
CMLS, Cell. Mol. Life Sci. 55 (1999) 1585–1598
1420-682X/99/121585-14 $ 1.50+0.20/0
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Abstract. Small-cell lung cancer (SCLC) is character- antibodies and immunoconjugates as well as growth
factor antagonists and inhibitors. In addition, recentized by its initial responsiveness to chemotherapy and

the appearance of early metastases. Although combina- advances in understanding the biology of SCLC have
tion chemotherapy, in some instances together with stimulated new investigations searching to counter the

molecular basis underlying the increased proliferationradiation, has improved the prognosis of this disease, in
and the apoptosis deficiency of SCLC cells. This canmost patients SCLC ultimately recurs in a drug-resis-
be achieved using antisense oligodeoxynucleotides thattant form. Several new strategies for the eradication of
repress the expression of growth factor receptors andSCLC are being explored at the preclinical level. The

identification of selective target molecules on the surface anti-apoptosis genes, or by gene replacement to com-
of SCLC cells, together with the progress made in pensate for the loss or inactivation of tumor suppres-
antibody engineering, have provided new generations of sor genes.

Key words. Antisense; antibodies; growth factor inhibitors; chemotherapy; gene therapy; radiation therapy;
small-cell lung cancer.

Lung cancer is the leading cause of cancer-related
deaths, and its incidence continues to rise worldwide [1].
This cancer can be classified in two major histological
types. Roughly 80% are non-small-cell lung cancers
(NSCLCs), comprising adenocarcinoma, large-cell car-
cinoma, and squamous cell carcinoma. Most of the
remaining cases are classified as small-cell lung cancer
(SCLC), which has a different biological behavior, his-
tory, and treatment. SCLC is a very aggressive disease,
characterized by rapid growth and early dissemination.
In the seventies, SCLC was shown to be responsive to
chemotherapy. While the median survival before the
introduction of chemotherapy was 2–4 months [2],
combination chemotherapy has increased survival
about fourfold and resulted in long-term survival or

cure in a small proportion of patients [3]. In most
patients, however, the tumor relapses in a form resistant
to any further cytotoxic treatment.
During the past decade, numerous studies have ad-
dressed the molecular and genetic mechanisms underly-
ing the development and progression of malignant
tumors. In the case of SCLC, many abnormalities have
been identified, which allow the development of ap-
proaches that specifically target the molecular basis of
this disease. Together with the improvements made in
the field of drug development and delivery, this has
opened new avenues for more effective treatment of
SCLC, and may help to improve the treatment outcome
of this hitherto incurable disease. This review will sum-
marize the most prominent advances in the treatment of
SCLC provided by preclinical and clinical studies dur-
ing the last decade, which deserve further investigation:* Corresponding author.
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(i) recent improvements in chemo- and radiation ther-
apy; (ii) approaches to target cell surface antigens, au-
tocrine growth factors and their receptors, and
modulators of drug resistance; (iii) approaches to target
the molecular basis of increased proliferation and apop-
tosis deficiency of tumor cells, such as the use of bcl-2
antisense oligodeoxynucleotides or the replacement of
inactivated or lost tumor suppressor genes. A summary
of these issues is shown in figure 1.

Combination chemotherapy

Back in the sixties it was shown that local therapy,
either surgery or radiation alone, had no significant

impact on the survival of SCLC patients [4, 5]. In the
seventies, several chemotherapeutic drugs with activity
against SCLC were identified, including nitrogen mus-
tard, cyclophosphamide, methothrexate, doxorubicin,
etoposide, procarbacine, and vincristine. It was also
shown that a combination of up to three drugs yields
better results than individual drugs used alone or se-
quentially. In the eighties, one new active drug, cis-
platin, was identified, and several analogs of older
agents, with similar modes of action but somewhat
different toxicity profiles, were reported, including ifos-
famide, epirubicin, teneposide, vindesin, and carbo-
platin. Based on many clinical studies, combination
therapy with cisplatin and etoposide, or cyclophos-
phamide, doxorubicin and vincristine, both combina-

Figure 1. Overview of the various treatment approaches discussed in this review.
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tions given for four to six cycles of treatment at 3-
weekly intervals, has become the standard therapy of
this disease [6].
Advances in chemotherapy reached a plateau in the
eighties, despite many clinical trials testing further
strategies to improve the results. Among these strategies
were the intensification of drug delivery by weekly
chemotherapy [7], the use of higher than conventional
doses of standard chemotherapy, with or without hema-
topoietic growth factors [8, 9], the use of the anticoagu-
lant warfarin together with chemotherapy [10],
interferon maintenance [11], and the use of megestrol
acetate to increase weight gain together with
chemotherapy [12].
Currently, several new agents have been identified as
having good activity in SCLC, including taxanes [13],
gemcitabine [14], vinorelbine [15], and topotecan [16].
However, how these new agents should best be inte-
grated in combination regimens and whether their in-
clusion will improve the outcome of SCLC have not yet
been determined.

Radiation therapy

The role of thoracic radiotherapy for limited-disease
SCLC, i.e., SCLC confined to one hemithorax, has long
been controversial. A meta-analysis of 13 randomized
trials has settled this issue by demonstrating a moderate
5% survival benefit at 3 years for the use of combined
chemotherapy and radiation therapy [17]. A recent pub-
lication from a large study showed that hyperfractiona-
tion compared to conventional fractionation gave a
5-year survival benefit from 16 to 26% [18]. For patients
responding to therapy, relapses in the brain may occur
frequently. To decrease the rate of brain relapses, many
investigators suggested the use of prophylactic cranial
irradiation. While it has been undisputed that such
prophylactic cranial irradiation does reduce the occur-
rence of brain metastasis, the potential for neuropsychi-
atric side effects and lack of proof of a survival benefit
left many physicians doubtful about the standard use of
this treatment. Recent studies, however, failed to
demonstrate an impairment of cognitive function and a
meta-analysis demonstrated a significant survival
benefit in complete responders from 15 to 20% at 3
years, suggesting prophylactic cranial irradiation should
be offered to patients in complete remission [19–21].

Targeting cell surface antigens

Antibodies recognizing surface antigens selectively ex-
pressed on tumor cells are potential therapeutic agents
with high specificity. Recently, the efficacy of the anti-
body approach to cancer therapy has been revolution-

ized by such advances as the identification of novel
antigens which are homogeneously expressed in the
tumor but have low expression in normal vital tissues,
and by genetic engineering techniques to produce tailor-
made targeting vehicles with reduced immunogenicity
and improved effector functions. An impressive exam-
ple is given by the HER-2/neu-specific humanized anti-
body Herceptin, which enhanced the chemosensitivity
of tumor cells and lengthened remission times in pa-
tients with refractory metastatic breast cancer [22].
HER-2/neu is also over-expressed in a large proportion
of NSCLCs, but is rarely associated with SCLC. In
addition to the use of intact antibodies to recruit host
effector cells and complement components or to inhibit
growth factor signaling, rationally engineered full-size
antibodies and single-chain Fv fragments have also
been used in imaging and therapy studies to deliver
radioisotopes, anti-tumor effector molecules, or im-
mune response modifiers to solid tumor cells [23–26].
Single-chain Fv fragments are small molecules of about
25–30 kDa with improved tumor penetration ability.
They can be genetically fused with effector proteins or
chemically coupled with chemotherapeutic agents. Re-
cent progress in phage display technology has expanded
our ability to select human antibodies and construct an
array of derivatives with desirable clinical properties.
This technique also provides a powerful tool to search
for novel target molecules selectively expressed on the
surface of tumor cells.
The therapeutic efficacy of antibodies and antibody-ef-
fector conjugates not only depends on their tumor-
targeting potential, but also on the intrinsic properties
of the antigen. For example, it is mandatory that the
antigen is differentially expressed between tumors and
normal tissues, that it is uniformly expressed by the
tumor cell population, and that it is not shed from the
cell surface or down-modulated upon antibody binding.
Moreover, if the target site of a conjugate is located
intracellularly, the antigen-antibody complex must be
internalized from the surface by receptor-mediated en-
docytosis. In an attempt to develop novel antibody-
based treatment approaches, there has been a
collaborative effort between individual laboratories.
The Second and Third International Workshops on
Lung Tumor Antigens addressed the characterization
and definition of surface molecules expressed on lung
cancer cells and recognized by monoclonal antibodies
[27, 28]. As a result, the nature and biological function
of many of these antigens have been characterized.
Many of the antibodies that recognize cell surface anti-
gens associated with SCLC have also been investigated
in vivo, e.g., in models of SCLC xenografts. These
models are useful tools to assess the tumor localization
and anti-tumor activity of antibodies and antibody-
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Table 1. Potential targets on SCLC cells for antibody-based diagnosis and therapy.

References for clinical trials inAntigen Biological properties
cancer patients

32, 37NCAM (CD56, NKH01) homophilic cell adhesion molecule of 145 kDa
EGP-2 (Ep-CAM, EGP-40, homophilic cell adhesion molecule of 40 kDa 42, 43

KSA, GA733-2)
Lewis Y 51, 53blood-group-related carbohydrate with developmentally

regulated expression
glycosphingolipids involved in cell interaction withGangliosides 59–62
extracellular matrix

based immunoconjugates under complex physiological
conditions. Since most of the antibodies tested do not
cross-react with murine tissues, however, their clinical
usefulness cannot be fully assessed in animal models.
For example, antibodies recognizing CD24 and CD56
(neural cell adhesion molecule, NCAM), antigens also
expressed on human hematopoietic cells but not their
murine counterparts, efficiently localized to SCLC
xenografts in mice [29, 30]. The antibodies, however,
failed to detect tumors in patients, where they mainly
localized to recticuloendothelial tissues [31, 32]. Based
on these observations and the finding that most of the
tumor-associated antigens are also expressed in normal
vital tissues, only a few antigens remain that may serve
as potential targets for antibody-based diagnosis and
therapy of SCLC (table 1). The preclinical and clinical
studies describing the use of these candidate antigens
are reviewed below.

Neural cell adhesion molecule

NCAM, also known as CD56 or NKH01, was desig-
nated as a cluster-1 antigen on lung tumor cells [28].
NCAM is a homophilic cell adhesion molecule of 145
kDa abundantly expressed in virtually all SCLC cell
lines and cells derived from tumor specimens [33, 34]. In
normal tissues, NCAM expression is prominent in
nerves, endocrine cells, natural killer (NK) cells and
striated and cardiac muscle [35]. Monoclonal antibodies
with specificity for NCAM were successfully used for
imaging and therapy of SCLC xenografts growing in
athymic mice [30, 36]. In a recent phase I study, 21
patients with relapsed or refractory SCLC were treated
with the monoclonal antibody N901 which was conju-
gated with the protein toxin blocked ricin (bR) [37].
Patients received the immunotoxin N901-bR daily for 7
days by continuous infusion. Dose-limiting toxicity was
vascular leak syndrome, whereas neuropathy was not
observed. Most patients developed either human anti-
mouse antibodies (HAMAs) or antibodies against the
ricin moiety of the immunotoxin (HARA). One patient
achieved a partial response which persisted for 3
months, 6 patients had stable disease. Although this

result is encouraging, in view of the finding of Ornadel
et al. [32] that NCAM antibodies do not efficiently
localize to tumors in patients, the mechanisms underly-
ing the clinical efficacy of N901-bR remain unclear.

Epithelial glycoprotein-2 (EGP-2)

EGP-2, synonymously named Ep-CAM, EGP40, KSA,
or GA733-2, was designated as a cluster-2 antigen on
lung tumor cells [28]. EGP-2 was first cloned from a
lung adenocarcinoma cell line by Strnad et al. [38]. It is
a homophilic cell adhesion molecule of 40 kDa abun-
dantly expressed on a variety of epithelial tumor cells,
including a major fraction of SCLC [39]. Expression of
EGP-2 is dynamically regulated during cell growth and
differentiation, and recent investigation has identified
its role in tissue invasion and its up-regulation in cells
under growth-promoting conditions [40, 41]. The latter
finding might explain the different levels of EGP-2
expression, which is high in malignant and low in nor-
mal epithelial cells. In a 7-year follow-up study in
patients with advanced colorectal cancer, the mouse
monoclonal antibody 17-1A (Panorex) produced signifi-
cant anti-tumor effects [42], and a humanized recombi-
nant variant is currently under clinical investigation in
patients with refractory prostate, lung, or colon cancer.
The mouse monoclonal antibody MOC31 was used for
imaging studies in patients with SCLC [43], and is
currently being re-engineered by our group in a collabo-
rative effort to produce humanized scFv variants with
high antigen-binding affinity [44].

Lewis Y antigen

A blood-group-related carbohydrate, the Y difucosy-
lated hapten (Lewis Y antigen), also designated as a
cluster-6 antigen on lung tumor cells [28], is associated
with 60–90% of human tumors of epithelial origin,
including breast, colon, and gastric cancer, and SCLC
[45–48]. Its level of expression correlates with survival
in patients with lung cancer [49]. The Lewis Y antigen is
expressed in a stage-specific manner during embryonic
development of the human lung, and its emergence on
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lung tumor cells appears to be the result of retrodiffer-
entiation of cells to the stages of embryonic lung cells
[50]. Despite high lytic activity in the serum of patients
with SCLC, the mouse monoclonal antibody ABL364
could not produce clinical responses [51]. Cytotoxic
immunoconjugates targeting the Lewis Y antigen have
also been tested in preclinical and clinical studies [52,
53]. The immunotoxin LMB-1, composed of the mono-
clonal antibody B3 chemically linked to a genetically
engineered form of Pseudomonas Exotoxin A, was used
in a phase I study of 38 patients with solid tumors who
failed conventional therapy [53]. Objective anti-tumor
activity was observed in 5 patients, 18 had stable dis-
ease, 15 progressed. A complete remission was observed
in a patient with metastatic breast cancer. A greater
than 75% tumor reduction and resolution of all clinical
symptoms lasting for more than 6 months was observed
in a colon cancer patient with extensive retroperitoneal
and cervical metastasis. Results from clinical trials with
LMB-7, an immunotoxin which employs a humanized
scFv version of B3 [54], and with LMB-9, a scFv
stabilized by an interchain disulfide instead of a peptide
linker, are awaited. These studies will reveal whether the
impressive anti-tumor activity of improved second-gen-
eration immunotoxins in vitro and in animal models
translates into therapeutic efficacy in patients.

Gangliosides

Gangliosides are glycosphingolipids, composed of a ce-
ramide portion that anchors it into the plasma mem-
brane and a carbohydrate moiety oriented to the
extracellular space. Due to differences in the carbohy-
drate residues, many distinct gangliosides have high
levels of expression particularly in neuroendocrine tu-
mors such as melanoma and SCLC, but low levels of
expression in normal tissues. Gangliosides are reported
to be involved in the attachment of tumor cells to
extracellular matrix proteins [55]. Based on their differ-
ential expression in tumors, the gangliosides GD2,
GD3, and GM2 represent the most promising targets of
antibody therapy [56–58]. A mouse-human chimeric
antibody targeting GM2 was reported to induce effec-
tor-cell-mediated lysis of SCLC cells in vitro [58], and
antibodies targeting GD2 demonstrated tumor-localiz-
ing and therapeutic potential in patients with melanoma
and neuroblastoma [59, 60]. In a recent pilot study, the
mouse monoclonal antibody 3F8 was used to target
residual disease in SCLC patients [61]. Twelve patients
were enrolled in this trial and 10 received intravenous
3F8 labeled with 131I. Five patients had recurrent or
progressive disease after chemotherapy, 7 patients were
subjected to diagnosis prior to the initiation of
chemotherapy. Radionuclide scans demonstrated local-

ization to all known sites of disease, apart from small
brain metastases in 1 patient.
Anti-GD3 antibodies were also used to raise anti-idio-
typic antibodies against GD3 in mice. In recent clinical
trials, the anti-idiotypic antibody BEC2 was used to
immunize patients with melanoma and SCLC [62]. Fif-
teen patients, 8 of whom presented with extensive dis-
ease, were enrolled in the study. BEC2 was administered
intradermaly together with bacille Calmette-Guérin as
an immune adjuvant. All patients developed anti-BEC2
antibodies. Five of 13 patients evaluable for serologic
response developed anti-GD3 IgG antibodies. For these
patients, survival from the time of initial diagnosis was
significantly improved compared to the median survival
of historical control groups. In view of these encourag-
ing results, further clinical studies have been initiated to
evaluate the potential of anti-ganglioside and anti-idio-
typic ganglioside therapy in SCLC.

Targeting growth factors and growth factor receptors

An autocrine growth loop in cancer was first described
as a potential growth pathway for tumor cells more
than 17 years ago [63]. A variety of neuroendocrine
peptides such as the bombesin-like peptide gastrin-re-
leasing peptide (GRP), and insulin-like growth factor-I
(IGF-1) fit the definition of autocrine growth factors for
SCLC. With the aim of inhibiting the growth of SCLC
cells, these growth factors and their receptors have been
evaluated as potential targets for various antagonists
including antibodies and for antisense therapeutics.

Neuroendocrine growth factors

SCLC is a neuroendocrine tumor which, according to
the degree of neuroendocrine differentiation, is divided
into a classic and a variant phenotype [64]. Classic
SCLC accounts for 70% of all SCLCs. These tumor
cells are characterized by dense-core neurosecretory
granules and the production of high levels of neuroen-
docrine growth factors and peptide hormones that act
as autocrine growth factors, such as dopa decarboxy-
lase, neuron-specific enolase, and bombesin-like pep-
tides. The bombesin-like GRP was initially cloned from
lung carcinoid tumors and SCLC cell lines. It is a
27-amino-acid peptide produced from a large precursor
protein of 145 amino acids that binds to its receptor
with high affinity in the nanomolar range [65, 66] stimu-
lating the growth of SCLC cells by elevating cytosolic
Ca2+ and activating protein kinase C [67–69]. Syn-
thetic GRP receptor antagonists and antibodies neutral-
izing secreted GRP have been used in a variety of
preclinical studies to interrupt the autocrine and
paracrine growth factor loops, and to inhibit the prolif-
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eration and clonogenicity of SCLC cells in vitro and in
vivo. The broad-spectrum receptor antagonist substance
P was identified as a potent analog in inhibiting bombe-
sin-like peptide receptor binding in vitro [70]. The re-
sults of a phase II trial with the GRP-neutralizing
monoclonal antibody 2A11 were published recently
[71]. Patients with relapsed or refractory SCLC received
12 doses of 2A11 over a 4-week period. Twelve of 13
patients were eligible: 1 had a complete response to
treatment, 4 achieved stable disease, and 7 showed
progression. The responding patient received another
cycle of treatment with 2A11 and remained without
evidence of progression for 5 months. Since the growth
of SCLC cells depends on multiple growth factors, more
studies are necessary to determine the therapeutic po-
tential of bombesin-like peptide inhibitors in patients
with SCLC.

Insulin-like growth-factor-I

IGF-I is a 70-amino-acid growth factor found at ele-
vated levels in more than 90% of SCLC tumors [72–74].
It is involved in mitogenic signaling by binding to
tyrosine kinase receptors causing phosphorylation of
protein substrates and cell growth [75]. Specifically, the
apoptosis-inhibiting pathway of IGF-I seems to route
through Ras, PI-3 kinase, and the serine-threonine ki-
nase Akt/protein kinase B [76, 77], ultimately impacting
on Bad, a key modulator of Bcl-2 [78]. The IGF-I
receptor is expressed in many human tissues and tumors
including NSCLC and SCLC [74]. It is regulated by p53
and functions as an autocrine growth factor implicated
in the apoptotic response of cells [79]. Analogously to
the GRP autocrine growth loop, the IGF-I pathway can
also be inhibited using receptor antagonists or ligands
neutralizing the growth factor. Antibodies that block
the specific binding of IGF-I to its receptor, such as the
monoclonal antibody �IR-3, are able to inhibit the
growth of SCLC and NSCLC cells in vitro and in vivo
[80].
IGF-I signaling in cells is inhibited by antisense
oligodeoxynucleotides (ODNs) that repress expression
of the IGF-I receptor. This has been demonstrated by
Resnicoff et al. [81] who used antisense ODNs to reduce
the number of IGF-I receptors on melanoma cells to
inhibit their tumorigenesis in vivo. The antisense ap-
proach to inhibition of cancer-related gene expression
has become particularly interesting since many of the
initial limitations associated with antisense ODNs, such
as limited stability, poor specificity, unpredictable
targeting, and undesired non-antisense effects, have
now been solved by chemical modifications [82, 83]. In
addition, improvements in the manufacturing process
have dramatically reduced the overall costs of ODN
synthesis [84]. Antisense ODNs are fast, simple, and

cost-effective tools available for validating new thera-
peutic targets, commonly the first step in modern drug
development. The ability of these compounds to inhibit
the expression of genes involved in cell growth and
apoptosis regulation in a sequence-specific manner has
been demonstrated in various preclinical and clinical
studies [85–87].

Targeting the expression of drug transport proteins

The issue of drug resistance in SCLC has been ad-
dressed extensively and genetic abnormalities that might
contribute to the resistance phenotype, such as over-ex-
pression of genes coding for drug efflux pumps located
in the plasma membrane, have been identified [88, 89].
The role of drug transporters in clinical drug resistance,
however, remains unclear. Whereas the absence of
MDR1 gene expression during chemotherapy of SCLC
indicated a favorable prognosis in one study [90], in
another study, no correlation between MDR1 gene ex-
pression in SCLC and NSCLC cells and chemosensitiv-
ity and clinical response to therapy was detected [91].
Recently, novel second-generation antisense ODNs
targeting the MDR1 mRNA were used to down-regu-
late P-glycoprotein expression and increase drug uptake
into cells in vitro [92]. To what extent this approach can
help overcome clinical drug resistance in SCLC and
other refractory tumors remains to be determined.

Targeting the expression of oncogenes and apoptosis in-

hibitors

Considerable evidence has accumulated that cancer has
a genetic origin based on the occurrence of mutations in
families of genes implicated in DNA repair, growth
control, and apoptosis [93–95]. This provides re-
searchers with the opportunity to specifically target
genetic lesions and abnormal gene products by thera-
peutic interventions. The most extensively investigated
and advanced approaches to gene therapy of cancer are:
(i) the use of antisense ODNs to inhibit the expression
of oncogenes; (ii) replacement of inactivated or lost
tumor suppressor genes; (iii) ex vivo transfection of
autologous tumor cells with cytokine genes and their
use as vaccines to stimulate an anti-tumor immune
response.

The bcl-2 family of apoptosis inhibitors

Current research has provided evidence that the inabil-
ity of tumor cells to undergo programmed cell death or
apoptosis in response to cytotoxic damage is a critical
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determinant of drug resistance [96, 97]. The search for
gene products involved in the regulation of cell growth
and apoptosis has identified numerous proteins, and the
list continues to grow. In particular, much interest has
been devoted to members of the bcl-2 gene family of
apoptosis regulators, because of their contribution to
oncogenesis and drug resistance. This family of struc-
turally related proteins includes members that exert
opposing functions in apoptosis control. The Bcl-2
protein functions in normal and neoplastic cells to inhibit
or delay apoptosis induced by a variety of endogenous
and exogenous stimuli [98, 99]. The related Bcl-xL
protein also acts as a negative regulator of apoptosis and
protects cells from cell death where Bcl-2 is ineffective
[100]. Over-expression of bcl-2 has been found in 70–90%
of SCLC cell lines and tumor specimens [101–103]. We
tested a number of first-generation phosphorothioate
ODNs hybridizing to different regions of the bcl-2
mRNA [85]. These experiments revealed a sequence in the
coding region as the most effective target site for anti-
sense-mediated down-regulation of bcl-2 expression and
induction of apoptosis in SCLC cells. Moreover, repres-
sion of the bcl-2 gene using this antisense ODN (2009)
was shown to sensitize SCLC cells to chemotherapy,
resulting in a synergistic cytotoxic effect [104]. In a recent
phase I trial, the phosphorothioate antisense ODN
G3139, which targets the translation initiation site of the
bcl-2 mRNA, was administered as a 14-day continuous
subcutaneous infusion in nine patients with relapsing
non-Hodgkin lymphoma [105]. A reduction in tumor size
was achieved in two patients, and in another two patients,
the number of circulating lymphoma cells decreased
during treatment. The dose-limiting toxicity of G3139
was related to the unspecific protein-binding activity of
the phosphorothioate backbone [106]. The use of second-
generation bcl-2 antisense ODNs with improved biolog-
ical and pharmacological properties is under
consideration in patients with refractory tumors.
In addition to bcl-2, the anti-apoptotic bcl-xL gene is also
expressed in a number of human tumors of different
histological origin including SCLC [73, 107, 108]. Since
expression of bcl-xL also substantially contributes to
resistance of tumor cells to a broad range of anti-cancer
agents, it represents a further promising target for anti-
sense therapeutics. That bcl-xL antisense ODNs can
indeed induce apoptosis in SCLC cells is shown by the
electron micrographs in figure 2. The role of bcl-xL
antisense ODNs in cancer therapy and other proliferative
diseases is currently under preclinical evaluation by
several investigators.

The myc family of oncogenes

In addition to the bcl-2 family members of apoptosis
inhibitors, the myc family of oncogenes, which is tran-
scriptionally deregulated or amplified in many human
tumor cells including a significant proportion of SCLC

cells [109–111] also represents an attractive target for
gene repression approaches. The Myc phosphoproteins
are transcription factors of the bHLH-zip family and
there is substantial evidence for their role in the control
of cell proliferation. In certain circumstances, however,
Myc also promotes apoptosis [112–114]. Although the
precise mechanism for this function remains obscure,
Myc-induced apoptosis is efficiently suppressed by Bcl-2,
which acts as a downstream inhibitor [115], and by
survival signals, such as IGF-I or interleukin (IL)-3 [76,
116]. The higher level ofMyc found in pretreated patients
compared to patients prior to chemotherapy [117, 118]
implies that it might be a negative regulator of apoptosis
in SCLC cells. This finding is consistent with studies
demonstrating poor response to chemotherapy and
worse survival in patients with myc gene over-expression
[119]. Antisense ODNs targeting the c-myc mRNA were
used to inhibit the growth of NSCLC and to induce
apoptosis in leukemia and melanoma cells in vitro and
in vivo [120–122].

Cyclins

The passage of a cell through the cell cycle is controlled
by cytoplasmic proteins, the most critical being cyclins
and cyclin-dependent kinases (cdks), and alterations in
cyclin expression provide the earliest examples of cell
cycle regulators acting as oncogenes [123]. Cyclin D
expression begins in early G1, when quiescent cells are
stimulated to re-enter the cell cycle, and cyclin D expres-
sion remains at high levels as long as mitogens and
proliferative signals are present. Cyclin D1 is the product
of the bcl-1 gene, located near the translocation break-
point (11;14) in B cell lymphomas. Cyclin D1 together
with its cdk partner is responsible for transition to the S
(DNA synthesis) phase by phosphorylating the product
of the retinoblastoma susceptibility gene (Rb), which
then releases transcription factors important in the initia-
tion of DNA replication [124]. Inhibition of cyclin D1
blocks the cell cycle in G1, demonstrating the necessity
of cyclin D for cell cycle control [125, 126]. Furthermore,
reinforced expression of cyclin D1 can mimic the effects
of growth factors in activating the cyclin E-Cdk2 com-
plexes and promoting S phase entry [127]. These results
suggest that cyclin D1 might be important for tumorige-
nesis. Further evidence for cyclin D1 as an oncogene was
provided by experiments in which cyclin D1 over-expres-
sion transformed BRK cells with a defective adenovirus
E1A protein [128] or rat fibroblasts with an activated
Ha-ras gene [129]. Cyclin D1 over-expression may, how-
ever, be an early and purely proliferative event that
eventually becomes oncogenic as further genetic aberra-
tions emerge. Over-expression of cyclin D1 has also been
identified as a frequent and early event during the
development of NSCLC, where it is associated with a
poorly differentiated histology and, surprisingly, a reduc-
tion in local relapse rate [130, 131]. Although overexpres-
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sion of cyclin D1 is a key abnormality in lung carcino-
genesis, it seems to be a less frequent event in SCLC,
where its prognostic and therapeutic significance have
not yet been addressed. Based on its frequent alteration
and role in cell cycle control, cyclin D1 may serve as a
potential target for gene inhibition approaches in early
lung cancer. As shown by Schrump et al. [132], down-
regulation of cyclin D1 expression using an antisense
approach could reduce the proliferation and tumori-
genicity of murine lung cancer cells.

Prostate tumor-inducing gene 1 (PTI-1)

Expression cloning and differential RNA display exper-
iments revealed a novel potential oncogene of 2123 bp,
PTI-1, which is expressed in prostate, breast, colon, and
SCLC cells [133, 134]. In a recent study, Su et al. [135]
demonstrated that stable expression of the nearly full-
length 1.9-kb PTI-1 gene in fibroblasts induced an ag-
gressive phenotype with increased tumorigenicity in
athymic mice. Blocking of PTI-1 expression with an
antisense gene construct could revert the transformation

of the cells and reduced their tumorigenic potential.
Further studies are necessary to reveal whether PTI-1
indeed represents a potential target for antisense thera-
peutics in SCLC and other cancer diseases.

Gene therapy

Replacement of tumor suppressor genes

Especially in tumors with a high propensity to
metastatic spread such as SCLC, there are severe limita-
tions in the efficiency of gene transfer by currently
available vectors and gene transfer systems. Preclinical
and clinical studies in other tumor types including
NSCLC, however, have suggested that current delivery
strategies may have therapeutic potential in defined
clinical settings.
In SCLC cells, a number of genetic lesions have been
reported, including the well-characterized tumor sup-
pressor gene p53 and Rb, which are mutated or lost in
90% and 70% of cases, respectively. Wild-type p53 is a
sequence-specific transcription factor whose expression

Figure 2. Electron mircographs of SW2 SCLC cells 96 h after treatment with bcl-2 or bcl-xL antisense oligodeoxynucleotides (ODNs):
untreated cells (A), cells treated with a bcl-2 antisense ODN (B), cells treated with a mismatch control ODN (C), cells treated with a
bcl-xL antisense ODN (D). As shown by the extensive membrane blebbing, cell death after treatment with the antisense ODNs was
apoptotic by nature. (Prof. P. Grosscurth, Institute of Anatomy, University of Zürich, with permission).
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can suppress the progression of cells fromG1 into S phase
[95, 136]. It is also required for the G1 arrest of cells in
response to DNA damage, presumably to allow cells to
repair damaged templates prior to replication [137, 138].
Substantial evidence suggests that a major part of p53-
mediated growth arrest evolves through induction of the
cdk inhibitor p21WAF1 (p21) [139]. In contrast, the
mechanism by which p53 promotes apoptosis is less clear.
Examples of p53-regulated targets are proteins involved
in the apoptotic response, such as the Bcl-2 antagonist
Bax [140, 141] and the IGF-I receptor [79], and proteins
regulating angiogenesis [142, 143].
In its hypophosphorylated state, the Rb protein causes
cell cycle arrest in the G0/G1 phase, in part by inhibiting
the function of transcription factors such as E2F [144,
145]. Inappropriate passage of cells through the G1

checkpoint may cause them to replicate damaged DNA
in the S phase before DNA repair can be completed in
G1, and to ignore signals inducing differentiation or cell
death [146].
In view of these findings, p53 and Rb gene replacement
might be of therapeutic benefit for many tumor types.
Gene replacement with retroviral or adenoviral vectors
harboring wt-p53 was shown to restore the apoptotic
response of NSCLC cells in preclinical studies. In a recent
phase I study with 21 patients presenting with NSCLC,
local injection of the p53 adenoviral vector alone or in
combination with cisplatin lengthened the time to disease
progression and produced a bystander effect, possibly
due to the anti-angiogenic effect of p53 [147]. The p53
tumor suppressor gene transactivates the cdk inhibitor
gene p21, which is an important mediator of cell prolif-
eration and differentiation [148]. In cell cycle regulation,
p21 is a dual inhibitor of cdks and proliferating cell
nuclear antigen, both of which are required for entering
and progressing through the S phase of the cell cycle [149,
150]. Cells over-expressing p21 accumulate in the G1

phase and p21 null cells are impaired in their ability to
undergo G1 arrest following DNA damage [149, 151]. In
a recent preclinical study, p21 gene replacement using an
adenoviral vector inhibited the growth of NSCLC cells
in vitro and in a xenograft model by inducing G0/G1

arrest [152]. Since the p53 and p21 tumor suppressor
genes are frequently mutated or lost in SCLC cells, gene
replacement approaches might be interesting treatment
options for patients with limited-stage SCLC. Replace-
ment of the Rb gene using adenoviral vectors inhibits the
proliferation of and induces G1 arrest in Rb-altered
human tumor cell lines including SCLC in vitro and in
vivo [153, 154].

Vaccination gene therapy and immune activation

Engineering of tumor cells with cytokine genes to en-
hance their immunogenicity has been the subject of

extensive investigation in recent years [155, 156]. IL-2
has been the most commonly used cytokine in these
studies, which mediates its immune stimulatory effect
by binding to a specific receptor constitutively expressed
on T and NK cells [157, 158]. A clinical study suggested
a possible effect of exogenous IL-2 in patients with
SCLC [159], and an approach to genetically engineer
autologous SCLC cells from patients with limited-stage
SCLC to produce IL-2 has been proposed [160]. As
shown by Meazza et al. [161], transfection of the IL-2
gene into SCLC cells reduced their tumorigenicity in
nude mice, due to the recruitment and activation of
macrophages, granulocytes, and NK cells at the tumor
site. The idea underlying this approach is to prevent
anergy of immune competent cells and to activate a
systemic immune response by creating an environment
of high doses of interleukins at the tumor site. A variety
of epithelial tumor cells, including SCLC and NSCLC
cells, however, up-regulate expression of the Fas-ligand
(CD95L) on their surface, thereby creating an immune-
privileged environment almost inaccessible for cytotoxic
T cells [162]. Further studies are needed to assess
whether the rationale of the cytokine gene therapy
approach will translate into clinical efficacy.
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