and the effect of UG on Fn-Fn and Fn-collagen interactions. (A)
Immunoprecipitation and Western blotting of Fn from plasma, kidney and liver of UG+/+and UG−/− mice. Immunoprecipitates
were resolved on 4–20% (liver) and 6% (kidney and plasma) SDS-polyacrylamide gels, respectively, under reducing conditions. Bold
arrow indicates the multimeric Fn band present only in the kidney lysate of UG−/− mice. (B) Binding of UG with Fn followed by
coimmunoprecipitation and detection by Western blotting. The immuoprecipitated proteins were resolved by electrophoresis either on
6% or 4–20% gradient SDS-PAGE under reducing and denaturing conditions for Fn and UG, respectively. Note that the
immunoprecipitates contain both Fn (lane 2, upper panel) and UG (lane 2, lower panel). Lane 1 of both panels represent corresponding
standards stained with Coomassie blue. (C) The Fn-125I-UG complex was immunoprecipitated with Fn antibody, and the immunopre-
cipitate was resolved by electrophoresis on 6% nonreducing, nondenaturing polyacrylamide gels. Lane 1 is the Coomassie blue-stained
Fn-UG heteromer, and its autoradiogram is shown in lane 2. Note that there is no appreciable difference in the electrophoretic
mobilities of the heteromer compared with Fn alone, as the slight increment in molecular mass of the UG-Fn heteromer cannot be
discriminated from that of Fn under the experimental conditions used. (D) Coimmunoprecipitation of Fn and UG from the plasma of
UG+/+and UG−/− mice. Fn (upper panel); UG (lower panel). Std, standards for UG and Fn. (E) Affinity cross-linking of 125I-Fn
with unlabeled Fn in the absence (lane 2) and presence of varying amounts of UG (lanes 3–5). The intensity of the very high molecular
weight, radioactive Fn band (lane 2) formed in the absence of UG is reduced in a dose-dependent manner. Lane 1, 125I-Fn with
unlabeled Fn in the absence of UG and DSS. Open arrowhead, multimeric Fn; lower thin arrow, 220-kDa Fn. (F) Affinity cross-linking
of 125I-collagen-I with unlabeled Fn in the absence (lane 3) and presence (lane 4) of UG. Lane 1, Coomassie blue-stained collagen-I;
�1, �1-chain of collagen-I; �2, �2-chain of collagen-I. Lane 2, 125I-collagen-I and unlabeled Fn in the absence of UG and DSS.
(Reprinted with permission from: Zhang Z. et al. (1997) Science 276: 1408–1412. Copyright © 1998, American Association for the
Advancement of Science.)

it has many and varied biological effects, not unlike
cytokines and (iii) it has a receptor through which UG
regulates cellular functions [145, 146]. Of course, these
are only speculations at this time, and we realize that
the biological properties of UG discussed above do not
warrant calling this protein a cytokine. Nonetheless,
many properties of this protein are reminiscent of those
characteristic of cytokines.

To understand the phenotypic manifestations of UG
deficiency, we have employed more sensitive techniques
(e.g. competitive RT-PCR, using total RNA from iso-
lated glomeruli and not from the whole kidney tissues
of knockout and normal mice), and we were able to
demonstrate that Fn-mRNA levels are significantly
higher in isolated glomerular mesangial cells of UG−/−

mice compared with those of its UG+/+counterpart (F.
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Zheng et al., unpublished results). Thus, it appears that
in UG-deficient mice, Fn production in the glomeruli
may be dysregulated. Moreover, we also found that
glomerular messangial cells from both UG−/− and
UG+/+ mice equally express the UG receptor (F. Zheng
et al., unpublished results). In light of these results, it is
entirely possible that disruption of the UG gene creates
a deficiency of the ligand (i.e. UG), and as a result genes
downstream from the UG receptor-mediated pathway
may be dysregulated. Ongoing studies of the cloning and
characterization of UG receptor cDNA and gene, and
the mechanism(s) of signal transduction via this pathway
are expected to broaden our knowledge of some of these
aspects of UG function. Moreover, UG knockout mice
provide a valuable animal model to explore the molecu-
lar mechanisms of human glomerulopathies in general
and familial Fn-deposit glomerulopathy [178, 179] in
particular. The fact that UG knockout mice with late
onset disease develop both glomerulopathy and renal
parenchymal fibrosis tempt us to speculate that UG may
be one of the endogenous antiinflammatory/im-
munomodulatory factors, the physiological functions of
which include the maintenance of normal glomerular
function.
For more than 3 decades UG has been the subject of
intense investigations. The results of these investigations
have clearly established that this is a multifunctional
protein that is physiologically important. The discovery
of high-affinity UG-binding proteins [144–146] adds a
new dimension to our understanding of the multifaceted
nature of this protein. Future studies may elucidate
whether UG and proteins having sequence similarities to
it belong to a novel cytokine/chemokine family.

Note added in proof. While this manuscript was in press, we noted
that Chilton and Hewetson have published a comprehensive review
on the role novel elements that are important in UG/CC 10 kDa
protein expression: Chilton B. S. and Hewetson A. (1998) Zinc
finger proteins RUSH in where ohters fear to tread. Biol. Reprod.
58: 285–294.
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