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Abstract. Many methods have been developed to are independent of sequence or secondary structure and
analyse protein sequences and structures, although less can therefore be a powerful tool to highlight cases of

possible convergent or divergent evolution. This kind ofwork has been undertaken describing and comparing
protein surfaces. Evolution can lead sequences to di- approach can be useful for a better understanding of
verge or structures to change topology; nevertheless, protein molecular and biochemical mechanisms of
surface determinants that are essential to protein func- catalysis or interaction with a ligand, which are usually
tion itself may be mantained. Moreover, different surface dependent. Protein surface comparison, when
molecules could converge to similar functions by gain- compared to sequence or structure comparison meth-
ing specific surface determinants. In such cases, se- ods, is a hard computational challenge and evaluated

methods allowing the comparison of protein surfacesquence or structure comparisons are likely to be
inadequate in describing or identifying protein func- are difficult to find. In this review, we will survey the

current knowledge about protein surface similarity andtions and evolutionary relationships among proteins.
Surface analysis can identify function determinants that the techniques to detect it.

Key words. Protein surface; surface comparison; patterns; molecular evolution.

Introduction

If a protein is found to be evolutionarily related to
another protein, then information about the function or
structure of that protein can be inferred from the other,
with varying degrees of reliability, depending on the
evolutionary distance between them.
At short evolutionary distances, string comparisons be-
tween two protein sequences are usually sufficient to
extend to one the information derived from the other.
At larger evolutionary distances (sequence similarity

below 20–25%), more sensitive methods, such as the
sequence profile methods [1–3], must be used. These
methods allow one to detect subtle sequence similarities
between proteins. However, three-dimensional (3D)
structure comparison methods can eventually detect
evolutionary links which are no longer identifiable by
the most sophisticated sequence analysis methods, since
structure similarity is more conserved through evolution
and therefore remains detectable even when the se-
quence may have changed beyond recognition in the
course of evolution.
Sequence comparison methods can take advantage of
the enormous amount of data coming from the various* Corresponding author.
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genome sequencing projects and are generally simpler
than structure comparison methods. Moreover, the lat-
ter can only be applied when protein structures are
available, and this is often not the case. The Protein
Data Bank (PDB) now contains about 12,000 protein
structures, while the protein sequence database contains
about 150,000 sequences.
Nevertheless, even if with various ranges of sensitivity
and degrees of accuracy, sequence and structure com-
parison methods are generally able to identify links
between proteins depending on their molecular
evolution.
The problem of comparing protein surfaces seems to be
intrinsically more complicated than sequence or struc-
ture comparison and, to date, has attracted fewer scien-
tists for a variety of reasons: (i) the algorithms to
compare protein surfaces are generally less simple and
slower than their sequence or structure counterparts; (ii)
possible findings of protein surface similarity searches
risk to be obvious consequences of their sequence and/
or structure similarity and, most probably, the great
majority of protein surface similar patches will involve
cases which could be much more easily detected by less
expensive computational methods; (iii) protein surface
analysis can be used only when 3D structures are
available.
Protein surface comparison is a very challenging prob-
lem and findings of such an analysis may highlight
proteins that do not share a common ancestor but show
the convergence of different sequences or structures into
a unique pattern of exposed residues univocally identi-
fying function, independently of the polymer back-
bone.
Cases have been described where active or binding sites
can be encoded in proteins displaying non-homologous
structures [46], and cases where proteins with a similar
structure display differences in their active or binding
sites and therefore do not share the same function. In
such cases, sequence or structure comparisons might be
misleading and miss a correct analysis of the region
involved in the interaction, whereas a protein surface
comparison would be more effective (fig. 1).
Moreover, only a protein surface analysis can, in princi-
ple, detect convergent evolution involving functional
sites which arose independently in evolution. In general,
detection of surface similarity between protein
molecules may provide us with a better understanding
of biomolecular recognition.
We will describe a number of tools which have been
developed for protein surface description. Some graphic
tools are able to produce meaningful images for visual
inspection while others provide numerical descriptions
for computational analysis. Many ways of describing
protein surfaces have been developed for docking stud-
ies (i.e. to study protein-protein interaction) and only

occasionally have these been applied to the analysis of
protein surface similarity. We will review a few 3D-pat-
tern-matching methods which have been applied to the
study of conserved residues in protein structures. Some
of these methods can search for sequence-independent
patterns and, if the residues are exposed on the protein
surface, they may help to identify similar protein sur-
faces. Finally, we will describe some computational
methods specifically developed for the analysis and
comparison of protein surfaces and discuss their appli-
cation to a few biological cases.

3D-pattern matching

An interesting consequence of the increasing availability
of 3D structures is the development of 3D-pattern-
matching algorithms. Methods allowing the detection of
a 3D pattern in a set of proteins may spot active or
binding sites common to a set of diverse protein struc-
tures, thus identifying similar functions on different
folds as well as cases of convergent or divergent evolu-
tion. A brief description of some of these methods may
contribute considerably to a comprehension of protein
surface analysis and comparison techniques.
A 3D-pattern-matching algorithm can be either sensi-
tive or insensitive to the amino acid order in the protein
sequence. In general, patterns sharing the same amino
acid sequence order are much more likely to have been
derived from a common ancestor; therefore, when
searching very distant relationships among proteins, a
method which only detects patterns that have the same
ordering of residues along the sequence is to be pre-
ferred. However, a sequence-independent 3D-pattern
search is desirable when one is interested in the conser-
vation of active or binding site residues, to find exam-
ples of possible convergent evolution.

Figure 1. Schematic representation of two proteins with similar
function and different structure and of two proteins with similar
structure and a different binding site.
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We review here a few methods which analyse the con-
servation of 3D patterns independently of amino acid
sequence order.
The graph-theoretic method proposed by Mitchell et al.
[4] allows recognition of user-defined spatial motifs in
protein structures. It is based on a subgraph-matching
algorithm [5, 6] and on a simplified representation of
the amino acid side chain positions, in which each side
chain is characterized by two pseudo-atoms (considered
as the nodes of a graph) while the relative orientations
of side chains in space are described by means of
distances (the edges of the graph) between the pseudo-
atoms. A graph consists of a set of nodes and a set of
edges and is used to represent each PDB protein struc-
ture, while the query (user-defined) pattern is a sub-
graph. The Ullman subgraph-isomorphism algorithm
[7] is used to determine whether one graph (the query
3D pattern) is actually a subgraph of another, larger
graph (a protein structure).
Russell [8] described a method that detects 3D pattern
similarities between two protein structures. A protein is
represented by a string of residues sorted in alphabetical
order by residue type. In a protein, each residue of a
particular type is compared to those in a second protein
thus generating an exhaustive list of matches. This
procedure is iterated for each amino acid type. The aim
of this method is to identify groups of residues involved
in a common active or binding site. Therefore, there are
distance constraints that the amino acids of a matched
pair must satisfy: the distances between a residue added
to a pattern in a protein and the other residues of the
pattern must be similar to the corresponding distances
in the second protein. Moreover, to save computing
time, amino acids which are not supposed to be directly
involved in the function are eliminated: positions in the
structure that are not well-conserved across known ho-
mologues, amino acids with side chains containing only
hydrogen and carbon atoms and residues involved in
disulphide bonds are ignored. A final weighted root
mean square deviation (RMSD) is calculated for each
pair of common side chain patterns identified and its
statistical significance is assigned from the analysis of
randomly generated side chain patterns.
In general, recognition of spatial motifs can be per-
formed by comparing a motif with a database of struc-
tures or, alternatively, a protein structure can be
compared with a database of predefined motifs [9]. The
latter approach, based on the comparison of a database
of motifs to a single structure, depends essentially on
the quality of such databases. Residues are represented
by the co-ordinates of their alpha carbons and by
pseudo-atoms located at the centre of gravity of their
side chain atoms. The algorithm calculates the distances
between all the pseudo-atoms in a user-defined motif
and tries to identify groups of amino acids of the same

type and with a similar spatial arrangement in a protein
structure. Distances between pseudo-atoms in the query
pattern are compared with distances between pseudo-
atoms in a database protein and a combination of
residues that potentially matches the 3D motif is re-
jected if distance pairs differ by more than a preset
cut-off value. Finally, the query pattern and the corre-
sponding matched set of residues are superimposed and
their RMSD calculated.

Protein surface description

Over the years, different methods have been developed
to describe a protein surface visually or analytically. We
will briefly overview a few methods for protein surface
description and, for a more complete and thorough
description of the argument, we suggest to refer to
works [10–14] or to two web pages dedicated to molec-
ular surface representation [15, 16].
The earliest definition of protein solvent-accessible sur-
face was published by Lee and Richards in 1971 [17].
They described a method which allows one to distin-
guish surface atoms from buried atoms and to describe
the total surface of the molecule as the sum of atomic
surfaces. Based on this idea, an algorithm was proposed
to compute and display a protein surface [18]. Connolly
[19] then proposed an improved algorithm where a
protein surface is traced by a water-sized probe sphere
rolled over the atoms of the molecule. This representa-
tion of protein surface was developed for graphical
display and proved to be particularly efficient in visual-
izing shape complementarity at protein-protein inter-
faces (fig. 2).

Figure 2. Connolly surface representation of the interface be-
tween trypsin and the trypsin inhibitor (PDB code: 2tpi). (a) The
Connolly surface of the trypsin-trypsin inhibitor complex is shown
in cyan and blue, respectively. (b) A 2 A, -thick slice of the
trypsin-trypsin inhibitor complex highlights the almost perfect
complementarity between the surfaces of the two proteins.
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Other methods were developed ad hoc to represent a
protein surface for protein docking which were used as
a starting point to score the solution complexes for
protein shape complementarity. A cube representation
of molecular surface was also developed [20]. In the
first step, the protein surface is represented by surface
dots with the attached surface normals. The protein is
then immersed in a grid space and the surface dots are
converted into surface cubes. Shoichet and Kuntz [21]
described protein surfaces as sets of spheres of varying
sizes, while Walls and Sternberg [22] used a series of
slices cut from the van der Waals surface of a protein.
A molecular surface representation was proposed by
Lin et al. [23] which consisted of a limited number of
critical points disposed at key locations over the sur-
face. Helmer Citterich and Tramontano [24] and
Ausiello et al. [25] started from a dot representation of
the Connolly surface to describe a protein surface as a
set of parallel polygons.
These different surface descriptions are generally able
to give a simplified and ‘soft’ representation of the
protein surface shape. A simplified representation
proved to be more efficient in protein docking than a
more detailed one, because it implicitly accommodates
the effects of minor conformational changes upon
docking.
In searching for protein surface similarity, one would
ideally like to be able to select similar surfaces even
when analysing proteins crystallized at different resolu-
tions, solved with different methods, in different experi-
mental conditions and sometimes also crystallized both
in their bound and unbound states. The ability to
describe a protein surface without too many details is
therefore also precious in protein surface similarity
searches.
In any case, the above-mentioned methods were devel-
oped to describe protein surface shape. Various molec-
ular properties, other than geometric shape (such as
atomic charge, electrostatic potential, hydrophobicity),
may turn out to be interesting in analysing a protein
surface. These additional properties may be encoded
into a deeper description of the molecular surface and
used to increase the information contained in the
description.
One of the most widely used procedures to visualize
protein surfaces associated with specific properties is
the Grasp program [26]. Grasp’s rendered surface can
be colour coded by electrostatic potential derived from
its internal Poisson-Boltzmann solver or from DelPhi
[26–28]. This representation (fig. 3) has become a stan-
dard tool in assessing proteins electrostatic character.
Surfaces can also be coloured by other properties, such
as those of the underlying atoms (e.g. hydrophobicity)
or by its own intrinsic properties, such as local curva-
ture.

Surface comparison methods

Since protein surfaces are critically involved in selective
binding, recognition and interaction with molecular
partners, methods for surface comparison may give new
insights into protein function analysis.
The comparison of two structures (and also of two
surfaces) generally requires prior identification of the
transformation (rotation and translation) able to
achieve an optimal superposition between selected atom
pairs of the two structures. As a consequence, methods
useful for docking or structure comparison may also be
used for comparing protein surfaces. However, other
methods have been specifically developed for surface
similarity analysis.
The choice of the surface representation method is
crucial since the surface description must be sufficiently
detailed but must not affect the performance of the
surface comparison algorithms; most of the methods
use surface representation derived from the above-men-
tioned Connolly program [19, 29].
A method based on Connolly algorithm was proposed
by Brickmann’s group [30]. They set up a procedure
that calculates the local canonical curvature [31, 32] at
each surface-representing point, generated from Con-
nolly’s method. Moreover, the authors introduce the
concept of global curvature to represent the average
curvature of a surface region. Global curvature is calcu-
lated considering the direct neighbours of a reference
point, determined by a triangulation algorithm [33] at a
selected distance. Global curvatures can be used to
define a ‘curvature profile’ of a specific region, which

Figure 3. Grasp [26] surface representation of SH3 [51] and WW
domains [48] with their bound peptide. The molecular surface is
colour coded by electrostatic potential, while the atoms of the
bound peptides are displayed as sticks and coloured by atom type.
No trivial similarity between the surfaces of the two polyproline-
binding domains can be recognized by visual inspection.
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can be used to detect surface complementarity and
surface similarity.
In their approach, Fischer et al. [34] established a
method that can be applied to different issues: (i) back-
bone comparison; (ii) search for a predefined 3D motif
within the full backbone of a domain; (iii) surface
comparison; (iv) docking. Indeed, this procedure can be
used for searching geometric matches among any given
set of points in the space, such as Ca, Cb or surface
atoms; any 3D comparison of structures without any
sequence order constraint is therefore allowed. This
goal is achieved by the geometric hashing paradigm
[35], a technique suitable for detecting matches between
a model object and a database of objects. The overall
method has three major critical points: (i) finding seed
matches: the structures to be compared are covered by
a set of balls, then the algorithm based on the geometric
hashing paradigm counts the matching pairs of atoms
for every rigid transformation; (ii) clustering seed
matches: seed matches representing almost identical
transformations are clustered; a seed match represent-
ing the cluster is obtained by choosing matching pairs
that appear at least in a certain percentage of the seed
matches that compose the cluster; (iii) extending seed
matches: to obtain additional information, one of the
structures to be compared is translated and rotated as
the seed match representing the cluster, and then other
matching atoms are selected.
The geometric hashing paradigm procedure itself is
divided into two steps. In the preprocessing stage, the
features of the model molecule are converted into a
hash-table by means of a mathematical procedure
which measures the distance between each atom of the
molecule and every other pair of atoms. In the recogni-
tion stage, a similar representation is calculated for the
target molecule and used to access the hash-table, look-
ing for matches between substructures of the two
molecules. If the recognition step generates a sufficient
score, the target molecule is superposed to the model by
a rigid transformation (translation and rotation), and
the number of matching points is expanded exploring
the ‘neighbours’ with a heuristic iterative algorithm.
The method is extended to surface comparison repre-
senting surfaces by Connolly’s Molecular Surface pro-
gram and Kuntz’s SPHGEN program [36], which
reduces the number of surface points and selects local
surface invaginations. In comparing structures, co-ordi-
nates of the atoms selected in the clustering procedure
of the SPHGEN program are used instead of the co-or-
dinates of the spheres of the SPHGEN output itself.
Another procedure for protein surface comparison [37]
takes advantage of the geometric hashing paradigm and
uses the face-centre critical point technique [23, 38], also
derived from Connolly’s method. The points used in the
calculation are the Connolly face-centres, chosen at key

locations on the surface of the examined structure. Each
Connolly face is substituted by a surface point, its
surface normal and the face area; these three items
represent a ‘critical point’. The algorithm used to com-
pare different groups of ‘critical points’ is essentially
similar to the one previously described.
An alternative approach [39] defines molecular ‘skins’
for protein surface comparisons or docking studies. A
molecular skin is defined as the space between an outer
and an inner surface. Once the inner surface has been
calculated (for example by means of the van der Waals
radii or by identifying the solvent-accessible residues),
the outer surface is generated by adding the predefined
value of 0.4 A, , corresponding to the thickness of the
skin, uniformly to the inner surface. The method com-
pares two molecular surfaces intersecting their molecu-
lar skins; the volume of intersection provides a measure
of their shape similarity. The overlap is maximized by
rigid transformations (rotations and translations).
One of the critical points in surface comparison by
superposition of two different proteins is the great num-
ber of rigid transformations that need to be evaluated.
Poirrette et al. [40] used a genetic algorithm (GA) to
detect the best transformation superposing two molecu-
lar surfaces. The surface is represented through Con-
nolly’s program which reports 3D co-ordinates, a
normal vector and an indicator of the surface shape, for
each surface point; this work uses an additional
parameter, namely an indicator of the ability to form
hydrogen bonds. The surfaces represented in this way
are inserted into a 3D grid, and a GA is used to
generate translations and rotations of the query
molecule with respect to a target, and to evaluate the
superposition of each transformation. The genetic al-
gorithm is a procedure that generates random solutions
to a certain problem as vectors (the so-called chromo-
somes) and picks out the best ones by a score value (the
so-called fitness value); the worst are discarded and
substituted by new randomly generated ones. New vari-
ability is generated by mutations and recombination
between chromosomes, and scores are recalculated. This
cycle is repeated a prefixed number of times, or until the
score reaches a desired value (or a plateau). In this
work, each chromosome contains six randomly gener-
ated numbers representing the co-ordinates of a rigid
transformation, as rotations and translations in the xyz
space. The match between the transformed structure
and the target molecule is evaluated by a fitness func-
tion that controls whether or not two points are in
similar space position and have similar characteristics
(Connolly’s indicators previously mentioned). This ap-
proach has been successfully used to compare binding
pockets and binding sites of a number of proteins.
A recent work [41] adopts another type of algorithm,
the neural network, to generate a map of protein sur-
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faces. For automated detection of the protein surface
pockets, a grid with 1 A, spacing is generated around the
examined protein and the cells corresponding to the
protein/solvent interface are evaluated. For each ‘sol-
vent’ cell, the program scans the grid around it detect-
ing contiguous clusters defining protein surface pockets.
Then, solvent-accessible surfaces are calculated by the
Connolly algorithm. An automated procedure assigns
an interaction type (aliphatic, hydrogen bond donor,
hydrogen bond acceptor, aromatic face, aromatic edge)
to each pocket cell on the basis of the amino acid type
and its orientation on the surface pocket. This analysis
was applied to a training set of 175 zinc-ion-containing
protein structures. The dataset was submitted to a Ko-
honen self-organizing neural network [42], which pro-
vides a method to project a high-dimensional space
onto a low-dimensional display called the self-organiz-
ing map (SOM). In this case, the SOM was a two-di-
mensional map of 20 rows per 20 columns (rows and
columns are called ‘neurons’). The resulting SOM repre-
sents the distribution of protein surface cavities of the
training set of proteins, with adjacent neurons contain-
ing similar protein cavity structures. Pockets belonging
to each class of the enzymes considered form a distinct
cluster in the SOM, and active and inactive pockets are
then detected. Furthermore, the trained SOM can be
used to make predictions for enzymes not present in the
training set.
The Dictionary of Interfaces in Proteins (DIP) is a
database of interacting protein surfaces [43]. DIP has a
retrieval system to search for complementary molecular
surface patches (MSPs) with an automatic superposi-
tion procedure; it can also be useful for similar-surface-
patch searches. The MSPs are defined as sets of atoms
belonging to a given secondary structure in contact with
a molecular partner (a ligand, a protein or a solvent
molecule); the centres of mass of the MSPs are superim-
posed to compare two surface patches. One of the
patches is then rotated to align the patches along the
major directions, and matching atoms are calculated;
this step is followed by an expansion of the superposi-
tion to the neighboring region [43, 44]. A detailed
description of the algorithm has not yet been published.
The 3D profile procedure to describe and compare
protein surfaces developed by de Rinaldis et al. [45], is
based on a 3D transposition of the profile method for
sensitive protein homology sequence searches [1].
In analogy to the profiles derived from the multiple
alignment of protein sequences, the 3D profile is derived
from a multiple alignment of several protein structures
sharing some functional or binding property (e.g. the
ability to bind a phosphorylated tyrosine, a polyproline
II helix, a nucleotide). Each aligned structure is first
transformed into a ‘surface’ structure, by retaining only
the exposed residues, and then immersed in a 3D grid.

Each element of the grid is assigned to the residue
occupying it. The grids obtained from all the selected
superposed proteins are then merged in a unique 3D
profile grid, where each element contains information
on the superposed residues falling within it and belong-
ing to the different structures.
The elements of the 3D profile grid correspond to the
columns of the multiple alignments of protein se-
quences. It is important to note, however, that the
residues contained in the grid elements are aligned and
analysed on the protein surface independently from
their order in the protein sequence.
The 3D profile obtained from a multiple superposition
of protein surfaces sharing a specific function can be
considered a ‘descriptor’ of the specified function and
can be used for analysing the pattern of conserved
residues associated with a specific function or as a query
in searching similar surfaces in the PDB.

Conclusions

One ligand may display affinity for different protein
surfaces and similar protein surfaces may bind different
ligands [46], thus an ideal one-to-one relationship be-
tween surface pockets and ligand cannot always be
established. Since the PDB is growing rapidly, many
structures are now available crystallized with their lig-
and and more information can be used to search for
similarities among binding sites and to characterize the
similarity or diversity of ligand-specific binding sites.
We have analysed a few binding pockets (SH2 and SH3
domains, nucleotide-binding pocket associated with the
ploop structure [46, 47] and a few ligands (phosphory-
lated tyrosines, polyproline II peptides and nucleotides)
and tried to tackle the rules of correspondence between
the binding and the bound moieties. In each case, we
were able to define a unique 3D motif able to select all
and only the true positive hits.
We could not define a unique motif able to select all the
PDB structures able to bind one specified ligand. The
SH3 3D motif does not share similarity with the WW
domain or with profilin, even though they also bind
proline-rich peptides [45, 48–50] and the phosphoty-
rosine-binding pocket of SH2 domains is not similar to
the PTB (phosphotyrosine-binding) domain structure
[45]. These findings seem to indicate that different ways
of binding the same ligand may have evolved in differ-
ent proteins (see also fig. 3).
Nevertheless, analysis of protein surfaces able to bind
the same consensus and belonging to the same family
may help in understanding the rules governing the spe-
cificity of interaction. Comparison of the surfaces of the
different SH3 domains may help in constructing a tree
where domains with the same or similar specificity of
interaction may be clustered together.
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On the other hand, analysis of the nucleotide-binding
region in the ploop-containing proteins of known struc-
ture seems to indicate at least one case of convergent
evolution. Functionally important residues, namely pos-
itively charged residues aligned to ras K117, are some-
times provided by very different regions of the primary
structure of the proteins analysed, though they are
perfectly aligned on the protein surfaces [45].
In summary, analysis of protein surfaces may offer new
insights into the fascinating world of sequences, struc-
tures and functions, and may also offer substantial
support in the study of interaction specificity and
protein function evolution.
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