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functionally and structurally modified by the Ca2+Abstract. This review discusses multiple ways in which
the endoplasmic reticulum participates in and is influ- and protein kinase C pathways. Elevated cytoplasmic
enced by signal transduction pathways. The endoplas- Ca2+ causes a rearrangement and fragmentation of

endoplasmic reticulum membranes. Protein kinase Cmic reticulum provides a Ca2+ store that can be
mobilized either by calcium-induced calcium release or activation reduces the storage capacity of the endo-
by the diffusible messenger inositol 1,4,5-trisphos- plasmic reticulum Ca2+ pool. In some cell types,
phate. Depletion of endoplasmic reticulum Ca2+ protein kinase C inhibits capacitative calcium entry.
stores provides a signal that activates surface mem- Protein kinase C activation also protects the endoplas-

mic reticulum from the structural effects of high cyto-brane Ca2+ channels, a process known as capacitative
calcium entry. Depletion of endoplasmic reticulum plasmic Ca2+. The emerging view is one of a complex
stores can also signal long-term cellular responses network of pathways through which the endoplasmic

reticulum and the Ca2+ and protein kinase C signal-such as gene expression and programmed cell death
or apoptosis. In addition to serving as a source of ing pathways interact at various levels regulating cel-
cellular signals, the endoplasmic reticulum is also lular structure and function.

Key words. Calcium signaling; calcium pools; capacitative calcium entry; gene expression; apoptosis; endoplasmic
reticulum structure; protein kinase C.

Introduction

All living cells have evolved means for regulating their
content of calcium. This is because calcium is involved
in signaling and regulatory control of cellular functions,
and also because large and inappropriate changes in
calcium can have deleterious effects on cell structure
and function [1]. Since the discovery of the signaling

role of calcium ions [2], the majority of research has
focussed on regulation of calcium in the cytoplasm
([Ca2+]i) because therein reside the enzymes and other
responsive proteins with which Ca2+ is thought to
interact. From the early work, it was obvious that the
source of Ca2+ for muscle contraction was derived
largely from Ca2+ sequestered in intracellular or-
ganelles [3]. This storage site in muscle is the sarcoplas-
mic reticulum, a highly specialized organelle thought to
be derived from endoplasmic reticulum [4].* Corresponding author.
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An understanding of the sites of Ca2+ mobilization in
nonexcitable cells evolved more slowly, probably due to
the lack of a readily quantifiable Ca2+-dependent
parameter analogous to muscle shortening to relate to
[Ca2+]i changes. Eventually, a general concept was put
forth according to which cellular activation involved
Ca2+ release from intracellular sites, as well as entry of
Ca2+ across the plasma membrane [5]. It is interesting
that despite the obvious analogy with signaling in mus-
cle cells, a good deal of attention was paid to the
mitochondria as potential sources of this signaling
Ca2+. However, it soon became apparent that the site
of Ca2+ storage involved in stimulus-induced intracel-
lular Ca2+ release was the endoplasmic reticulum, or a
specialized component of it [6–9]. Thus, the simplest
and most obvious function of endoplasmic reticulum
Ca2+ stores is to provide a source for the intracellular
release of Ca2+ to the cytoplasm in the course of
Ca2+-dependent signaling processes. However, recent
findings in a number of somewhat divergent areas have
indicated that the relationship of endoplasmic reticulum
Ca2+ stores to signaling pathways is much more com-
plex (for an excellent review of some of these complexi-
ties, see [10]). This relationship now appears to function
as a two-way street: the endoplasmic reticulum provides
and regulates cellular signaling pathways, but the struc-
ture and function of the endoplasmic reticulum Ca2+

stores are also influenced by cellular signals in ways that
are not yet fully understood. The focus of this review is
this reciprocal regulation that can occur between signal-
ing pathways and the endoplasmic reticulum Ca2+

stores.

Signaling functions of endoplasmic reticulum calcium
stores

Mechanisms of intracellular Ca2+ release
Research into mechanisms of calcium signaling by the
endoplasmic reticulum has followed two tracks, one
involving excitation-contraction in muscle, and the
other calcium release by inositol 1,4,5-trisphosphate
(IP3) and other cellular mediators. The specialized en-
doplasmic reticulum of muscle, the sarcoplasmic reticu-
lum, has long been known to show the property of
calcium-induced calcium release (CICR) [4, 11]. That is,
under the appropriate conditions, calcium itself can
activate the release of additional calcium. This finding
led to the concept of ‘trigger’ calcium, a small increment
of calcium which would touch off the all-or-none regen-
erative CICR process. In the case of heart muscle, it
appears that this trigger calcium comes from calcium
influx through voltage-activated calcium channels as a
result of the automatic, paced cardiac action potential.
This theme probably occurs in a number of excitable

cell types whereby Ca2+ entry and Ca2+ release are
coordinated through an amplification of entry by intra-
cellular CICR (fig. 1). In the case of skeletal muscle,
voltage-dependent calcium channels in the t-tubule may
also provide the triggering signal, but it is believed that
this occurs by a relatively direct, physical interaction
between the channel proteins and the calcium channels
in the sarcoplasmic reticulum [11]. These sarcoplasmic
reticulum calcium channels were first purified on the
basis of their high binding affinity for the toxin ryan-
odine, and thus are generally referred to as ryanodine
receptors [12, 13].
In nonmuscle cells, CICR may also contribute to the
generation of calcium signals, but especially in electri-
cally nonexcitable cells, the initiation of calcium signal-
ing usually involves the chemical mediator IP3 [14]. The
IP3 receptor is similar in structure to the ryanodine
receptor, and like the ryanodine receptor exhibits CICR
behavior under appropriate conditions [14–16]. There is
growing evidence for the presence of ryanodine recep-
tors in nonexcitable cells, and in such cases the activity
of the ryanodine receptors may be controlled by an-
other chemical mediator, cyclic ADP-ribose [17–19].
The regenerative calcium signaling properties of ryan-
odine and IP3 receptors give rise to the characteristic
intracellular calcium ([Ca2+]i) waves and oscillations
seen in many excitable and nonexcitable cells [20, 21].
These digital [Ca2+]i signals play important roles in
providing high signal-to-noise inputs controlling short-
term responses, such as secretion [22, 23], and long-term
responses, such as gene expression [24, 25].

Control of calcium entry by the endoplasmic reticulum
Calcium signaling by the endoplasmic reticulum is inti-
mately related to calcium fluxes across the plasma mem-
brane. In many excitable cell types, the heart for
example, the influx of calcium through calcium channels
provides an initial calcium signal that is amplified
through CICR from the endoplasmic or sarcoplasmic
reticulum. In most nonexcitable cells, however, this
interaction occurs in precisely the reverse order (fig. 1).
The release of calcium from the endoplasmic reticulum
provides a signal for the opening of calcium channels in
the plasma membrane. This process, termed ‘capacita-
tive’ calcium entry [26–28] or ‘store-operated’ calcium
entry [29], does not, however, involve an activation of
calcium channels by calcium. Rather, the signal is un-
known but presumably involves either the release of
some substance from the endoplasmic reticulum when it
is depleted of calcium, or alternatively involves the
interaction of endoplasmic reticulum proteins with
plasma membrane calcium channels [28, 30].
Clues about the identity of the channel molecules re-
sponsible for capacitative calcium entry have come
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from a Drosophila photoreceptor mutant, trp. This mu-
tation results in a photoreceptor response that is tran-
sient rather than sustained, and since invertebrate
photoreceptor signaling is believed to involve phospho-
lipase C and IP3, a role for TRP (transient receptor
potential) protein in the sustained, calcium entry re-
sponse was suggested [31]. That TRP actually functions
as a capacitative calcium entry channel in the
Drosophila photoreceptor has been seriously questioned
[32]. Nonetheless, in exogenous expression systems,
TRP appears capable of functioning as a component of
a capacitative calcium entry channel [33–35].
A search for homologs of TRP in vertebrate cells has
revealed a new family of putative ion channels which
may play a role in capacitative calcium entry [36, 37].
Zhu et al. [38] reported full or partial sequences for six
different mammalian TRP proteins, designated TRP1–
6, and recently a seventh member of the family (TRP7)
has been cloned [39]. These proteins fall into three or
four categories based on structural similarities. TRP3,
TRP6 and TRP7 are similar in structure, as are TRP4
and TRP5. Structurally similar proteins may thus sub-

tend identical or similar functions. In humans, but not
other mammalian species, TRP2 is a pseudogene (the
mouse TRP2 gene has been functionally expressed; see
[40]). Thus, in humans at least, only three distinct
proteins are known: TRP1, TRP3/6/7 and TRP4/5. The
cellular functions of these proteins have been studied
primarily by their expression (or overexpression) in
cells. To date, these have involved cell types which
already express capacitative calcium entry, likely a ne-
cessity in order for the signaling to occur as a result of
the depletion of endoplasmic reticulum calcium stores.
The behavior of cells overexpressing TRP proteins
varies depending on the form of TRP expressed, but
also among different laboratories for reasons that are
not clear. TRP3 was the first member of the mammalian
TRP family to be expressed and shown to augment
calcium signals [38]. Its overexpression augmented
[Ca2+]i responses to carbachol as well as thapsigargin.
However, in a subsequent study on cells stably express-
ing TRP3, it was shown that the increased [Ca2+]i
signal with thapsigargin was due largely, if not entirely,
to an increased basal permeability of the plasma mem-

Figure 1. Endoplasmic reticulum: plasma membrane interactions in calcium signaling pathways. In electrically nonexcitable cells, (right)
signaling is generally initiated when an agonist activates a surface membrane receptor (R) which, usually through a G protein (Gp),
activates a phospholipase C (PLC) which degrades phosphatidylinositol 4,5-bisphosphate (PIP2), releasing the soluble messenger inositol
1,4,5-trisphosphate (IP3). IP3 activates an IP3 receptor (IR) and thus releases calcium from an intracellular organelle to the cytoplasm.
The release of calcium from the organelle causes a signal to be generated which activates a plasma membrane calcium entry pathway
(capacitative calcium entry). The favored model at present is conformational coupling whereby an IP3 receptor interacts directly with
plasma membrane channels, components of which are likely mammalian homologs of the Drosophila TRP protein. In electrically
excitable cells, patterns of calcium signaling are somewhat more variable. Calcium may enter cells when voltage-dependent calcium
channels (VDCC) are activated by the depolarization associated with action potentials. This calcium can cause further release of
intracellularly stored calcium by activating a calcium-induced calcium release mechanism associated with the ryanodine receptor calcium
channel (RR). Alternatively, as in the case of skeletal muscle, direct interaction of VDCC with RR can signal release of stored Ca2+.
Modified and redrawn from [166].
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brane to Ca2+ [41]. On the basis of this and other
results, it was concluded that TRP3 ‘forms a non-selec-
tive cation channel that opens after the activation of
phospholipase C but not after store depletion’ [41]. Zitt
et al. [42] also concluded that TRP3 did not behave as
a store-operated channel, and their data suggest it may
be a Ca2+-activated channel. However, subsequent
studies on single-channel behavior of TRP3 were pub-
lished utilizing another clone from the laboratory of
reference [41], and these studies suggested that TRP3
was activated by store depletion and involved an inter-
action with IP3 receptors [43]. For TRP1, publications
from different laboratories report little or no effect of
overexpression [38], constitutive activity not regulated
by store depletion or phospholipase C [44], or activa-
tion by store depletion [45]. Expression of TRP4 and its
structurally similar congener, TRP5, were reported to
augment calcium-selective currents in response to cal-
cium store depletion [46, 47]. Because of the clear asso-
ciation of these proteins with store-depletion-activated
calcium currents, these investigators designated the
genes CCE1 and CCE2 (for capacitative calcium entry)
[47]. However, another laboratory cloned TRP5 and
expressed it in HEK 293, the same cell type utilized in
the previous studies, but found that the channel was
activated directly by ATP receptors and not by store
depletion [48]. This morass of conflicting results with
overexpression is perhaps not too surprising, since other
studies have reported unexpected behaviors of proteins
when expressed in excessive quantities. A more convinc-
ing indictment of TRP proteins as mediators of capaci-
tative calcium entry might come from specific
perturbations of the native proteins, either pharmaco-
logically or via molecular or genetic manipulations.
There are few instances of such data, but the few that
have been published are encouraging. Zhu et al. [38]
reported that transfection of cells with a cocktail of
antisense sequences against all six known (at the time)
TRP proteins blocked capacitative calcium entry. Sub-
sequently, this same group reported that antisense
against TRP4 alone was sufficient to abrogate almost
completely carbachol-induced calcium entry in mouse L
cells [49]. Groschner et al. [50] reported that expression
of an N-terminal fragment of TRP3 in endothelial cells
blocked the activation of store-operated currents, pre-
sumably because the N-terminus of the protein is in-
volved in channel assembly. Tomita et al. [51] reported
partial inhibition of store-operated [Ca2+]i signals in
Xenopus oocytes following injection of antisense se-
quences directed against human TRP1. This result is
somewhat surprising since the nucleotide sequence cod-
ing TRP proteins in Xenopus would be expected to be
only somewhat similar to that of the corresponding
mammalian gene. Other aspects of TRP proteins and
their roles in mediating calcium entry have been dis-
cussed in recent reviews [28, 49, 52–55].

While evidence for the role of TRP proteins as capacita-
tive calcium entry channels is steadily increasing, a
more perplexing question involves the nature of the
signal for activation of the plasma membrane channels.
Two fundamentally different ideas have been suggested.
Depletion of endoplasmic reticulum Ca2+ stores may
trigger release or formation of a signaling substance
that diffuses to the plasma membrane to activate the
channels [27]. Alternatively, it has been suggested that
proteins in the endoplasmic reticulum, specifically the
IP3 receptors, may directly interact with calcium chan-
nels in the plasma membrane via protein-protein inter-
actions [56]. This idea was based on an analogy with the
known interaction between ryanodine receptors and
L-type calcium channels in skeletal muscle [30]. Al-
though initially there was little direct evidence for this
idea, recently strong evidence for interaction between
IP3 receptors and TRP channels has appeared. Kiselyov
et al. [43] examined the behavior of TRP3 channels
expressed in HEK293 cells. Single, nonselective 66 pS
channels were activated by application of carbachol. On
excision of the patches, activity was lost but could be
restored by addition of IP3. A similar observation had
been made earlier by Vaca and Kunze with endogenous
capacitative calcium entry channels in endothelial cells
[57]. Kiselyov et al. found that with extensive washing
of the excised patches, responsiveness to IP3 was lost,
and this could be restored by addition of IP3 receptor,
either in the natural environment of cerebellar micro-
somes or recombinant receptor in proteoliposomes. IP3

receptor added without IP3 present, however, was inac-
tive [43]. Importantly, a study of endogenous single
Ca2+ channels in A431 epidermal cells has demon-
strated that the native store-operated channels are simi-
larly regulated by IP3 and the IP3 receptor [58]. In a
report examining interactions between TRP3 and IP3

receptor constructs following their transient expression
in HEK293 cells, it was demonstrated that the N-termi-
nal IP3 binding domain of the IP3 receptor was suffi-
cient to activate the TRP3 channels [59]. In the absence
of a transmembrane domain to sense calcium store
levels, the IP3 binding domain constructs activated the
channels independently of store depletion. Coexpression
of the complete IP3 receptor resulted in a complex that
was sensitive to store depletion. These authors con-
cluded that the association of TRP3 with an IP3-lig-
anded IP3 receptor was obligatory and, in the absence
of Ca2+ replete stores, sufficient for channel activation.
Consistent with this interpretation, maneuvers that
physically disrupt or interfere with interaction between
plasma membrane and endoplasmic reticulum block the
activation of capacitative calcium entry, without block-
ing the ability of IP3 to release intracellular Ca2+ stores
[60, 61]. Boulay et al. [62] in a recent report identified
interacting sequences within the TRP3 and IP3 receptor
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molecules and demonstrated that expression of these
peptide sequences in cells modulated capacitative cal-
cium entry. Recently, Ma et al. [63] demonstrated that
Ca2+ entry due to the overexpression of TRP3, or
Ca2+ entry due to capacitative calcium entry, was com-
pletely blocked by a membrane-permeant IP3 receptor
antagonist, 2-aminoethoxydiphenyl borate. This pro-
vides strong evidence for the involvement of an IP3

receptor in activation of both TRP3 and capacitative
calcium entry channels [63, 64].
Regardless of the experimental protocol, it appears that
regulation of TRP3 by IP3 receptor requires the pres-
ence of IP3. This implies that full activation of the
channels requires that at least a subfraction of IP3

receptors, those near the channels and involved in their
activation, must be at or near saturation with IP3. This
may appear to present a problem, since it is known that
drugs that deplete intracellular stores without activating
phospholipase C can induce maximal activation of ca-
pacitative calcium entry [65] or the current associated
with it, Icrac [66, 67]. However, it is know that in the
Drosophila photoreceptor, phospholipase C exists in a
scaffolded complex with TRP [68]. A similar arrange-
ment in mammalian cells might bring the critical pool
of TRP-coupled IP3 receptors sufficiently close to phos-
pholipase C such that they are IP3-liganded even at
resting phospholipase C activities [69].
While there is mounting evidence in favor of the idea
that capacitative calcium entry channels are regulated
by interaction with IP3 receptors, this is certainly far
from proven. In two independent studies, knockout of
IP3 receptors did not affect the ability of thapsigargin to
activate calcium entry [70, 71]. In the former instance,
an antisense strategy was used to knock down expres-
sion of the type 1 IP3 receptor in Jurkat T lymphocytes.
This resulted in essentially complete loss of response to
phospholipase C (PLC)-linked agonists, whereas thapsi-
gargin-induced entry was unaffected. However, the ex-
pression of the type 2 and type 3 receptors was not
altered, and it is possible that one or both of these could
have still functioned to regulate membrane-store-oper-
ated channels. In the latter study, the genes for all three
IP3 receptors were disrupted near the N-terminus of the
protein. However, there is evidence that although this
results in a protein incapable of gating Ca2+ in re-
sponse to IP3, the truncated IP3 receptor can still couple
to membrane TRP3 channels [43].
Evidence favoring a diffusible signal for capacitative
calcium entry was presented in a study published by
Parekh et al. [72]. These authors demonstrated that in
Xenopus oocytes, the signaling from intracellular stores
to plasma membrane channels could persist after physi-
cal disruption of connections between plasma mem-
brane and intracellular organelles. However, a more
recent report from Yao et al. [61] demonstrated that the

current measured by Parekh et al. was unlikely to be a
store-operated current and was more likely a calcium-
activated current. These same investigators found that a
number of manipulations that interfered with the secre-
tory pathway blocked the activation of a store-operated
current, and they proposed that a vesicle docking or
fusion step might be involved in activation of entry.
They also found that distention of the oocyte plasma
membrane with a patch pipet prior to store depletion
prevented activation of current under the pipet, but not
elsewhere on the oocyte surface. This indicated that
close proximity between the oocyte plasma membrane
and underlying structures was required for coupling
store depletion to channel activation [61].
Ribeiro et al. [73] found that severe cellular structural
rearrangements associated with cytoskeletal disruption
did not inhibit capacitative calcium entry (but see [74]).
This observation was reproduced by Patterson et al.
[60]. However, these same investigators reported that
stimulation of actin polymerization by jasplakinolide or
calyculin A blocked store-operated entry. This blockade
was partially reversed by subsequent disruption of the
actin filaments with cytochalasin D. The stimulation of
actin polymerization resulted in a dense accumulation
of actin filaments in the cell periphery and forced a
retraction of the endoplasmic reticulum from the
plasma membrane. Again, the conclusion was that close
proximity between the plasma membrane and underly-
ing structures, perhaps the endoplasmic reticulum, is
required to activate the capacitative calcium entry chan-
nels. The findings of both Patterson et al. [60] and Yao
et al. [61] are consistent with the idea that plasma
membrane calcium channels, perhaps composed of TRP
subunits, interact with underlying endoplasmic reticu-
lum IP3 receptors and that this interaction plays an
obligatory role in their activation by depletion of intra-
cellular Ca2+ stores.
Speculation about diffusible signals for entry have in-
cluded suggestions of a role for cytochrome P450
metabolites [75–77], cyclic GMP [78–80] and an un-
characterized activity formed in store-depleted cells,
termed CIF [81, 82]. In each case, conflicting data and
conclusions have been subsequently published [28, 83–
87]. In a recent report, a CIF activity from thapsi-
gargin-treated Jurkat cells as well as a similar, and
presumably identical activity from calcium pump-defi-
cient yeast, was shown to activate Ca2+ influx in Xeno-
pus oocytes and in Jurkat cells [82]. Confocal imaging
of [Ca2+]i in oocytes following injection of this material
showed that the signals were restricted to the periphery
of the cells, as expected for a substance acting specifi-
cally on the plasma membrane. Redistribution of intra-
cellular organelles by centrifugation did not affect the
progression of CIF-induced [Ca2+]i signals across the
oocyte, indicating that unlike signals initiated by IP3,
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the underlying organelles did not participate in the
signaling process. When included in the patch pipet
during whole-cell patch clamp of Jurkat cells, the ex-
tracts activated an inward current resembling the well-
characterized Icrac [82], a Jurkat cell current believed to
underlie capacitative calcium entry in this cell type [88].
These findings present perhaps the strongest evidence to
date for a diffusible messenger mediating capacitative
calcium entry. However, the properties of this entry
were not identical to those of endogenous capacitative
calcium entry in every respect. Notably, the Ca2+ sig-
nals were resistant to inhibition by lanthanum, whereas
endogenous capacitative calcium entry is blocked by
this trivalent cation. The nature and identity of the
Ca2+-signaling molecule present in CIF is as yet un-
known, as well as the precise role it plays in physiolog-
ical Ca2+ signaling pathways.

Endoplasmic reticulum calcium stores can regulate gene
expression
If in fact a diffusible signal is generated by or released
from the endoplasmic reticulum in response to calcium
depletion, then it is possible that this signal may initiate
or regulate other cellular responses. Until the identity of
such a messenger is clearly established, this idea cannot
be rigorously tested. However, there is a growing body
of evidence that depletion of endoplasmic reticulum
calcium stores can regulate processes other than calcium
entry. In this section, we discuss the effects of calcium
store depletion on gene expression, and in the subse-
quent section, effects on programmed cell death or
apoptosis.
Indications that calcium stores might be involved in gene
expression came shortly after the availability of thapsi-
gargin as a specific tool for depleting intracellular stores.
Thus, thapsigargin was shown to synergize with phorbol
ester in activation of expression of chloramphenicol
acetyltransferase from a construct containing artificial
AP-1-like upstream sequences [89], and in activation of
the early gene and protooncogene, c-fos [90, 91]. In the
latter study, c-jun was activated by thapsigargin inde-
pendently of protein kinase C activation. In both of
these reports, however, the effects of thapsigargin were
attributed to the rise in intracellular Ca2+ associated
with release from the endoplasmic reticulum.
Some of the clearest examples of gene regulation associ-
ated with intracellular store depletion involve genes that
code for proteins immediately impacted by or associ-
ated with endoplasmic reticulum calcium stores. The
Lee laboratory has investigated the regulation of ex-
pression of specific heat-shock proteins, GRP78 and
GRP94 [92]. These proteins are molecular chaperones
which are induced by a number of different stresses in
addition to heat shock, and are also calcium-binding

proteins, BiP (GRP78) and endoplasmin (GRP94) [93].
Even before the availability of thapsigargin, Drum-
mond et al. [94] demonstrated that expression of
GRP78 and GRP94 could be upregulated by A23187,
and that this induction was independent of the rise in
cytoplasmic Ca2+, resulting rather from the depletion
of endoplasmic reticulum Ca2+. The promoter for
GRP78 contains a CCAAT motif that is activated by
the human transcription factor, CBF [95]. In addition,
the human nuclear factor YY1 can drive the GRP78
promoter under conditions of endoplasmic reticulum
Ca2+ depletion [96]. However, neither CBF nor YY1
levels appear to be regulated by depletion of calcium
stores. Activation by calcium store depletion of the
expression of another major endoplasmic reticulum cal-
cium-binding protein, calreticulin [97], also appears to
involve CCAAT nucleotide sequences in the calreticulin
promoter [97]. Finally, Kuo et al. [98] observed an
induction by thapsigargin of expression of genes for
both the plasma membrane and endoplasmic reticulum
Ca2+ pumps, and as these responses were not dimin-
ished by loading the cells with the Ca2+ chelator,
BAPTA, they concluded that it was depletion of Ca2+

stores that initiated this response.
As mentioned above, thapsigargin increases the expres-
sion of early genes, fos and jun, and thus might be
expected to affect cellular growth and differentiation. In
fact, the long-term effects of thapsigargin treatment on
cellular functions are varied, including growth arrest in
some instances [99, 100], and cell death through apopto-
sis in others [101–103]. In instances in which thapsi-
gargin induces growth arrest, it is not clear whether this
indicates a signal that directly results in growth arrest or
simply a requirement for normally functioning Ca2+

pumps to signal cell division. Regardless, it seems para-
doxical that thapsigargin does induce growth arrest but
also induces the expression of early genes that are
believed to be involved in signaling cellular growth and
cell division. In the earlier studies, it was not clear
whether the effects of thapsigargin resulted from a rise
in [Ca2+]i or depletion of Ca2+ stores. A recent paper
from Qi et al. [104] suggests that c-fos induction by
thapsigargin is due to an increase in Ca2+ in the cyto-
plasm. Thus, it is possible that the stimulatory effects of
thapsigargin involve cytoplasmic Ca2+, presumably
through activation of CRE [105, 106], whereas store
depletion, or the lack of functional endoplasmic reticu-
lum Ca2+ pumps, is responsible for growth arrest.
An interesting interplay between genes involved in cell
cycle regulation was revealed in a study in which vascu-
lar smooth muscle cells were stably transfected with a
dominant negative against c-myb, a protooncogene re-
quired for cell cycle progression [107]. The result of
diminished c-myb activity was a significant decrease in
cell proliferation as well as a reduction in the size of the
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thapsigargin-sensitive Ca2+ pool [107]; however, the
reduction in Ca2+ storage was clearly not a result of
growth arrest. Thus, the status of Ca2+ pools can
influence the expression of genes involved in regulating
cell growth, and the activity of growth-regulating genes
in turn can influence the size and status of endoplasmic
reticulum Ca2+ pools.
In recent years, other instances of either activation [108]
or inhibition [109] of gene expression clearly linked to
depletion of endoplasmic reticulum Ca2+ have been
reported. These findings raise the general question of
the role of intracellular Ca2+ storage in the response to
other Ca2+-mobilizing stimuli, whether pharmacologi-
cal (ionophores, SERCA inhibitors) or physiological
(phospholipase C-linked agonists).

Endoplasmic reticulum calcium stores can regulate
apoptosis
It has long been known that artificial mobilization of
cellular Ca2+, with Ca2+ ionophores, can serve as a full
and sufficient stimulus for programmed cell death, or
apoptosis [110, 111]. More recently, a number of labo-
ratories have demonstrated that the SERCA inhibitor
thapsigargin is a potent inducer of apoptosis [101–103,
112, 113]. However, only recently have investigations
addressed the issue of the relative roles of cytoplasmic
and endoplasmic reticulum stored Ca2+.
Glucocorticoid-induced apoptosis of lymphoid cells is a
widely studied model of cell death. In a study of gluco-
corticoid-induced apoptosis Kaiser and Edelman [114]
identified a Ca2+ influx which they concluded was
associated with glucocorticoid-induced lymphoid cell
death. Investigators have shown that chelation of Ca2+

by intracellular chelators, extracellular EGTA or over-
expression of the calcium-binding protein, calbindin,
inhibits apoptosis due to glucocorticoids and other
agents [115–119]. Calcium channel blockers also pre-
vent apoptosis in regressing prostate [120]. The func-
tional activity of Ca2+ is often mediated through
binding to calmodulin [121–123], and calmodulin an-
tagonists have been reported to disrupt apoptosis in a
variety of systems [115, 124]. The oncogene Bcl-2, the
product of which is known to inhibit apoptosis in
several model systems, has also been suggested to regu-
late intracellular Ca2+ compartmentalization [125, 126].
Lam et al. [126, 127] demonstrated that dexamethasone
elevated [Ca2+]i and reduced stored Ca2+ in a
lymphocytic cell line and concluded that glucocorticoids
may act in a thapsigargin-like manner. Together these
data suggest a central role for calcium in apoptosis in
response to glucocorticoids and other agents.
The endonuclease responsible for internucleosomal
cleavage of DNA appears to be dependent on Ca2+,
suggesting that increased Ca2+ may be necessary to

allow (or activate) nuclease activity. Cleavage of chro-
matin into large DNA fragments (50 Kb) has also been
suggested to require Ca2+ [128], although other studies
[129] disagree. Other types of Ca2+-dependent enzymes
(such proteases and lipases [130]) have also been impli-
cated in apoptosis. Whether Ca2+ plays a direct role (as
activator) or a passive role (as cofactor) with these
enzymes has not been determined. However, Lam et al.
[126] point out that rather than an elevation of cyto-
plasmic Ca2+, depletion of Ca2+ stores is also a poten-
tially important factor in the action of thapsigargin, as
lowering of endoplasmic Ca2+ content can have a num-
ber of deleterious effects on cells, for example by inter-
fering with protein synthesis [131] (see also [113]).
Bian et al. [103] examined the role of Ca2+ signalling in
apoptosis induced in S49 cells (a lymphocytic line) by
the Ca2+-ATPase inhibitors thapsigargin and cyclopia-
zonic acid, and by the synthetic glucocorticoid dexam-
ethasone. These investigators also investigated the
effects of overexpression of the antiapoptotic oncogene
Bcl-2. In support of the idea that depletion of stored
Ca2+ may signal apoptosis, Bian et al. [103] found that
removal of extracellular Ca2+ augmented rather than
inhibited apoptosis due to thapsigargin. Overexpression
of the apoptosis suppressor Bcl-2 inhibited apoptosis
due to thapsigargin but did not affect thapsigargin-in-
duced Ca2+ signaling. Dexamethasone induced apopto-
sis, diminished the size of the endoplasmic reticulum
Ca2+ pool and caused a small elevation of intracellular
Ca2+, results similar to those originally reported by
Lam et al. [126, 127, 131]. However, this elevation was
not due to Ca2+ influx, because the increase was similar
in the presence or absence of Ca2+ in the medium.
Furthermore, in contrast to the results with thapsi-
gargin, apoptosis due to dexamethasone was unchanged
in a Ca2+-free medium. These findings indicate that
changes in Ca2+ handling appear to play a lesser role
than previously thought in the actions of Bcl-2 and
glucocorticoids. They also indicate that depletion of
intracellular stores can provide a potent stimulus for
apoptosis, independent of the activation of Ca2+ entry.
This may mean that the signaling pathway activated by
store depletion also triggers apoptosis. This could even
involve the same messenger from the endoplasmic
reticulum, although the available data do not address
this possibility. Alternatively, it is possible that the
inhibition of protein synthesis or loss of chaperone
function resulting from severe depletion of intracellular
stores is responsible. Previous studies have shown that
inhibition of protein synthesis by cycloheximide can
initiate apoptosis [132, 133]. In a recent report, Pinton
et al. [134] reported that partial reduction of endoplas-
mic reticulum calcium stores actually protected against
apoptosis.
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There is evidence for involvement of the IP3 receptor in
lymphocyte apoptosis. Khan et al. [135] found that
lymphocytes undergoing apoptosis increased their ex-
pression of the type 3 IP3 receptor, and their data
indicated that this was primarily in the plasma mem-
brane. Although the presence of IP3 receptors in the
plasma membrane is controversial, there is evidence
that some type 3 IP3 receptors may be located in the
plasma membrane where they are regulated by intracel-
lular Ca2+ stores as well as by IP3 directly [136]. Type
1 receptor was not increased, and antisense against type
3, but not antisense against type 1 receptor blocked
dexamethasone-induced apoptosis. In striking contrast,
Jayaraman and Marks [137] reported that antisense
reduction in type 1 IP3 receptor rendered Jurkat T
lymphocytes resistant to apoptosis in response to dex-
amethasone, T-cell-receptor stimulation, ionizing radia-
tion and Fas receptor activation. In an earlier report,
this same group reported that the type 1 IP3 receptor-
deficient lymphocytes did not respond to T-cell-receptor
activation but were still capable of responding to thap-
sigargin with both Ca2+ release and Ca2+ entry [70].
Jayaraman and Marks also noted that in Jurkat cells,
the induction of apoptosis was not reduced in the ab-
sence of external Ca2+ and concluded that the IP3

receptor was needed to mediate release of Ca2+ from
the endoplasmic reticulum [137]. The reason for the
difference in the results from these two laboratories is
not readily apparent. However, different cell lines were
used in the two studies, and this could be significant
(WEHI-231 B cells and S-49 T cells in the study by
Kahn et al. [135], and Jurkat T cells in the study by
Jayaraman and Marks [137]).
Bcl-2 and Bcl-xl are protooncogenes which, when ex-
pressed in excess, appear to suppress apoptosis [138,
139]. Other members of this family of proteins with
similar structures facilitate apoptosis, for example, Bax
[140]. These proteins appear to be primarily distributed
to mitochondria [138], where they may regulate cy-
tochrome C release, a key step in the apoptotic pathway
[141]. These proteins also structurally resemble ion
channels, and some have been shown to function as ion
channels in bilayer assays [142, 143]. However, since
different members of this protein family can produce
essentially opposite effects on the apoptotic pathway, it
is not clear whether this channel activity reflects a true
cellular function.
Despite the observed mitochondrial localization of Bcl-
2, its overexpression clearly modulates endoplasmic cal-
cium storage, especially when apoptosis is stimulated
[103, 144]. As mentioned above, Bcl-2 protects cells
from apoptosis caused by a number of agents, including
glucocorticoids and thapsigargin. He et al. [144] found
that Bcl-2 diminished the rate of Ca2+ loss from the
endoplasmic reticulum due to either thapsigargin treat-

ment, or low extracellular Ca2+. Bian et al. [103] re-
ported that dexamethasone treatment of S49
lymphocytes diminished endoplasmic reticulum Ca2+

storage, and this effect was antagonized by Bcl-2. How-
ever, in contrast to the findings of He et al., Bian et al.
observed no effect of Bcl-2 on thapsigargin-induced
[Ca2+]i signals. This difference probably reflects the fact
that Bian et al. utilized a supramaximal concentration
of thapsigargin (2 mM), whereas He et al. used a signifi-
cantly lower concentration (100 nM). Kuo et al. [145]
demonstrated that Bcl-2 overexpression caused an up-
regulation of SERCA expression [both messenger RNA
(mRNA) and protein] and found that Bcl-2 could be
co-immunoprecipitated with SERCA. With an in-
creased number of SERCA pumps, one might expect
resistance to submaximal, but not to supramaximal
concentrations of thapsigargin. In aggregate, these find-
ings strongly suggest that Bcl-2 protects cells from
apoptosis at least in part by augmenting Ca2+ pumping
into the endoplasmic reticulum, thus resisting the deple-
tion of Ca2+, which can apparently play a significant
role in the signaling pathway leading to cellular
apoptosis.

Regulation of endoplasmic reticulum structure and
function by signaling pathways

Regulation by calcium
The first studies suggesting a role for [Ca2+]i in the
modulation of endoplasmic reticulum structure were
performed in sea urchin eggs. Terasaki and Jaffe uti-
lized fluorescent lipophilic dicarbocyanine dyes (referred
to as DiI) which, upon injection of a saturated solution
in soybean oil into the cytoplasm, spread from the oil
drop throughout the endoplasmic reticulum network
[146–148]. Through the use of confocal microscopy,
this method enabled direct imaging of the dynamic
nature of this organelle under a variety of conditions,
such as during meiotic maturation and fertilization
[146, 148, 149].
In sea urchin and starfish eggs, fertilization causes IP3

generation and release of sequestered calcium, leading
to a spreading wave of [Ca2+]i mobilization. When this
wave of [Ca2+]i mobilization passes through the confo-
cal field of view, it is associated with a transient frag-
mentation of the endoplasmic reticulum, seen with DiI.
It was suggested that this temporary fragmentation may
be a fundamental event of Ca2+ release at fertilization
[146, 148, 149]. Recently, starfish eggs expressing green
fluorescent protein (GFP) targeted to the lumen of the
endoplasmic reticulum were used to address the issue of
loss of endoplasmic reticulum continuity during fertil-
ization. By applying fluorescence recovery after photo-
bleaching (FRAP) technology it was shown that the
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time required for FRAP was much longer for oocytes at
1 min postfertilization than in unfertilized eggs or in 20
min postfertilized eggs [150]. These findings were consis-
tent with the previously published DiI data, providing
further evidence for a temporary loss of endoplasmic
reticulum continuity at fertilization. However, an im-
portant question still remained: Is endoplasmic reticu-
lum fragmentation during fertilization a result of the
loss of sequestered calcium or the rise in [Ca2+]i? This
issue was addressed in a report by Subramanian and
Meyer [151] who showed that in rat basophilic leukemia
(RBL) cells expressing GFP in the endoplasmic reticu-
lum, high [Ca2+]i, but not Ca2+ pool depletion per se,
was responsible for vesiculating that organelle; further-
more, the effect of high [Ca2+]i on endoplasmic reticu-
lum continuity appeared to be specific for the
endoplasmic reticulum, since the integrity of the nuclear
envelope, an extension of the endoplasmic reticulum,
was maintained under high [Ca2+]i conditions.
The issue of endoplasmic reticulum fragmentation by
increased [Ca2+]i levels has been investigated in human
embryonic kidney (HEK 293) cells stably transfected
with GFP targeted to the endoplasmic reticulum [152].
Following Ca2+ store-depleting protocols (e.g. thapsi-
gargin or ionomycin in Ca2+-free medium or in media
with different Ca2+ concentrations), the endoplasmic
reticulum network appeared to fragment (as revealed by
punctate GFP fluorescence) only when [Ca2+]i was sus-
tained in the mM range by the calcium ionophore iono-
mycin (fig. 2). The effect of high [Ca2+]i on GFP
fluorescence was not due to changes in the distribution
or fluorescent properties of GFP, since no similar for-
mation of punctate structures was seen in cells express-
ing cytoplasmic GFP [152]. The punctate nature of the
endoplasmic reticulum was not due to nonspecific frag-
mentation and swelling of the endoplasmic reticulum as
revealed by fine structural analysis by electron mi-
croscopy [152]. In control cells, the endoplasmic reticu-
lum appeared as parallel membranes decorated with
ribosomes. Under high [Ca2+]i conditions clearly dis-
tinct and, in some cases, circular and in other cases
unusual, elaborately branching endoplasmic reticulum
structures were seen. These are presumed to be the
result of membrane folding and fusion induced by the
elevated [Ca2+]i. These branched clusters of endoplas-
mic reticulum retained their classical double-membrane
configuration and apparently represent the fluorescent
spots observed with the endoplasmic-reticulum-directed
GFP under high and sustained [Ca2+]i. These findings
indicate that endoplasmic reticulum structure can un-
dergo profound changes, resulting in loss of its continu-
ous, networklike structure when [Ca2+]i levels are
elevated and sustained. The implication of these find-
ings for the function of this organelle in [Ca2+]i signal-
ing will be discussed below.

Figure 2. Protein kinase C and Ca2+ effects on endoplasmic
reticulum structure and function. (Top) PMA pretreatment pre-
vents ionomycin-induced endoplasmic reticular alterations. HEK
cells expressing a GFP construct targeted to the endoplasmic
reticulum were treated with the vehicle used for dissolving PMA,
DMSO (0.1%) (control, A and B) or 1.6 mM PMA (C and D) for
60 min at 37 °C. The endoplasmic reticulum morphology was
subsequently visualized by confocal microscopy. A and C: endo-
plasmic reticulum fluorescence before treatment with ionomycin;
B and D: endoplasmic reticulum fluorescence 10 min after addi-
tion of 10 mM ionomycin in 1.8 mM Ca2+-containing buffer.
Ionomycin-induced alterations in endoplasmic reticulum structure
are prevented in PMA-treated cells. Bar, 10 mm. (Bottom) PMA
reduces the apparent size of the thapsigargin-sensitive Ca2+ pool
and decreases capacitative Ca2+ entry. HEK cells were treated
with DMSO (control, solid line), or 1.6 mM PMA (dotted line)
and intracellular Ca2+ determined by fura-2 fluorescence. The
concentration of thapsigargin was 2 mM and was present during
the interval indicated by the horizontal line. In this experiment,
the cells were initially kept in a media lacking calcium, and
calcium was restored during the interval as indicated. The thapsi-
gargin-releasable Ca2+ pool (response on first addition of thapsi-
gargin) as well as capacitative Ca2+ influx (the response on
readdition of Ca2+) are decreased in PMA-treated cells compared
to controls. Redrawn and modified from data originally presented
in [152].
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Regulation by protein kinase C
It is well established that protein kinase C (PKC) regu-
lates many aspects of Ca2+ signaling. These include
inhibition of IP3 production [153–155], thereby inhibit-
ing hormone-dependent Ca2+ release, and facilitation
[156, 157] or inhibition [156, 158–161] of capacitative
Ca2+ entry. PKC activation with phorbol 12-myristate
13-acetate (PMA) also causes a marked reduction in the
Ca2+ storage capacity of the endoplasmic reticulum in
NIH 3T3 cells [162]. Interestingly, capacitative Ca2+

entry was not activated by this depletion, and subse-
quent depletion of the remaining stores by thapsigargin
resulted in normal activation of capacitative calcium
entry. These findings suggested that activation of PKC
can alter the Ca2+-storing function of the endoplasmic
reticulum without altering its ability to control capaci-
tative Ca2+ entry. The effect of PKC activation on
diminishing the capacity of Ca2+ stores was also ob-
served in an epidermal cell line (A431) and in freshly
isolated lacrimal cells [162], as well as in glioma C6 cells
[163] and platelets [164], indicating that this is a general
phenomenon. The mechanism responsible for the action
of PKC on Ca2+ storage is not known, but there
appear to be little or no changes in the basic Ca2+

transport systems underlying endoplasmic reticulum
Ca2+ storage (e.g. the endoplasmic reticulum Ca2+-
ATPase, the endoplasmic reticulum leak channel or the
plasma membrane Ca2+-ATPase) [162]. Interestingly,
in NIH 3T3 cells overexpressing PKC isoforms, treat-
ment with PMA caused activated PKC-a to concentrate
in punctate regions in the endoplasmic reticulum [165];
therefore, it is reasonable to speculate that activation of
this PKC isoform and its association with components
of the endoplasmic reticulum could be related to the
loss of sequestered Ca2+.
A recent study investigated the effect of PKC activation
by PMA on endoplasmic reticulum function and struc-
ture in HEK 293 cells. Endoplasmic reticulum function
as a Ca2+ store was addressed by measuring Ca2+ store
capacity and Ca2+ entry, whereas the effect of PMA on
endoplasmic reticulum structure was investigated in
cells stably transfected with GFP targeted to the endo-
plasmic reticulum [152]. As in earlier work with NIH
3T3 cells [162], PMA induced a loss of sequestered
Ca2+, but in HEK cells PMA also inhibited capacita-
tive Ca2+ entry [152] (fig. 2). When endoplasmic reticu-
lum structure was examined in cells transfected with
endoplasmic-reticulum-targeted GFP, depletion of
Ca2+ stores by PMA or the SERCA inhibitor thapsi-
gargin induced little or no change in endoplasmic
reticulum structure. However, pretreatment with PMA
completely prevented the effect of elevated [Ca2+]i in
inducing endoplasmic reticulum fragmentation [152]
(fig. 2). This finding, especially when considered with
the precise morphological nature of the Ca2+-induced

rearrangements, indicates that the effects of high [Ca2+]i
in modifying endoplasmic reticulum structure is not a
nonspecific, toxic effect of elevated [Ca2+]i. Rather,
these responses would seem to reflect an experimentally
exaggerated manifestation of some as yet uncharacter-
ized physiological mechanism through which the Ca2+

and PKC pathways influence and regulate endoplasmic
reticulum structure. It may be inferred from the ability
of PKC to protect the endoplasmic reticulum from
fragmentation that the alterations of endoplasmic
reticulum structure seen under high [Ca2+]i conditions
involve the Ca2+ activation of proteins that can be
modulated by PKC-mediated phosphorylation. These
changes may occur in more subtle and directed ways
under physiological conditions. For example, changes
in the endoplasmic reticulum may occur transiently
during the brief but large rises in [Ca2+]i associated
with [Ca2+]i spikes and oscillations [20]. The transient
loss in endoplasmic reticulum continuity upon fertiliza-
tion of starfish oocytes, an event which correlates with
Ca2+ mobilization, may represent one documented ex-
ample of such a response occurring during a physiolog-
ical process.

Conclusions

The purpose of this review has been to summarize
current advances in our knowledge of the Ca2+-signal-
ing functions of endoplasmic reticulum. This includes
the ‘classical’ endoplasmic reticulum functions involving
release of activator Ca2+, and less well understood
functions involving signaling from the depletion of en-
doplasmic reticulum Ca2+ stores. The release of Ca2+

to the cytoplasm as well as Ca2+ store depletion appear
to be involved in regulation of long-term, fundamental
cellular processes such as the control of gene expression,
and cellular growth and cellular apoptosis.
Both the Ca2+ and PKC pathways have potentially
profound but poorly understood effects on the structure
and signaling functions of the endoplasmic reticulum.
There are also intriguing but at present mysterious
modes of interaction of these basic signaling pathways.
Recent work has revealed novel actions of the PKC
pathway, including a reduction of intracellular Ca2+

storage capacity, activation or inhibition of capacitative
Ca2+ entry, and protection of the endoplasmic reticu-
lum against the effects of high [Ca2+]i. The emerging
view is one of a complex network of signaling pathways
through which the endoplasmic reticulum and the Ca2+

and PKC pathways interact at various levels to regulate
cellular structure and function.
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