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Calcium and transcription

In eukaryotic cells, calcium ions not only regulate sev-
eral basic cellular functions such as muscle contraction
and neurotransmitter release but also act as key media-
tors of adaptive responses that involve changes in gene
transcription. The latter role for calcium is particularly
well documented in the nervous system, where transient
increases in intracellular calcium concentration are re-
sponsible for electrical activity-dependent changes in
gene expression [1–5; reviewed in 6–8]. Different types
of electrical stimuli give rise to different transcriptional
responses, most likely because the calcium signal associ-
ated with any given stimulus has distinct properties:
calcium can flow into neurons from the extracellular
space through neurotransmitter receptors or voltage-
gated calcium channels or it can be released from intra-
cellular stores; increases in calcium concentrations can
be small or large, transient or sustained, and can be
localised to the dendrites or invade the nucleus. Each of
these parameters can influence the transcriptional re-
sponse qualitatively as well as quantitatively. For exam-
ple, in hippocampal neurons the physical site of calcium

entry is an important determinant of the transcriptional
response: calcium influx through L-type voltage-sensi-
tive calcium channels very potently stimulates transcrip-
tion mediated by the cAMP response element (CRE),
whereas bath application of glutamate causing calcium
to enter the neurons through the N-methyl-D-aspartate
(NMDA) type of glutamate receptor poorly activates
CRE-dependent gene expression [3, 9]. The importance
of the spatial properties of calcium signals for transcrip-
tion regulation was first demonstrated in the mouse
pituitary cell line AtT20: nuclear and cytoplasmic cal-
cium were shown to activate gene expression through
distinct mechanisms [10, reviewed in 11]. Differential
gene regulation by calcium signals may be explained by
differences in the local availability of signal-processing
molecules and their particular activation and inactiva-
tion properties. The predominant mechanism by which
calcium signals are further processed within cytoplasm
and the nucleus, ultimately leading to activation of
components of the transcription-regulating machinery,
involves protein kinase cascades. In this review we sum-
marise current knowledge on calcium signal-regulated
protein kinases and discuss possible mechanisms
through which they control the activity of transcription
factors and transcriptional coactivators.* Corresponding author.
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Calcium-regulated protein kinases

Calcium/calmodulin-dependent protein kinases
A consequence of increases in the intracellular calcium
concentration is the association of calcium ions with the
ubiquitous calcium receptor calmodulin (CaM).
Calmodulin is a small (148 amino acids), acidic protein
capable of binding four calcium ions. The calcium/CaM
complex interacts and activates a variety of cellular
effectors, which include protein kinases and phos-
phatases [12]. This activation process involves a confor-
mational change of the target protein upon binding of
calcium/CaM to a short region known as the CaM
binding domain. Computer modelling based on the
structures of the cAMP-dependent protein kinase
(PKA) [13, 14] and analysis of the crystal structure of
CaM kinase I [15] provided clues about theses struc-
tural changes. In the case of CaM-dependent kinases
such as myosin-light chain kinase or the multifunctional
CaM kinases I, II and IV, an autoinhibitory domain,
interacts with the catalytic domain keeping the enzyme
inactive at resting calcium levels. According to this
‘intrasteric inhibition’ model [13], calcium/CaM binding
to a region adjacent to the autoinhibitory domain
causes a change in conformation that permits access of
peptide substrates and adenosine triphosphate (ATP) to
the catalytic domain. In this manner, CaM-dependent
kinases can rapidly sense elevations of intracellular cal-
cium becoming active as calcium-bound CaM binds to
them. In addition, some of these enzymes are also
equipped with mechanisms that enable them to prolong
their activity after calcium has returned to basal levels.
This form of ‘molecular memory’ is best documented
for CaM kinase II, a multimeric enzyme composed of at
least 10 subunits [reviewed in 16]. Each one of the
subunits is a 50–60-kDa polypeptide containing an
N-terminal catalytic domain, a central autoinhibitory
and CaM binding region and a C-terminal domain
responsible for multimerisation and intracellular locali-
sation. The unique multimeric structure of CaM kinase
II allows very rapid trans-phosphorylation of subunits
within the complex. As a consequence of trans-phos-
phorylation, a subunit acquires calcium/CaM-indepen-
dent activity [17]. In addition, the affinity of the
autophosphorylated subunits for CaM increases, mak-
ing it more sensitive to further calcium elevations [18].
These properties of CaM kinase II allow the enzyme to
remain active for some time after calcium levels have
dropped below activation threshold, which explains
why CaM kinase II activity is stimulated not only by
sustained increases in calcium concentration but also by
calcium oscillations [18].
The activity of CaM kinases I and IV, which act as
monomeric enzymes, is also modulated by phosphoryla-
tion. However, in contrast to CaM kinase II, the regula-

tory phosphorylation events are catalysed by a distinct
group of kinases termed CaM kinase kinases (CaMKK)
[reviewed in 19]. Two CaMKK isoforms, a and b, have
been cloned and were found to be expressed in many
tissues (including the nervous system) [20–24].
CaMKKs themselves are calcium/CaM-dependent en-
zymes. They phosphorylate calcium/CaM-bound CaM
kinase I and IV on a threonine residue situated within
the activation loop (threonine residue 177 of the human
CaM kinase I [22]; threonine residue 200 and 196 of the
human and rat CaM kinase IV, respectively [23, 24]).
These phosphorylation events cause the activity of CaM
kinase I and IV to increase several fold. Similar to CaM
kinase II, CaM kinase IV can autophosphorylate on
serines 12 and 13, which is required for the enzyme to
be active [25].
While CaM kinase IV is predominantly nuclear [26] and
CaM kinase I appears to be a cytosolic enzyme [27], the
subcellular distribution of CaM kinase II can vary
[reviewed in 28]. Four types of subunits of CaM kinase
II have been identified (a, b, g, d) that are encoded by
different genes with differing tissue-specific expression.
Alternative splicing within the C-terminal sequence of
each gene produces further isoforms. Although the bio-
chemical characteristics of CaM kinase II purified from
many tissues are practically identical, the subunit com-
position, that is dependent on the source, seems to
determine the subcellular localisation of the complex.
The most studied forms of CaM kinase II (from fore-
brain or cerebellum) are rich in a- and b-subunits,
respectively, are mainly cytoplasmic enzymes and are
abundant in the postsynaptic densities [29]. Some splice
variants of the a, g and d CaM kinase II genes contain
a nuclear localisation signal (NLS) [30, 31], resulting in
targeting of the kinase to the nucleus. Expression of the
nuclear d (B) isoform together with cytoplasmic iso-
forms of CaM kinase II can direct the heteromultimeric
enzyme complex to the nucleus, suggesting that the
relative abundance of cytoplasmic- or nuclear-targeted
subunits may determine the subcellular localisation [31].
Nuclear localisation may also be subject to regulation
by protein kinases, as phosphorylation of a serine
residue adjacent to the NLS can prevent nuclear import
[32].
CaM kinases are important regulators of gene expres-
sion. They can phosphorylate in vitro transcription fac-
tors such as CREB [33, 34], C/EBPb [35] ATF-1 [36, 37]
and SRF [34, 38] on important regulatory sites. In
addition, pharmacological inhibition of CaM kinases
greatly reduces the induction of, for example, c-fos
expression and CREB-dependent transcription in re-
sponse to calcium signals [3, 4, 39]. The evidence for
nuclear CaM kinase IV being critical in this process is
particularly good: (i) expression of catalytically inactive
mutants of CaM kinase IV blocks calcium-activated,
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CREB/CREB-binding protein (CBP)-mediated tran-
scriptional activation in AtT20 cells and hippocampal
neurons [9, 39]; (ii) thymic T cells derived from trans-
genic mice expressing the catalytically inactive mutants
of CaM kinase IV under the control of the proximal
promoter of the murine lck gene show a reduction in
phorbolester/calcium ionophore-induced CREB phos-
phorylation [40], (iii) expression of a constitutively ac-
tive form of CaM kinase IV is sufficient to activate
CRE/CREB-dependent transcription [39, 41–43]. In
contrast to CaM kinase IV, CaM kinase II does not
activate CRE/CREB-mediated transcription [39, 41,
42]. However, a constitutively active form of CaM
kinase II can stimulate the activity of the c-fos pro-
moter [39, 42]. In addition, the nuclear d (B) isoform of
CaM kinase II can transactivate an atrial natriuretic
factor (ANF) promoter-containing reporter gene in ven-
tricular myocytes [44]. These transcriptional responses
may be mediated by the c-fos serum response element
(SRE) that is present in both the c-fos and ANF pro-
moters. How signals generated by calcium flux across
the plasma membrane are relayed to the nucleus to
activate CaM kinases is not clear. It has been suggested
that calcium-bound CaM translocates from submem-
branous regions of high calcium to the nucleus [45].
Alternatively, CaM kinase IV (or nuclear forms of CaM
kinase II) may be directly activated by calcium tran-
sients propagated to the nucleus.

Extracellular signal-regulated kinases (ERKs)
ERK1 and ERK2 are the prototypical mitogen-acti-
vated protein (MAP) kinases. Their activity is con-
trolled by a signalling cascade that is activated by
environmental signals such as growth factor receptor
stimulation [reviewed in 46, 47] and neurotransmitter-
evoked activation of calcium entry into neurons [48,
49]. In the case of growth factors such nerve growth
factor (NGF) or epidermal growth factor (EGF), the
signalling pathways are very well worked out [reviewed
in 50]. For example, upon binding of NGF, the high-
affinity NGF receptor TrkA (a transmembrane receptor
tyrosine kinase) autophosphorylates on tyrosine
residues, allowing binding of the SH2 domain-contain-
ing adapter protein Grb-2. Grb-2 interacts and thereby
activates the Ras GDP release factor SOS, resulting in
binding of GTP to Ras. GTP-loaded Ras activates the
serine/threonine kinase Raf, which in turn phosphory-
lates and activates a dual-specificity serine/threonine-ty-
rosine kinase MAP kinase/ERK kinases (MEK) 1 and
2. MEK 1/2 phosphorylate ERK1 and ERK2 at both a
threonine and a tyrosine residue in the activation loop
that stimulates their phosphotransferase activity. It ap-
pears that the section of the signalling cascade down-
stream of Ras is also used to link increase in the

intracellular calcium concentration to the activation of
ERKs. However, it is still unclear how calcium signals
to Ras. A potential mechanism involves the calcium-
regulated guanine-nucleotide releasing factor Ras-GRF
[51]. Several other mechanisms have been described that
involve, for example, activation of the nontransmem-
brane tyrosine kinases src [52] and Pyk2 [53], or inhibi-
tion by CaM kinase II of the Ras GTPase-activating
protein p135synGap (an inactivator of Ras) [54].
One function of the Ras/ERK signalling cascade is to
relay signals from the membrane to the nucleus. Upon
activation, ERKs have been reported to translocate to
the nucleus, where they phosphorylate and activate
transcription factors [reviewed in 50]. The ternary com-
plex factor (TCF) Elk-1 is one transcription factor
target that mediates some of the effects of growth
factors such as NGF, EGF and insulin on transcription
[reviewed in 55]. CREB is another target of the Ras/
ERK signalling pathway. However, phosphorylation of
CREB on its activator site serine 133 is not mediated by
ERKs but by the ERK-activated protein kinase riboso-
mal S6-kinase (RSK) 2 [56].
Whereas the Ras/ERK cascade is the prime mediator of
growth factor signalling and controls the cells’ physio-
logical responses through the regulation of gene expres-
sion, the role of this signalling pathway for calcium
regulation of gene expression is unclear. Several studies
in which ERK activation was blocked by pharmacolog-
ical means suggest that this signalling cascade may be
responsible for neuronal activity-regulated CRE/
CREB-dependent transcription [57, 58]. However, selec-
tive activation of the Ras/ERK pathway using the Ras
mutant RasR12 is insufficient to stimulate CRE/CREB-
mediated transcription [39], as is stimulation of cells
with growth factors [56, 59–61]. In addition, at least in
AtT20 and in the rat pheochromocytoma cell line PC12,
activation of the Ras/ERK pathway is not essential for
calcium-regulated transcription mediated by either
CRE/CREB, TCF or SRF [60, 62]. Thus, the exact role
of ERKs in the control of transcription factor and
coactivator function remains to be investigated.

Stress-activated protein kinases
Stress-activated protein kinase (SAPK) is an umbrella
name for a number of kinases that are at the bottom of
a signalling cascade activated by various forms of stress,
including ultraviolet (UV) irradiation, osmotic shock or
the action of toxic compounds such as protein synthesis
inhibitors [reviewed in 46]. SAPK1 was initially iden-
tified as a kinase that phosphorylates the N-terminal
activation domain of c-Jun in response to stress signals
and is also known as Jun N-terminal kinase (JNK) [63,
64]. Similar to ERKs, SAPKs are proline-directed
protein kinases and recognise serine/proline and
threonine/proline motifs.
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First evidence for calcium regulation of SAPK came
from experiments using Jurkat cells, a human T-cell
line: activation of the T-cell receptor by treatment of
Jurkat cells with phorbol esters (to stimulate PKC) and
calcium ionophore strongly activates SAPK1/JNK [65].
One of the targets of SAPK1/JNK in T cells is c-Jun,
which as part a complex with c-Fos and nuclear factor
of activated T-cells (NF-AT) controls expression of the
interleukin 2 gene [reviewed in 66]. In neurons, the
profile of activation of SAPKs by calcium signals de-
pends on the type of cells. For example, exposing cul-
tured cerebellar granule cells to a high, excitotoxic dose
of glutamate causes the activity of SAPK2/p38 MAP
kinase to increase several fold, wherreas SAPK1/JNK is
only poorly activated. This effect is dependent on cal-
cium influx and is inhibited by an NMDA receptor
antagonist [67]. In cultured striatal neurons, activation
of calcium flux through NMDA receptors following
bath application of 0.1 mM glutamate or NMDA in-
duces a two- to three-fold activation of SAPK1/JNK
[68]. A similar treatment of cultured hippocampal neu-
rons failed to increase SAPK1/JNK activity [9]; how-
ever, it did stimulate (even at lower, nontoxic glutamate
concentrations) SAPK2/p38 MAP kinase activity [G. E.
Hardingham and H. Bading, unpublished]. Similarly, in
AtT20 cells, calcium influx through L-type channels
activates SAPK2/p38 MAP kinase but has no effect on
SAPK1/JNK activity [69]. Whereas activation of
SAPK2/p38 MAP kinase by low (nontoxic) concentra-
tions in hippocampal neurons appears to regulate par-
ticular transcriptional events [G. E. Hardingham and
H. Bading, unpublished], the correlation of glutamate-
induced toxic damage to neurons and SAPK activation
may indicate a causal relation between the two phenom-
ena. This hypothesis seems to be supported by the
observation that, compared with wild type, in mice
lacking the JNK3 gene injection of kainate (a potent
neurotoxin that induces seizures through stimulating
particular types of ionotropic glutamate receptors) led
to less cell death in the hippocampus [70]. However,
kainate-induced seizures are much less severe in mice
lacking the JNK3 gene, and thus a change in excitability
rather than block of the cellular mechanism mediating
cell death may explain the phenotype of the JNK3
knockout mouse.

Calcium-regulated transcription factor and coactivators

CREB/CREB-binding protein (CBP)
CREB is the best-studied calcium-regulated transcrip-
tion factor. It binds as a dimer to the CRE, first
identified in the promoter of the somatostatin gene as
an element required for gene regulation by cAMP [71].
The c-fos CRE (at position −60 base pairs relative to

the c-fos transcription start site) can also mediate tran-
scriptional induction in response to elevated levels of
cAMP, but in addition, it is a key regulatory element
for calcium-activated gene expression in excitable cell
lines and primary hippocampal neurons [reviewed in
6–8]. CREB-mediated transcription requires phospho-
rylation of CREB on its activator site serine 133 [72].
This phosphorylation can be catalysed by numerous
signal-regulated protein kinases, including cAMP-de-
pendent protein kinase (PKA) [72], CaM kinases I, II
and IV [33, 41], the ERK-regulated kinase RSK2 [56]
and the p38 MAP kinase-regulated MAPKAP kinase-2
[73]. However, CREB phosphorylation on serine 133
does not equal CREB-mediated transcription. For ex-
ample, stimulation with growth factors such as nerve
growth factor (NGF) very potently stimulates CREB
phosphorylation (via the Ras/ERK/RSK2 pathway);
however, growth factors do not efficiently activate
CRE/CREB-mediated transcription [56, 59–61, 74].
Moreover, calcium-induced CREB phosphorylation can
be uncoupled from CREB-mediated transcription by
either blocking nuclear calcium transient or by inhibit-
ing CaM kinase [39], indicating that nuclear calcium
activating nuclear CaM kinase IV provides a second
regulatory event required for calcium regulation of
CREB-mediated transcription. This second event was
recently identified and involves CBP [39]. CBP is a
transcriptional coactivator that interacts with compo-
nents of the basal transcription machinery. CBP may
also affect transcription via its intrinsic or associated
activity to acetylate histones, causes a relaxation of
repressive chromatin structure and allows access to re-
gions of DNA contained in nucleosomal complexes
[reviewed in 75]. CBP does not bind to DNA directly
but can be recruited to the promoter via several tran-
scription factors, including CREB phosphorylated on
serine 133. While the recruitment step of CBP to the
promoter (i.e. CREB phosphorylation on serine 133) is
controlled by many calcium-regulated kinase cascades
(see above), activation of CBP function is controlled by
nuclear calcium and CaM kinase IV [39]. Activation of
the Ras/ERK/RSK2 pathway does not increase CBP
activity [39]; however, CBP activity can also be stimu-
lated by elevated levels of cAMP [39, 76, 77]. This
explains why cAMP is the only other signal known to
be sufficient to strongly stimulate CREB-mediated tran-
scription. The mechanism through which CaM kinase
IV activates CBP is unclear, although a recent study
suggests that it may involve a calcium signal-regulated
phosphorylation event on CBP [78].

c-Jun
One implication of the finding that CBP function is
regulated by nuclear calcium and CaM kinase IV is that
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CBP-interacting transcription factors other than CREB
may function as nuclear calcium-regulated activators.
Indeed the c-Jun transcription factor (which interacts
with CBP [79]) can function as a calcium-regulated
transcriptional activator in AtT20 cells [69] and primary
hippocampal neurons [9]. Activation of c-Jun-depen-
dent transcription by calcium signals is not accompa-
nied by any increase in SAPK1/JNK kinase activity and
does not require serine 63 and serine 73 [69], the two
classical main regulatory SAPK1/JNK phosphorylation
sites on c-Jun. Instead, similar to CREB, this transcrip-
tional response is dependent on the activity of CaM
kinases [69]. Given that CBP can interact with c-Jun
independently of the phosphorylation of c-Jun on serine
63 and serine 73, and CBP activity is controlled by
CaM kinase IV [39], these findings suggest that c-Jun-
bound CBP is the site of regulation in c-Jun-mediated,
calcium-activated transcription. This model is further
supported by two additional observations: (i) expression
of the adenovirus gene product E1A that can bind to
CBP and disrupt its function inhibited calcium-acti-
vated, c-Jun-mediated transcription; and (ii) increasing
levels of cAMP that can stimulate CBP activity also
induce c-Jun-mediated transcription [69]. Thus, regula-
tion of CBP activity appears to be the common mecha-
nism through which nuclear calcium and CaM kinase
IV (as well as cAMP) control CREB and c-Jun-depen-
dent transcription and very likely also that of other
CBP-recruiting transcription factors.

Ternary complex factors (TCFs)
The TCF family of transcriptional activators was ini-
tially identified as an activity in HeLa cells that formed
a complex with DNA-bound serum response factor
(SRF) on the c-fos promoter. The three known mem-
bers of this family are Elk-1, SAP1 and SAP2/ERP/
NET; their activity can be activated by ERKs [reviewed
in 53]. In the case of Elk-1, several ERK phosphoryla-
tion sites have been identified that are important for
Elk-1-dependent transcription upon serum or growth
factor stimulation. Phosphorylation of Elk-1 can also
occur in the nervous system: treatment of striatal brain
slices with 0.1 mM glutamate increased the phosphory-
lation of Elk-1 on serine 383 [80], one of several regula-
tory phosphorylation sites in the C-terminal activation
domain of Elk-1. While it is unclear whether calcium
influx triggers this phosphorylation event, it is blocked
by the MEK 1 inhibitor PD98059 and, thus, appears to
be mediated by the Ras/ERK signalling pathway. How-
ever, stimulation of ERK activity upon activation of a
transmembrane calcium flux does not necessarily lead
to an increase in Elk-1 phosphorylation. For example,
in PC12 cells, calcium flux through L-type calcium
channels activates ERKs but does not increase the

phosphorylation of Elk-1 on serine 383 [62]. In this
study, calcium-induced Elk-1-dependent transcription
was not analysed; however, experiments using cortical
neurons showed that Elk-1 can mediate transcriptional
activation upon calcium flux through NMDA receptor
[81]. NMDA receptor regulation of Elk-1 in cortical
neurons appears to be mediated by the Ras/ERK sig-
nalling pathway, as the transcriptional response was
blocked by overexpression of the MAP kinase phos-
phatase MKP-1, and mutation of the two key regula-
tory phosphorylation sites serine 383 and serine 389
rendered Elk-1 functionally inactive [81] (although
NMDA receptor-induced phosphorylation of Elk-1 on
these sites was not analysed in this study). Evidence for
an alternative mode of Elk-1 regulation comes from
experiments in AtT20 cells. Calcium entry into AtT20
cells through L-type calcium channels activates Elk-1-
mediated transcription in the absence of any detectable
increase in Elk-1 phosphorylation on its activator sites
[F. Cruzalegui, C. Lange and H. Bading, unpublished].
These findings indicate that calcium signals can stimu-
late Elk-1 function independently of the regulatory
ERK phosphorylation sites. Given that Elk-1 (as well as
SAP1a) can interact with CBP [82, 83], it is possible that
CBP bound to Elk-1 is the target of a calcium-induced
event that stimulates transcription. Thus, CREB, c-Jun
and perhaps Elk-1 form a group of calcium-responsive
transcriptional activators that function through recruit-
ment of the nuclear calcium/CaM kinase IV-regulated
coactivator CBP.

SRF
SRF binds as a dimer to the SRE found in the c-fos
promoter and in the regulatory region of several other
genes [reviewed in 84]. The c-fos SRE can also bind
TCFs allowing for the formation of a ternary (i.e.
SRE/SRF/TCF) complex; SREs without TCF binding
sites exist in other genes. The introduction of specific
mutations into the c-fos SRE that disrupt TCF binding
made it possible to study transcriptional regulation by
SRF only (as opposed to regulation by an SRF/TCF
complex) [85–87]. SRF-dependent gene expression can
be induced by calcium signals in a variety of cell types,
including PC12 cells [60, 62], AtT20 cells [10, 60],
hippocampal [3, 60] and cortical neurons [81]. In con-
trast to CREB/CBP, SRF-mediated gene expression is
controlled by a mechanism that is triggered by cytoplas-
mic calcium signals [10]. The signalling pathway in-
volved appears to function independently of the
Ras/ERK cascade and may involve CaM kinases [60,
62]. However, phosphorylation of SRF residue serine
103, which is calcium-inducible and at least in vitro can
be catalysed by CaM kinase II, does not appear to be
critical for SRF to function as a calcium-regulated
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transcription factor [38, 62]. Alternative regulatory
mechanisms may involve small G proteins of the Rho
family that regulate SRF-dependent transcription in
fibroblast following serum stimulation [87], or changes
in actin polymerisation [88].

Activating transcription factor-1 (ATF-1)
ATF-1 resembles CREB in many respects. It is a leucine
zipper containing transcription factors, binds to the
CRE and can mediate transcription induction in re-
sponse to calcium signals and increased intracellular
levels of cAMP [36, 37]. ATF-1 contains at least two
regulatory phosphorylation sites (serine 63 and serine
72). Serine 63 of ATF-1 is critical for ATF-1 to function
as an activator of gene transcription and thus appears
to be the functional equivalent of the CREB phospho-
rylation site serine 133. Indeed, the amino acid sequence
in the kinase-regulated domains of the two transcription
factors’ phosphorylation are so similar that the anti-
body to phospho-serine133-CREB also binds to ATF-1
phosphorylated on serine 63. Phosphorylation of serine
63 can be catalysed by several kinases, including CaM
kinase I, II and IV [36, 37]. The function of serine 72, a
target site for CaM kinase II, as the equivalent of the
inhibitory CREB phosphorylation site serine 142,
maybe be cell type-dependent. In the pituitary cell line
GH3 cells, constitutively active forms of CaM kinase I
and IV but not a constitutively active form of CaM
kinase II (which phosphorylates serine 72) can activate
wild-type ATF-1, whereas ATF-1 containing a serine-
to-alanine mutation at position amino acid 72 is also
activated by CaM kinase II [36]. These findings suggest
an inhibitory function of serine 72. However, in F9
cells, expression of a constitutively active form of CaM
kinase II did not significantly increase phosphorylation
of ATF-1 on serine 72 and caused stimulation of wild-
type ATF-1-dependent transcription [89].

Nuclear factor of activated T cells (NF-AT)
Calcium regulation of NF-AT is vital for the immune
response. In resting cells, NF-AT is phosphorylated and
resides in the cytoplasm. However, cytoplasmic calcium
signals associated with, for example, antigen stimula-
tion of B cells or T cells increases the activity of the
calcium/CaM-dependent phosphatase calcineurin (CaN;
also known as protein phosphatase 2B) that binds to
and dephosphorylates NF-AT [90, 91]. The CaN/
dephosphorylated NF-AT complex is subsequently im-
ported into the cell nucleus and stimulates expression of
target genes such as the interleukin 2 gene [reviewed in
66]. Nuclear translocation of NF-AT is a rapidly re-
versible process; once calcium levels in the nucleus have
fallen below the activation threshold for CaN, the CaN/

NF-AT complex falls apart, and NF-AT is rapidly
exported from the nucleus by a Crm1-dependent mech-
anism [92]. This property of NF-AT may explain why
its nuclear translocation and ability to activate tran-
scription requires sustained (although low-amplitude)
elevation of the calcium concentration [93]. In addition
to the importance of nuclear calcium for the mainte-
nance of a nuclear CaN/NF-AT complex, nuclear cal-
cium transients may also be required for the
trans-activating activity of NF-AT: NF-AT interacts
with CBP [94], and nuclear calcium stimulating the
activity of CBP may be a coregulator of NF-AT-medi-
ated gene expression.

C/EBPb

The CCAAT/Enhancer binding protein C/EBPb (also
termed NF-IL6/LAP) was one of the first transcription
factors shown to be activated by a constitutively active
form of CaM kinase II [35]. This transcriptional re-
sponse requires phosphorylation of a serine residue
(serine 276) within the leucine zipper of C/EBPb that
can be catalysed by CaM kinase II in vitro. More recent
work also shows regulation of C/EBPb (and C/EBPd)
by a constitutively active form of CaM kinase IV [95].
C/EBPb is highly expressed in liver cell nuclei and is
thought to be involved in inflammatory responses [96].
However, C/EBPb itself is a signal-regulated immediate
early gene in various cell types [97, 98]. In hippocampal
neurons, expression of the C/EBPb gene can be induced
via a CaM kinase-dependent mechanism triggered by
membrane depolarisation and calcium entry [95]. Thus
C/EBPb may be a transcription factor that is controlled
by CaM kinases at the level of both expression and
function.

Downstream regulatory element antagonist modulator
(DREAM)
DREAM is an EF hand-containing calcium-binding
protein that can function as a repressor of transcription
[99]. DREAM-mediated repression required binding of
DREAM to the downstream regulatory element (DRE),
a process controlled by the concentration of intracellu-
lar calcium. Electrophoretic mobility shift assays show
that at a calcium concentration of 0.5 mM, DREAM
binds to the DRE, whereas at calcium concentrations
above 10 mM the DREAM/DRE interaction is blocked.
Functional DREs have been identified in the human
dynorphin gene and in the c-fos gene. Their localisation
in the transcribed region of the genes raises the possibil-
ity that DREAM functions by inhibiting transcription
elongation. In addition to its regulation by calcium
signals, increases in the intracellular concentration of
cAMP can also relieve DREAM-mediated repression
[99].
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Conclusion

Several routes can link signals generated by calcium
entry into neurons to the transcription-regulating ma-
chinery in the nucleus. Calcium can activate signalling
cascades in the cytoplasm, but calcium transients prop-
agated to the nucleus can also trigger intranuclear
events. While gene regulation by cytoplasmic calcium
signals is still poorly understood, a general mechanism
for gene regulation by nuclear calcium is emerging.
Central to this mechanism is the regulation of two
aspects of CBP function, i.e. CBP recruitment by signal-
regulated transcription factors and stimulation of the
transcription-activating function of CBP by nuclear cal-
cium signals. Given that CBP can interact with many
transcription factors, control of CBP function by nu-
clear calcium may be a key mechanism underlying the
numerous changes in gene expression associated with
electrical activity-dependent neuronal plasticity.
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