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dromes have a dominant pattern of inheritance, due toAbstract. The study of inherited cancer syndromes has
led to the identification of over 25 genes directly in- germline loss-of-function mutation of a tumour sup-
volved in tumorigenesis. These genes have functions as pressor gene. All the recessively inherited genes have

been implicated in the maintenance of genome stability.diverse as signal transduction, cell cycle control, cell-to-
This review summarises our current understanding ofcell adhesion, control of apoptosis, DNA repair and the

maintenance of genome stability. Most cancer syn- the functions of the major cancer susceptibility genes.
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Introduction

The normal cellular processes of proliferation, migra-
tion, differentiation and programmed death provide the
tools by which malignancies develop. The diversity and
complexity of these processes dictate that the genes
which predispose to inherited cancer will be numerous
and varied in function (table 1). This variety, combined
with the propensity of many genes to encode proteins
with multiple functions, defies simple classification of
cancer susceptibility genes. Here they will be divided
into two broad categories: (i) genes involved in cell
communication, proliferation and survival, and (ii)
genes required for genome stability and DNA repair.
Polymorphisms in genes that mediate the metabolism
and detoxification of environmental carcinogens, such
as the acetyltransferase genes NAT1 and NAT2, the
cytochrome p450 genes, and the glutathione transferase
gene GSTM1, provide a third category of cancer sus-
ceptibility genes. This category of genes is reviewed
elsewhere [1].
The implicit limitation on inherited disease susceptibil-

ity genes is that heterozygous germline mutations can-
not be embryonically lethal. Consequently, gain-
of-function germline mutations are rare in the genes
encoding the fundamental proliferative and develop-
mental pathways. Instead, the majority of inherited
cancer syndromes have a dominant mode of inheritance
caused by a loss-of-function mutation in a single allele
of a tumour suppressor gene [2]; somatic inactivation of
the second allele is then required for the phenotypic
changes associated with cancer progression [3]. The few
known exceptions are activating missense mutations in
the KIT, RET and MET receptor tyrosine kinase genes,
dominant-negative mutations in the DNA-binding do-
main of P53 in Li-Fraumeni syndrome, and missense
mutations in CDK4 which abrogate p16INK4a binding
and predispose to malignant melanoma. Notably, the
few genes responsible for recessively inherited cancer
susceptibility are not directly involved in the pathways
associated with tumorigenesis, but instead encode
proteins implicated in genome stability and DNA
repair.
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Cell communication, proliferation and survival

RB1: familial retinoblastoma
Germline mutation of the RB1 gene predisposes to
early-onset retinoblastoma, and an elevated risk of os-
teosarcoma. RB1 is a multifunctional protein, with
roles in regulating the mitotic cell cycle, apoptosis and
differentiation [reviewed in ref. 4]. It is, however, its role
as a negative regulator of the mitotic cell cycle that is
likely to dominate its involvement in tumorigenesis.
Mitogenic stimulation of the cell leads to the synthesis
of members of the cyclin families of cell cycle proteins.

Cyclins bind and activate different cyclin-dependent
kinases (CDKs) which in turn phosphorylate RB1. RB1
in its unphosphorylated state inhibits progression
through the late G1 phase of the cell cycle by blocking
the activity of E2F transcription family members and
consequently repressing transcription of the diverse E2F
target genes. However, progressive phosphorylation in
mid to late G1 phase by one or more of the cyclin-acti-
vated CDKs uncouples RB1 from the E2F transcription
factors, enabling expression of their target genes and
entry of the cell into S phase [5].

Table 1. Summary of genes responsible for inherited cancer predisposition, their chromosomal location, the syndromes they cause and
the functions of the gene products (mode of inheritance is shown in italics).

Gene Syndrome Location Principal function Principal malignancies

transcriptional/ cellRB1 retinoblastomafamilial retinoblastoma; 13q14
dominant cycle regulator

9p21 CDK inhibitor melanomaP16 INK4a familial melanoma; dominant
melanomaCDK4 familial melanoma; dominant 12q13 CDK
sarcomas, breast cancertranscription factor17p13.1Li-Fraumeni; dominantP53

growth factor5q21 colorectal cancerfamilial adenomatousAPC
polyposis; dominant signalling

CDH1 hereditary diffuse gastric diffuse gastric cancer16q22.1 cell-to-cell adhesion
cancer; dominant

serine threonine kinase19p13.3Peutz-Jeghers; dominant gastrointestinal cancerLKB1
PTEN Cowden syndrome; juvenile 10q23.3 phosphatase, breast cancer, gastrointestinal

polyposis coli; dominant cancercytoskeletal protein?
SMAD4 juvenile polyposis coli; 18q21.2 growth factor gastrointestinal cancer

dominant signalling
MEN1 multiple endocrine neoplasia endocrine11q13 transcription co-factor

type 1; dominant
10q11.2RET endocrinemultiple endocrine neoplasia receptor tyrosine

kinasetype 2; dominant
MET Hereditary papillary renal 7q31 papillary renal cancerreceptor tyrosine

kinasecancer; dominant
receptor tyrosine4q12 gastrointestinal cancerfamilial gastrointestinalKIT
kinasestromal tumours; dominant (stromal)
membrane receptor basal cell (skin)basal cell nevus syndrome;PTCH 9q22.3

dominant
GTPase-activating17q11.2 neurofibrosarcomasneurofibromatosis type 1;NF1
proteindominant
cytoskeletal protein?22q12.2 central nervous systemNF2 neurofibromatosis type 2;

dominant tumours
renal clear cell carcinomas,protein maturation?3p25von Hippel-Lindau dominantVHL
pheochromocytomasRNA elongation?

WT1 nephroblastomaWilms tumour; dominant 11p13 transcription factor
leukaemia, lymphomaBloom syndrome; recessi6eBLM dsDNA repair?15q26.1
leukaemiaFANCA ; FANCC ; dsDNA repair?Fanconi anaemia; recessi6e 16q24.3; 9q22.3; ?

others
helicases, nucleotidexeroderma pigmentosum;XPB ; XPD others basal cell and squamous cell2q21; 19q13; ?

carcinomasexcision repairrecessi6e
ATM serine-threonine proteinataxia telangiectasia; recessi6e lymphoma, leukaemia11q22.3

kinase
8q21 transcription factor? lymphomaNijmegen breakage syndrome;NBS1

dsDNA repair?recessi6e
17q21familial breast/ovarian cancer; transcription factor?BRCA1 breast, ovarian cancer

dominant dsDNA repair
breast, ovarian cancerBRCA2 transcription factor?13q12familial breast/ovarian cancer;

dsDNA repairdominant
MLH1; MSH2 3p21; 2p16; 2q32;hereditary non-polyposis DNA mismatch repair colorectal, endometrial cancer

colorectal cancer; dominant 7p22; 2p16PMS1; PMS2;
MSH6

CDK, cyclin-dependent kinase.
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P16 INK4a and CDK4: familial melanoma
Greater than 40% of melanoma-prone kindreds have
mutations in the P16 INK4a (also known as CDKN2)
gene on chromosome 9p21 [6]. Germline mutation of
P16 INK4a increases the risk of melanoma by a factor of
75 and pancreatic cancer by a factor of over 10. A range
of other cancers, including tumours of the cervix, blad-
der and breast, gliomas and certain haematological ma-
lignancies also occur in rare families [7]. Dysplastic nevi
are also often associated with familial melanoma.
p16INK4a is a member of a group of CDK inhibitors that
specifically bind to and inactivate cyclin-CDK com-
plexes. Mammalian CDK inhibitors also include
p15INK4b, p18INK4c, p19INK4d, p21C1P1, p27K1P1 and
p57K1P2. P16INK4a itself binds to CDK4 and CDK6,
preventing their association with cyclin D [8]. Inhibition
of CDK4/6 binding to cyclin D blocks RB1 phosphory-
lation which in turn decreases the expression of the
E2F-dependent genes that control the G1–S transition
of the cell cycle.
p16 INK4a mutations are not the only germline mutations
associated with familial melanoma. Rare melanoma-
prone families have been identified with wild-type
p16 INK4a but missense mutations in CDK4. These mis-
sense mutations abrogate the interaction between
p16INK4a and CDK4 [6, 9, 10] causing a phenotype
comparable to the effect of loss of function P16 INK4a

mutations.
The P16 INK4a gene partially overlaps an open reading
frame known as P19ARF. Although p19ARF has been
implicated in tumorigenesis [11], the germline mutations
found in familial melanoma probably do not impair
p19ARF function [12].
p16INK4a is expressed at low to undetectable levels in
developing embryos, and is not required for normal
development [13]. As well as regulating the cell cycle,
p16INK4a may also play a role in limiting the lifespan of
proliferative cells [reviewed in ref. 14], a process known
as replicative senescence. The appearance of the senes-
cent phenotype is correlated with the production of
p16INK4a. Mutation or deletion of P16 INK4a has been
implicated in the immortalisation process of cell lines.
Embryo fibroblasts from mice that are nullizygous for
P16 INK4a do not senesce, whereas wild-type cells un-
dergo senescense after 10–12 doublings accompanied
by a sharp rise in p16INK4a levels [15, 16]. The ectopic
expression of p16INK4a can induce senescense in rela-
tively young fibroblasts [17].

P53: Li-Fraumeni syndrome
Li-Fraumeni syndrome is characterised by susceptibility
to a broad range of cancers including rhabdomyosar-
coma, osteogenic sarcoma, breast cancer, brain cancer,
leukaemia and adrenal cortical carcinoma [7]. Geneti-

cally it is defined by germline mutation of the inhibitor
of the mitotic cell cycle and promoter of apoptosis,
P53.
Intracellular levels of p53 are controlled by competing
systems that either stabilise or destabilise p53 in re-
sponse to DNA damage or cytokine stimulation. Key
regulators of p53 stability are the proteins mdm2 and
p19ARF [reviewed in ref. 18]. mdm2 masks the p53
activation domain [19] and is able to promote the
degradation of p53 [20, 21]. In response to DNA dam-
age, p53 is phosphorylated by protein kinases including
ATM and DNA-dependent protein kinase. These phos-
phorylation events are likely to prevent mdm2-depen-
dent degradation of p53. In contrast to mdm2, p19ARF

stabilises and activates p53, probably by its ability to
bind mdm2 and/or p53 itself. p19ARF activity is stimu-
lated by overexpression of oncogenes such as c-myc,
E2F1 and E1A [5].
Much of the activity of p53 can be ascribed to its ability
to enhance transcription by specific interaction with the
DNA sequence 5%-PuPuPuC(A/T)(T/A)GPyPyPy-3%
[22]. In response to DNA damage or inappropriate
activation of oncogenes, p53 is stabilised and initiates
cell cycle arrest at either the G1–S or G2–M transi-
tions. The G1–S arrest is in part mediated by transcrip-
tional up-regulation of the cyclin-dependent kinase
inhibitor p21CIP1 by p53 [23]. G2–M arrest (which pre-
vents improper chromosome segregation) is mediated
by p53-induced transcriptional activation of the cell
cycle checkpoint gene GADD45 [24] and 14.3.3s a hu-
man homologue of the yeast checkpoint genes RAD24
and RAD25 [25].
The mechanism by which p53 promotes apoptosis has
been less clearly defined but is likely to involve tran-
scriptional activation of the mitochondrial-associated
pro-apoptotic protein Bax [26] and a group of proteins
implicated in the cell response to oxidative stress known
as PIGs (p53-induced genes) [27]. P53 can also enhance
apoptosis by transiently increasing export of a member
of the tumour necrosis receptor family, Fas, from the
Golgi complex to the cell surface [28]. The Fas-related
apoptotic pathway is rapid and independent of new
RNA or protein synthesis [28].
Germline missense mutations in the core DNA-binding
domain of P53 account for about three-quarters of the
Li-Fraumeni mutations [7, 29]. Families with missense
mutations in this domain have a more highly penetrant
phenotype than families with protein-truncating muta-
tions. In particular, the former have a younger age of
onset and a higher incidence of breast cancers and brain
tumours [29]. Because p53 functions as a tetramer, the
missense mutations would have a dominant-negative
effect; therefore, somatic inactivation of the wild-type
allele would not be essential for tumour progression.
Indeed, in one study of Li-Fraumeni families, loss of
heterozygosity (LOH) was only observed in about one-
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third of the tumours with missense mutations in the
DNA-binding domain, but in all tumours with either
truncating mutations or mutations outside the DNA-
binding domain [29].

APC : familial adenomatous polyposis
Germline mutation of the APC gene is responsible for
familial adenomatous polyposis (FAP). FAP is charac-
terised by the development of large numbers of pre-ma-
lignant adenomatous colorectal polyps. Unless the
colon is surgically removed, FAP patients have a near
100% risk of developing colon adenocarcinoma. Other
associated malignancies include duodenal carcinoma,
thyroid cancer, gastric cancer and tumours of the cen-
tral nervous system, principally medulloblastomas
[30].
APC forms part of a complex including glycogen syn-
thase kinase-3b (GSK-3b) and axin [31] that regulates
signalling through the Wnt pathway. In the absence of
signalling, APC and the multi-functional protein b-
catenin are phosphorylated by GSK-3b [32]. Phospho-
rylated b-catenin is ubiquinated and degraded in the
proteosomes [33, 34]. Wnt signalling inhibits GSK-3b

activity, leading to an increase in free b-catenin. b-
Catenin binds to the LEF/TCF transcription factors
and migrates to the nucleus where it acts as a transcrip-
tional co-activator of genes such as c-myc, cyclin D1
[35], and components of the AP-1 transcription complex
(c-jun and fra-1) [36]. b-Catenin up-regulation is also
correlated with changes in the expression of genes in-
volved in cell adhesion and motility. These changes
include increased expression of fibronectin [37] and
urokinase-type plasminogen activator receptor [36] and
decreased expression of E-cadherin [38, 39] and the
tight junction protein ZO-1 [36].
b-Catenin can also regulate cell adhesion and motility
by virtue of its ability to bind the cytoplasmic domain
of the cell-to-cell adhesion protein E-cadherin. This
interaction is required for adhesion at the adherens
junctions on the basolateral surface of the cell. APC is
able to compete with E-cadherin for binding to b-
catenin [40, 41], and therefore may also play a direct
role in the regulation of cell adhesion.
In addition to its role modulating the activity of b-
catenin, APC is believed to regulate the rate of intesti-
nal crypt production by controlling crypt fission [42].
Increased crypt fission would enhance polyp formation
in the intestinal tracts of germline APC mutation carri-
ers. Finally, it has also been suggested that APC may
play a role in the response of the cell to DNA damage
[43].
Classical FAP is caused by high-penetrance APC muta-
tions that generally result in protein truncation. How-
ever, attenuated phenotypes have been attributed to

mutation of the 5% and 3% regulatory regions of APC
[44–46]. Recently, a specific missense germline mutation
(I1307K) in the APC gene has been described which
leads to an increased risk of somatic mutation (particu-
larly insertions) by creating a hypermutatable tract of A
residues [47]. The I1307K mutation provides an exam-
ple of a high-prevalence, low-penetrance cancer suscep-
tibility mutation. It is present in �7% of unselected
Ashkenazi Jews and increases the risk of colorectal
adenoma or carcinoma by a modest 1.5- to 1.7-fold [48].
A second substitution mutation (E1317Q) in APC has
also been associated with low- and variable-penetrance
colorectal adenomas and carcinomas [49].

CDH1: hereditary diffuse gastric cancer
Hereditary diffuse gastric cancer (HDGC) is an autoso-
mal dominant cancer syndrome caused by germline
mutation of the gene for the cell-to-cell adhesion
protein E-cadherin (CDH1) [50]. Tumours in this syn-
drome are predominantly histologically diffuse, poorly
differentiated gastric cancers, but an elevated risk of
colorectal and breast cancer may exist [51–53].
Germline CDH1 mutation is not associated with the
intestinal form of gastric cancer [54].
E-cadherin is a homophilic transmembrane protein lo-
calised to the adherens junction on the basolateral sur-
face of the cell [55]. The cytoplasmic domain forms a
complex with proteins of the catenin family, which
mediate an interaction between E-cadherin and the
actin cytoskeleton. E-cadherin therefore effectively
forms a continuum between the cytoskeletons of adja-
cent cells.
In vitro and in vivo, E-cadherin loss is associated with
the acquisition of an invasive phenotype [56–58]. In a
mouse model of pancreatic b-cell tumorigenesis, pro-
gression from well-differentiated adenoma to invasive
carcinoma coincided with E-cadherin down-regulation
[59]. E-cadherin loss may also play a role in tumour
initiation by disrupting signalling through the Wnt
pathway [60]. In vitro, cadherin expression at the cell
surface has been demonstrated to sequester b-catenin to
the adherens junctions leading to an inhibition of LEF-
1-directed transcription [61]. However, loss of E-cad-
herin expression may not be sufficient to constitutively
activate signalling through the Wnt pathway [62].

LKB1: Peutz-Jeghers syndrome
Germline mutations in LKB1 underlie familial Peutz-
Jeghers syndrome (PJS). PJS is characterised by intesti-
nal hamartomatous polyps, pigmented spots and an
elevated risk of various neoplasms including gas-
trointestinal, gynaecological and breast cancers [63].
Although LKB1 is the major locus for PJS, this syn-
drome is genetically heterogeneous [64].
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LKB1 is ubiquitously expressed, with highest expression
in the testes [65]. The gene is composed of ten exons
spanning 23 kb and encodes a serine/threonine kinase
of unknown specificity [66, 67]. Somatic mutations in
LKB1 have been reported in diverse sporadic tumour
types, but at a very low frequency [68].

PTEN : Cowden syndrome; juvenile polyposis coli
Cowden disease is characterised by hamartomas (disor-
ganised cell masses) of multiple organs, including skin,
breast, thyroid and the gastrointestinal tract. Lipomas,
fibroadenomas of the breast, cerebellar gangliocy-
tomatosis and haemangiomas are also common [7]. In
addition to these benign tumours, breast cancers de-
velop in 30–50% of affected woman. An increased risk
of other cancer types, in particular thyroid carcinoma,
is also likely.
Juvenile polyposis coli (JPC) is a variant of Cowden
disease which is characterised by the development of
hamartomatous polyps throughout the digestive tract
and a predisposition to cancer of the gastrointestinal
tract and possibly the pancreas. These polyps, unlike
those in FAP and PJS, are distinguished by an over-
growth of stromal cells, but contain a normal epithelial
component.
Germline mutation of the tumour suppressor gene
PTEN leads to both Cowden disease and JPC. The
phenotypic differences observed between the two may
reflect the location of the mutations within the PTEN
gene or the influence of different genetic backgrounds
[69]. PTEN contains a dual-specificity phosphatase do-
main and a region of homology to the cytoskeletal
proteins, tensin and auxillin. It is able to dephosphory-
late both phosphotyrosine and phosphoserine/
threonine-containing substrates in vitro [70]. Loss of
PTEN results in decreased sensitivity to cell death in
response to diverse apoptotic stimuli. PTEN dephos-
phorylates phosphatidylinositol (3,4,5) triphosphate
(PIT), a direct product of phosphatidylinositol 3 kinase
activity [71]. PIT participates in the activation of the
serine/threonine kinase Akt. Akt is a regulator of a cell
survival pathway that mediates the anti-apoptotic sig-
nals from several growth factors including insulin-like
growth factor (IGF)-1 [72] and interleukin (IL)-2 [73].
Elevated Akt signalling also protects cells from apopto-
sis induced by diverse stimuli including matrix detach-
ment [74] and c-myc overexpression [75]. In addition to
its role as a negative regulator of the Akt cell survival
pathway [76–78], PTEN is able to inhibit cell migra-
tion, integrin-mediated cell spreading and focal adhe-
sion through its ability to directly dephosphorylate
focal adhesion kinase [79].

SMAD4: juvenile polyposis coli
In addition to germline mutations in the PTEN gene,
SMAD4 germline mutations are also found in families
affected by JPC [80].
SMAD4 is a member of the SMAD family of genes that
encode cytoplasmic mediators of the transforming
growth factor (TGF)-b signalling pathway. TGF-b in-
hibits growth of many tissues, including the colonic
epithelium, and TGF-b resistance has been associated
with colorectal cancer [81]. Binding of TGF-b or related
ligands to their serine/threonine kinase receptors results
in phosphorylation of SMAD2 and/or SMAD3, which
then form complexes with SMAD4. These complexes
migrate to the nucleus where they bind both specific
DNA sequences [82] and transcription factors such as
the Jun family of AP-1 transcription factors [83]. The
target genes of the TGF-b pathway include the CDK
inhibitors P21CIP1 and P15 INK4b [84, 85] and plasmino-
gen activator inhibitor-1 [86].

MEN1: multiple endocrine neoplasia type 1
Multiple endocrine neoplasia type 1 (MEN1) is an
autosomal dominant disease characterised by peptic
ulcers and endocrine abnormalities, in particular hyper-
parathyroidism. Associated malignant neoplasms in-
clude tumours of the parathyroids, pancreatic islets and
anterior pituitary. In addition, adrenocortical car-
cinomas, carcinoid tumours and schwannomas are oc-
casionally observed. MEN1 is caused by mutation of
the tumour suppressor gene MEN1 [87, 88]. These mu-
tations are predominantly nonsense or frameshift, and
therefore inactivating.
MEN1 encodes a nuclear protein known as menin.
Menin interacts with a member of the AP-1 family of
transcription factors, JunD, and represses JunD-acti-
vated transcription in vitro [89]. The identities of the
specific transcription targets of the menin-JunD com-
plex are not yet known.

RET : multiple endocrine neoplasia type 2/familial
medullary thyroid carcinoma
Multiple endocrine neoplasia type 2 (MEN2) is charac-
terised clinically by the occurrence of medullary thyroid
carcinoma and variable expression of pheochromocy-
tomas, hyperparathyroidism, ganglioneuromas and mu-
cosal neuromas. Medullary thyroid carcinoma occurs in
isolation in familial medullary thyroid carcinoma
(FMTC). Both MEN2 and FMTC are caused by
germline missense mutation of the receptor tyrosine
kinase gene RET [90]. Hirschsprung disease, which is
defined by the absence of intrinsic ganglion cells of the
gastrointestinal tract, is a third variant resulting from
RET mutation. Correlations have been reported be-
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tween the specific mutations in RET and the clinical
phenotype [91–93]. RET is the receptor for glial cell
line-derived neurotrophic factor (GCNF).

MET : hereditary papillary renal carcinoma
Hereditary papillary renal carcinoma (HPRC) is char-
acterised by a predisposition to multiple, bilateral papil-
lary renal tumours. Germline missense mutations have
been identified in the tyrosine kinase domain of the
receptor tyrosine kinase gene MET in families with
HPRC [94, 95]. Equivalent mutations activate both the
RET and KIT oncogenes [90, 96].
MET binds hepatocyte growth factor/scatter factor
(HGF/SF) with high affinity [97]. MET and HGF/SF
are expressed in a diverse range of tissues, predomi-
nantly in cells of epithelial and mesenchymal origin,
respectively [98]. Signalling from this growth factor/re-
ceptor complex promotes proliferation, cell motility and
extracellular matrix invasion [99]. Mutations in MET
induce metastasis in model systems [100]. These changes
are associated with increased expression of ERK1/2,
adding to evidence that MET acts, at least in part,
through the ras-raf-MEK-ERK signalling pathway
[100].

KIT : familial gastrointestinal stromal tumours
Gastrointestinal stromal tumours are the most common
mesenchymal tumour of the human gastrointestinal
tract. A germline gain-of-function mutation has been
identified in the KIT receptor tyrosine kinase in a
family with a history of this tumour type over four
generations [101]. Activating KIT mutations are also
found in sporadic gastrointestinal stromal tumours.

PTCH : basal cell nevus syndrome
Germline mutation of the PTCH gene is responsible for
basal cell nevus syndrome, which is characterised by
multiple basal cell carcinomas in 90% of mutation carri-
ers. Occasional medulloblastomas, ovarian carcinomas
and fibrosarcomas are also observed. Non-malignant
features can include congenital malformations and cysts
and fibromas in diverse tissues [7].
PTCH is the cell surface receptor for sonic hedgehog
(Shh), a signalling molecule important in patterning
processes during development [reviewed in ref. 102].
PTCH is part of a multi-component transmembrane
complex that includes the G protein-coupled receptor-
like molecule Smoothened (SMO). Upon binding of
Shh to PTCH, the normal inhibitory effect of PTCH on
SMO is removed, allowing SMO to transduce the Shh
signal. In Drosophila, one of the targets of this sig-
nalling pathway is wingless. The human homologue of

wingless, Wnt, initiates a signalling pathway implicated
in a number of epithelial cancers. However, it is not yet
clear why mutation of PTCH, which is expressed in a
wide range of tissues, leads predominantly to basal cell
carcinomas.

NF1: neurofibromatosis type 1
Neurofibromatosis type 1 (NF1) is an autosomal domi-
nant disorder whose clinical features include neuro-
fibromas, café-au-lait spots, optic glioma and iris
hamartomas. Up to 15% of affected individuals develop
neoplasms of neural crest origin, in particular neuro-
fibrosarcomas. Abnormalities in Schwann cells are
thought to be responsible for both the neurofibromas
and neurofibrosarcomas [103]. The risk for other can-
cers, including leukaemia and Wilms tumour, is ele-
vated [7].
NF1 is caused by germline mutations in the 60-exon
gene NF1 [104, 105]. A central domain in the NF1 gene
product, neurofibromin, is the only region to which a
clear function has been ascribed due to its strong ho-
mology with ras-specific GTPase-activating proteins
(GAPs) [106]. ras is a membrane-associated protein
which can bind GTP and catalyse its hydrolysis to GDP
[107]. Like other GTP-binding proteins, ras is active in
the GTP-bound state and inactive in the GDP-bound
state. The neurofibromin GAP domain can increase the
slow intrinsic GTPase activity of ras by up to 105-fold
[105]. Thus, GAP activity is a negative regulator of ras.
Consequently, inactivating mutations in NF1 cause ele-
vated levels of activated ras and its downstream signals
[108]. Similarly, activating mutations in ras itself de-
crease its intrinsic GTPase activity and render it resis-
tant to GAP activity [109].
ras signals through pathways including the mitogen-ac-
tivated protein (MAP) kinase cascade [110]. Following
extracellular stimulation of the upstream receptor ty-
rosine kinases, ras binds and activates the serine/
threonine kinase raf1, which in turn leads to the
sequential activation of the dual-specificity kinase
MEK1 and the ERK kinases [111]. The ERK kinases
phosphorylate a variety of targets including transcrip-
tion factors such as Elk-1 which are involved in the
control of cell growth [112].

NF2: neurofibromatosis type 2
Neurofibromatosis type 2 (NF2) is an autosomal domi-
nant disorder with clinical signs which include hearing
loss, café-au-lait spots, cataracts, muscle weakness and
neurofibromas [7]. The majority of these signs are at-
tributable to malignant gliomas, vestibular schwan-
nomas, meningiomas and spinal cord schwannomas.
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Truncating mutations in the responsible gene, NF2,
[113, 114] tend to cause a more severe disease with
earlier onset than missense mutations and mutations in
promoter elements [115, 116]. The NF2 protein, merlin,
has structural homology to a family of proteins that
link the actin cytoskeleton to membrane glycoproteins
[113, 114], and is expressed in several different cell types
including Schwann cells, meningeal cells and neurons. It
is a phosphoprotein that is localised to cortical actin
structures and enriched in dynamic regions of the mem-
brane such as membrane ruffles [117]. The mechanism
by which merlin loss leads to tumorigenesis is not yet
clear. However, the observation that the level of merlin
increases in cell lines under conditions of confluency
and serum starvation suggests that it may be involved in
regulating the response of the cell to negative growth
signals from the external environment [118].

VHL : von Hippel-Lindau disease

Individuals affected by von Hippel-Lindau disease
(VHL) develop a variety of tumours including renal
clear-cell carcinomas, pheochromocytomas and vascu-
lar tumours of the central nervous system and retina
[119]. VHL is caused by germline mutation of the tu-
mour suppressor gene VHL. Mutant alleles can be
separated on the basis of their tendency to cause
pheochromocytomas or renal cell carcinomas [119].
pVHL has been proposed to participate in the down-
regulation of transcriptional elongation by blocking the
assembly of the tripartite elongation complex elongin
[120]. VHL-associated tumours are typically hypervas-
cular [121]. Cells lacking pVHL overproduce hypoxia-
inducible mRNAs such as vascular endothelial growth
factor (VEGF) mRNA [122] under normoxic condi-
tions. This effect appears to be mediated at the level of
mRNA stability rather than transcription elongation.
pVHL has also been reported to control cell cycle
progression through regulation of the steady-state levels
of the CDK inhibitor p27KIP1 [123].
Recently, pVHL has been shown to interact with
fibronectin (directly or indirectly), and intact pVHL is
required for assembly of the extracellular fibronectin
matrix [124]. How VHL is involved in matrix assembly
has not yet been elucidated; however, VHL-deficient
cells are less able to eliminate misprocessed proteins
such as those arising from impaired glycosylation [125].
This effect may be mediated by CUL2, a member of the
cullin protein family, which binds to the VHL-elongin
complex [126, 127]. Cullin proteins are believed to
target certain cellular proteins for ubiquination and
degradation [121]. Therefore, loss of pVHL may lead to
the disruption of the extracellular matrix secondary to
the accumulation of misfolded fibronectin.

WT1: Wilms tumour
Germline mutation of the WT1 gene leads to predispo-
sition to the childhood nephroblastoma known as
Wilms tumour. It sometimes occurs in association with
aniridia, genitourinary malformations and mental retar-
dation (termed WAGR).
WT1, which plays an important role in kidney develop-
ment and differentiation, is expressed in the developing
kidney, developing genitourinary tract and undifferenti-
ated haemopoietic cells [128]. Overexpression of WT1
has also been reported in sporadic solid tumours and
leukaemias [129], suggesting a general oncogenic role.
WT1 is a zinc-finger transcription factor that represses
the transcription of genes including IGF-II, IGF-I re-
ceptor (IGF-IR) [130, 131] and the paired-box tran-
scription factor PAX2 [132]. It has also been reported to
activate transcription of the CDK inhibitor P21CIP1 and
the differentiation marker syndecan-1 [133]. WT1 can
also bind RNA, including exon 2 of the IGF-II mRNA
[134] and may therefore also regulate gene expression at
the post-transcriptional level.

Genome stability and DNA repair

BLM : Bloom syndrome
Germline mutation of the BLM gene is responsible for
Bloom syndrome, a rare autosomal recessive disorder
characterised by growth deficiency, immunodeficiency,
genomic instability and the predisposition to a wide
range of cancers. The genomic instability is observed as
excessive chromosome breakage and a dramatically ele-
vated rate of sister chromatid exchange in somatic cells.
Acute leukaemia and lymphoid neoplasms are the pre-
dominant cancers before the age of 25 years; cancers of
the tongue, larynx, lung, oesophagus, colon, skin,
breast and cervix have also been described in Bloom
syndrome families [7]. BLM protein, which is localised
to the nucleus, encodes a protein with homology to the
Escherichia coli recQ subfamily of 3%–5% DNA helicases
[135] and the fission yeast protein RAD12+ .
RAD12+ is implicated in both chromosome segrega-
tion and G2 checkpoint regulation [136]. Another ho-
mologue of the E. coli recQ helicases is responsible for
Werner syndrome, a rare autosomal recessive disorder
causing premature ageing and cancer predisposition
[137].

Fanconi anaemia complementation groups
Fanconi anaemia is an autosomal recessive disease with
varied clinical symptoms including developmental and
haematologic abnormalities [138]. Leukaemia, hepato-
cellular carcinoma and squamous cell carcinoma all
occur at elevated frequencies. At the subcellular level,
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cell cycle disturbances, spontaneous chromosome insta-
bility and hypersensitivity to cross-linking agents are all
observed.
Eight Fanconi anaemia complementation groups (A–
H) have been identified [139]. Germline mutations have
been identified in the genes from groups A, C and G
[138, 140]. The molecular functions of these three genes
are unclear and, unlike other human genes involved in
DNA repair and stability, they show no sequence ho-
mologies to yeast.

XPD, XPB, XPA : xeroderma pigmentosum
Xeroderma pigmentosum (XP) is an autosomal reces-
sive disorder characterised by UV sensitivity and the
development of basal cell and squamous cell car-
cinomas. Increased risk of leukaemia and tumours of
the stomach, brain and lung have been reported. XP is
also associated with various neurologic abnormalities in
some patients, including deafness and mental subnor-
mality [7].
XP is caused by germline mutation of one of seven
complementation groups (XP-A to XP-G) involved in
nucleotide excision repair (NER) of damaged or mis-
paired nucleotides [141]. Two of the XP proteins, XPB
and XPD, are helicases in the TFIIH transcription
complex [142] which is required for both NER and
general transcription initiation [143].
A subset of mutations in the XP genes leads not to
cancer susceptibility but to the neurodevelopment dis-
ease Cockayne syndrome and the brittle-hair disorder
trichothiodystrophy. Recent evidence suggests that
these non-cancer clinical phenotypes are consequences
not of perturbed NER, but of the altered transcription
activity of the TFIIH complex [144].

ATM : ataxia telangiectasia
Ataxia telangiectasia (AT) is an autosomal recessive
disorder caused by mutation of the ATM gene on
chromosome 11q22.3. It is characterised clinically by
progressive neuromotor dysfunction resulting from
gradual cerebellar cortical atrophy and variable abnor-
mal cutaneous features that include telangiectasia (di-
lated blood vessels), vitiligo and café-au-lait macules.
Endocrine dysfunction, immunodeficiency, radiation
hypersensitivity and cancer susceptibility are other fea-
tures of this disorder. One-third of AT patients develop
cancer, in particular T cell lymphoma and chronic
lymphocytic leukaemia (CLL). AT may also be associ-
ated with an increased incidence of gastric cancer,
medulloblastomas, gliomas, early-onset basal cell car-
cinomas and uterine cancers. Heterozygotes for ATM
mutations have an approximately two- to threefold
increased risk of breast cancer [145] and may also have
increased susceptibility to CLL [146, 147].

AT cells show increased chromosomal instability, a
lower capacity to rejoin double-stranded DNA breaks
[reviewed in ref. 148], and an inability to arrest DNA
synthesis at the G1-S boundary after irradiation. Unlike
normal cells that show an increase in the amount and
transcriptional activity of p53 following irradiation,
little change in p53 activity is observed in AT cells
[149].
The ATM protein is a member of a family of ho-
mologous serine/threonine protein kinases [150]. In re-
sponse to ionising (but not UV) radiation, the N
terminus of p53 is phosphorylated on serine residue 15
by ATM [151, 152]. This phosphorylation event is likely
to contribute to p53 stability by inhibiting its interac-
tion with mdm2 and subsequent degradation [18]. In
addition to the phosphorylation of the N terminus,
dephosphorylation of C terminus serine residues is im-
portant for the activation of p53 following irradiation.
This dephosphorylation leads to association of p53 with
isoforms of the protein 14-3-3 resulting in increased
DNA-binding activity. In AT cells, neither the dephos-
phorylation event nor the interaction between p53 and
14-3-3 occurs [153]. Since ATM is a kinase, the absence
of the dephosphorylation event in AT cells is probably
attributable to the loss of an ATM downstream effec-
tor. The absence of these p53-dependent events in AT
cells results in failure of the cell cycle to arrest. In
addition to this p53-dependent cell cycle control, ATM
has also been reported to regulate the cell cycle by
p53-independent pathways involving c-Abl, replication
protein A and the checkpoint 2 protein [154].
A complex between ATM, c-Abl and RAD51, the
mammalian homologue of the bacterial recA protein,
has recently been identified [reviewed in ref. 155].
RAD51 also interacts with BRCA1 and BRCA2. Both
RAD51 and recA are involved in DNA recombination
and repair of dsDNA breaks [156].
ATM therefore appears to play a role in the repair of
dsDNA breaks by halting the cell cycle until repair is
complete and activating the repair process through its
interaction with proteins such as RAD51. Conse-
quently, consistent with the clinical features of AT, cells
with a higher level of dsDNA breakage, such as germ
cells undergoing meiotic recombination, maturing
lymphocytes carrying out V(D)J recombination and
cells exposed to ionising radiation are more likely to be
affected by defective ATM function.

NBS1: Nijmegen breakage syndrome
Nijmegen breakage syndrome (NBS) is a rare autoso-
mal recessive disorder that resembles ataxia telangiec-
tasia. It is characterised by microcephaly, growth
retardation, endocrine dysfunction, immunodeficiency,
radiation hypersensitivity and cancer susceptibility, in
particular B cell lymphomas [154]. The gene responsible
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for NBS, NBS1, has recently been cloned [157, 158]. The
NBS1 product, nibrin, is a novel protein which contains
a forkhead transcription factor-associated domain and a
BRCT domain [159], both of which have been impli-
cated in cell cycle control and DNA damage repair [160,
161]. Nibrin associates with MRE11 and RAD50, mem-
bers of a human double-stranded DNA repair complex
[162]. Therefore, like its cousin ATM, nibrin appears to
play a role in cell cycle regulation and the response to
radiation-induced DNA damage [154].

BRCA1/BRCA2: familial breast/ovarian cancer
Germline BRCA1 and BRCA2 mutations lead to the
dominant inheritance of familial breast and ovarian
cancer. BRCA1 mutation carriers have an approximate
risk of 80% of developing breast cancer by age 70 and a
slightly smaller risk of ovarian cancer [reviewed in ref.
163]. There is also reported to be a three- to fourfold
elevated risk of colon cancer and prostate cancer (6 and
8%, respectively) [164]. BRCA2 mutation carriers have
about a similar risk of developing breast cancer by 70
years of age, but the risk of ovarian cancer is probably
about half that of BRCA1 mutation carriers. BRCA2
families have been reported to have an elevated rate of
other neoplasms, including pancreatic cancer, prostate
cancer, leukaemia and thyroid cancer. Of families with
male breast cancer, 76% contain a BRCA2 mutation
and 16% a mutation in BRCA1 [163]. Recent evidence
suggests that BRCA1 and BRCA2 mutations contribute
equally to the risk of early-onset breast cancer and an
estimated 10% of women diagnosed with breast cancer
before 36 years in the United Kingdom carry either a
BRCA1 or BRCA2 germline mutation [165].
BRCA1 shows limited sequence homology to previously
described proteins. It contains a RING zinc finger do-
main, which is believed to be involved in protein-protein
interactions and two BRCT (BRCA1 c6 arboxyl t6 er-
minus) domains. BRCT domains are found in a number
of proteins involved in DNA repair, recombination and
checkpoint control [166], but not in BRCA2.
Both BRCA1 and BRCA2 interact with RAD51 [167,
168]. In mitotic human cells BRCA1, RAD51 and the
BRCA1-associated protein BARD1 colocalise in dis-
crete foci in the nucleus at S phase [168, 169]. These foci
disperse upon DNA damage, concomitant with phos-
phorylation of BRCA1 [169, 170]. BRCA2-deficient
cells show an excessive accumulation of structurally
abnormal chromosomes [171] and fibroblasts ho-
mozygous for a defective BRCA2 show impaired ds-
DNA repair [172]. Both BRCA1- and BRCA2-deficient
cells are sensitive to ionising radiation and other
genotoxic agents [167, 169, 171].
In addition to their role in genome stability, BRCA1
and BRCA2 have also been implicated in the transcrip-

tional control of cell proliferation [173–175]. Notably,
overexpression of BRCA1 can induce transcription of
GADD45 [176] and the p53 target gene P21CIP1 [177].
GADD45 induction results in activation of the JNK/
SAPK-dependent apoptotic pathway [176].
Of the cancer susceptibility syndromes that have been
implicated in the maintenance of genome stability, only
the BRCA1/2 syndromes do not show a recessive pat-
tern of inheritance. The relative rarity of haematological
malignancies in BRCA1/2 families also sets them apart
from the other syndromes characterised by genome
instability. These differences emphasise the likelihood of
functions for BRCA1/2 which are unrelated to the
cellular response to damage from ionising radiation.

MLH1/MSH2/PMS1/PMS2/MSH6: hereditary
non-polyposis colorectal cancer
Hereditary non-polyposis colorectal cancer (HNPCC) is
an autosomal dominant cancer syndrome caused by
mutation of one of several DNA mismatch repair genes.
To date, mutations have been identified in MLH1,
MSH2, PMS1, PMS2 and MSH6 [reviewed in ref. 178],
although MLH1 and MSH2 account for more than 90%
of the germline HNPCC mutations identified to date.
Each of these repair proteins are homologues of the E.
coli mutHLS DNA repair complex. The mutHLS com-
plex is able to correct base-base mispairs and insertion/
deletion loops of up to four nucleotides [179].
Mutation carriers have a lifetime risk of about 50%
(female)–80% (male) of developing colorectal cancer
and a 60% risk of endometrial cancer [180]. There is also
an increased risk of a number of other cancers including
ovarian, gastric, pancreatic, and sebaceous carcinomas
and glioblastomas [7]. Mutations in MSH6, although
uncommon, appear to result in an atypical, milder phe-
notype with a predominance of extracolonic cancers
[181, 182].
The hallmark of HNPCC tumours is the replication
error phenotype (RER+ ). Loss of mismatch repair
renders a cell prone to insertion/deletion mutations,
particularly at sites of nucleotide repeats. The presence
of short runs of mono- or dinucleotide repeats within
coding sequences provides potential mutation hotspots.
Analyses of gastrointestinal tumours displaying the
RER+ phenotype have identified a high frequency of
insertions/deletions in repeat sequences within the cod-
ing sequences of the genes for IGF2R [183], the E2F4
transcription factor [184], the pro-apoptotic protein Bax
[185, 186] and the type II transforming growth-factor
(TGF)-b receptor [81]. Mutation of the type II TGF-b
receptor is predicted to give a selective advantage by
providing a means for escaping TGF-b-mediated
growth control [81]. Strikingly, mutations in the type II
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TGF-b receptor and E2F4 genes, although common in
gastric and colon cancers, are rare in RER+ endome-
trial cancers [184, 187], suggesting that endometrial
RER+ tumours progress via a distinct genetic mecha-
nism. Insertions/deletions in other oncogenes and tu-
mour suppressor genes, such as CDX2, the human
homologue of the Drosophila homeobox gene caudal
[188] are also likely to contribute to the clonal evolution
of tumours lacking mismatch repair activity.

Concluding remarks

The study of inherited cancer susceptibility has made a
profound contribution to the elucidation of tumorigene-
sis by enabling the identification of genes whose altered
or abrogated expression are causes, and not simply
consequences, of cancer. However, significant chal-
lenges remain. First, the identification of susceptibility
genes has done little to explain the tissue spectrums of
the cancer syndromes. In some syndromes, the spectrum
may reflect the lack of functional redundancy in the
affected tissues. However, in others it will reflect un-
known interactions between the susceptibility genes and
proliferative or survival pathways that are largely tissue
specific. Insight into these interactions will be critical to
the evolution of a new generation of cancer therapies
with tissue-specific activity. A second challenge is the
identification of low-penetrance susceptibility genes and
an understanding of the environmental and/or genetic
factors that dictate this penetrance. Similarly, a better
understanding of the factors that influence the age of
disease onset in cancer families is also required. Al-
though much of this variation will be attributable to
random differences in the time taken for additional rare
somatic mutations to occur, genetic background and
environmental triggers would be predicted to be signifi-
cant modifiers.
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