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nucleic bases and antioxidants (e.g. phenolics, selenium-Abstract. Peroxynitrite, the reaction product between
and metal-containing compounds, ascorbate and urate).nitric oxide (�NO) and superoxide, has been presumed to

be a mediator of cellular and tissue injury in various Peroxynitrite reactions involve oxidation and nitration.
pathological situations. It is formed at the convergence The chemical properties depend on the presence of CO2

of two independent radical-generating metabolic path- and metallic compounds as well as the concentrations of
reagents and kinetic laws. This complex chemistry can beways. Its biological effects are due to its reactivity
explained by the formation of several structural formstowards a large range of molecules including amino acids

such as cysteine, methionine, tyrosine and tryptophan, and active intermediates released from peroxynitrite.
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Nitric oxide (�NO) has been thought to be the primary
mediator of cellular and tissue injury under pathologi-
cal conditions. However, recent studies have suggested
that �NO might play a cytoprotective role by acting as
an antioxidative agent [1–3] or as a free radical chain
terminator [4]. Peroxynitrite1, a reaction product be-
tween �NO and superoxide, has been considered as an
oxidant and nitrating mediator formed in various
pathological situations [5–7]. Here we will review reac-
tions of peroxynitrite with biologically relevant
molecules.

Chemical synthesis and biosynthesis

Several methods for the laboratory synthesis of perox-
ynitrite have been reported, including photolysis and
pulse radiolysis of nitrate [8], ozonation of azide [9],

oxidation of hydroxylamine [10], oxidation of organic
nitrate [11] and the reaction of �NO with tetramethyl
ammonium superoxide or potassium superoxide [12].
Optimal conditions for the generation of peroxynitrite
by the quenched flow reaction of nitrite with hydrogen
peroxide under acidic conditions have recently been
reported [13].
Peroxynitrite formation in vivo is a diffusion-controlled
reaction of �NO and superoxide radicals [6, 14]. In
biological systems, autoxidation of �NO may not be
responsible for the short half-life of �NO (3–5 s) mea-
sured under normal and pathological conditions [15].
However, the short half-life of �NO may be explained,
at least in part, by a rapid reaction between �NO and
the superoxide anion, which yields peroxynitrite (4–
20×109 M−1 s−1) [12].
The reaction of the two radicals, �NO and superoxide, is
30 times faster than that of �NO with oxyhaemoglobin
and 3 times faster than the dismutation of superoxide
catalysed by superoxide dismutase (SOD) [16]. There
are a variety of pathophysiological conditions in which
production of both �NO and O2

�− is significantly ele-
vated. However, formation of peroxynitrite depends on
a delicate balance between the production of O2

�− and
SOD and �NO synthesis and consumption [17].

* Corresponding author.
1 The IUPAC-recommended name for O=N-O-O− is oxoperox-
onitrate, for its conjugated acid, it is hydrogen oxoperoxonitrate,
and that for �NO is nitrogen monoxide. Nevertheless, peroxyni-
trite is commonly used for oxoperoxonitrate or the mixture with
its conjugated acid form.
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The presence of SOD preserves �NO generated from
L-arginine by �NO synthases, suggesting that �NO re-
acts rapidly with superoxide [18]. It has been reported
that all three isoforms (neuronal, inducible and en-
dothelial) of �NO synthases produce both �NO and
O2

�− simultaneously under certain conditions, espe-
cially, when the substrate L-arginine is deficient. Thus
peroxynitrite is probably formed by �NO synthases
[19–22]. However, since direct measurements of per-
oxynitrite in vivo cannot be easily achieved, there is
no direct evidence showing that peroxynitrite is
formed in vivo. Oxidation of dihydrorhodamine has
been used to measure the oxidizing activity of perox-
ynitrite formed from simultaneous fluxes of superox-
ide and �NO but is significant only in the absence of
low-molecular-weight iron [23]. The presence of ni-
trotyrosine has been measured routinely as a marker
for peroxynitrite formation in vivo. However, recent
studies have demonstrated that a variety of nitrating
agents can react with tyrosine to form nitrotyrosine in
vitro and in vivo [24].

Life span

The peroxynitrite anion (ONOO−) is relatively stable
but its acid form (ONOOH) decays to nitrate with a
half-life of at most 1 s at physiological pH and tem-
perature. Thus, peroxynitrite could be considered as a
relatively long lived species. Only the trans isomer is
observed by Raman spectroscopy, but calculations
predict that the cis isomer is more stable than the
trans isomer. Stabilization of the cis form by delocal-
ization of the negative charge over the entire molecule
explains the particularly low pKa of 6.8 of the perox-
ide. Only the trans isomer could rearrange to nitrate
by attacking the nitrogen [25].
Recently, Kissner et al. [12] reported that the pKa of
peroxynitrous acid (ONOOH) depends on buffer com-
position and concentration. It can vary from 6 to
more than 8. The thermodynamically favourable
modes of peroxynitrite decay are isomerization to ni-
trate and dismutation either to nitrogen dioxide and
nitrosodioxyl radicals (ONOO�) or to nitrite and oxy-
gen:

ONOOH�HNO

2 ONOOH�H2O+ONOO�+ �NO2

2 ONOO−�O2+2 NO2
−

The kinetics of peroxynitrite decay are strictly a first-
order reaction at a rate of 1.3 s−1 at 25 °C [26].
Different pathways of decomposition account for the

formation of nitrate or nitrite and O2. Pfeiffer et al.
[27] reported that nitrite (30%) and oxygen (15%) are
formed from peroxynitrite in aqueous solution at pH
7.5, whereas NO3

− is the sole product at pHB5. In
most buffers, an acceleration of the decay is observed
with increasing buffer concentration [28]. Peroxynitrite
is less stable in the presence of bicarbonate and car-
bon dioxide, which behave as a Lewis acid [29]. When
the concentration of peroxynitrite exceeds 100 mM, its
disappearance seems to be delayed as peroxynitrite
and peroxynitrous acid are stabilized by forming a
pair which undergoes a slower decay leading also to
oxygen and nitrite [12].

HOONO+ONOO−� [ONOO/ONOOH]−

�O2+NO2
−

Although peroxynitrite shows a half-life of around 1 s
at physiological pH and temperature, the exact life
span of peroxynitrite in vivo is not known. �NO dif-
fuses freely across membranes, whereas O2

�− and the
peroxynitrite anion need anion channels to cross
membranes. In fact, recent studies with whole red
blood cells showed clearly that peroxynitrous acid can
diffuse across the lipid bilayer, while transmembrane
transport of peroxynitrite anion occurs through the
erythrocytic anion channel. In the presence of extra-
cellular targets like CO2, peroxynitrite diffusion
through membranes will be limited, suggesting its de-
cay in the same compartment [30].

Aromatic hydroxylation and oxidation by peroxynitrite

Hydroxylation by peroxynitrite of phenylalanine at
the three positions of the aromatic ring [31] and of
salycilic acid at ortho and para positions [32] have
been observed in vitro, although their yields were low.
Similar amounts of hydroxylated products are ob-
tained with hydroxyl radical (HO�)-generating systems
(iron-EDTA, ascorbate and hydrogen peroxide) [32].
This hydroxylation reaction by peroxynitrite could be
explained by HO� formation if homolysis of peroxyni-
trous acid took place. However, on the basis of ther-
modynamic calculations for homolysis (10−2 s−1) and
isomerization rate (1 s−1), homolysis seems unlikely
to occur [33]. This is confirmed by the independence
of the rate of decomposition from solvent viscosity
[34]. However, formation of an activated intermediate
of peroxynitrite, which can hydroxylate the benzene
ring and react with HO� scavengers such as deoxyri-
bose and histidine, has been reported to be the vibra-
tionally excited trans isomer of peroxynitrous acid [26,
35–37]. Oxidation yields with increasing concentra-
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tions of substrates do not exceed 40%, suggesting that
40% of peroxynitrite is converted into this activated
oxidizing species [38].2

Reaction with carbon dioxide/bicarbonate and carbonyls

Peroxynitrite anion reacts with CO2 with a rate constant
of 5.8×104 M−1 s−1 [39, 40]. The conformation of
peroxynitrite may be an important determinant of its
reactivity. The trans rotamer should be the reactant.
Using carbonate anhydrase that catalyses the reversible
hydration of CO2 as a probe, CO2 has been shown to be
the reactive species [41]. As the concentrations of CO2

(1.3 mM in blood plasma) and bicarbonate (12 mM in
intracellular fluid and 25–30 mM in blood plasma) are
high, this reaction between the peroxynitrite anion and
CO2 should occur in vivo and accelerate its decay [41].
Thus, biological activities of peroxynitrite are expected
to occur via the intermediate nitrosodioxycarboxylate

(O=NOOCO2
−). The reaction of peroxynitrite with

CO2 enhances nitration reactions, whereas it inhibits
hydroxylation and oxidation reactions mediated by per-
oxynitrous acid (ONOOH) [40, 42, 43] (fig. 1).
It has been suggested that this peroxynitrite anion-CO2

adduct can lead to reactive intermediates such as the
nitronium cation, �NO2 and �CO3 radicals or nitrooxo-
carboxylate anion (O2N-O-CO2

−) by isomerization [44].
All these species are oxidizing and nitrating agents. The
strong oxidizing �CO3 radical should lead to superoxide
formation via radical intermediates. Superoxide and the
�NO2 radical should react to give peroxynitrate (O2N-
O-O−) which decomposes rapidly into nitrite and oxy-
gen [44].
The reaction of peroxynitrite with pyruvate (apparent
second-order rate k=88 M−1 s−1 at pH 7.4) or with
a-ketoglutarate leads to the carbon dioxide radical an-
ion which reacts very rapidly with oxygen. Radical
formation and oxygen consumption are inhibited by the
addition of 10 mM bicarbonate [45].
Similarly, aldehydes react with peroxynitrite, but with
apparent rates at least 40–300 times lower than the rate
constant for the CO2-peroxynitrite reaction [46]. How-
ever, the presence of some short-chain aldehydes, which
can form adducts similar to the peroxynitrite-CO2 ad-
duct, has been shown to inhibit peroxynitrite-mediated
nitration of phenolic compounds. The behaviour of this
adduct excludes the hypothesis of NO2

+ formation from
the peroxynitrite-CO2 adduct. Thus a radical mecha-
nism is probably responsible for the nitration of pheno-
lic compounds [46].

Oxidation, nitration and nitrosation of thiols by
peroxynitrite

The main reaction of peroxynitrite with thiols is a
two-electron oxidation leading to disulphides, this being
the major mechanism in the peroxynitrite-mediated in-
activation of various enzymes. Cysteines are certainly
the most sensitive targets in proteins. The apparent
second-order rate constants during the reaction of per-
oxynitrite with thiols, such as cysteine, glutathione and
the single thiol group of albumin, are reported to be 1.3,
1.5 and 4.5×103 M−1 s−1, respectively, at physiologi-
cal pH and temperature [47, 48]. Peroxynitrite oxidizes
sulphhydryls about 103 times faster than does H2O2

under the same conditions. At lower concentrations of
thiols (thiol/peroxynitrite B1.2) and at acidic pH, a
one-electron oxidation process occurs, at least partially,
through formation of thiyl radicals which were detected
by direct electron-spin resonance (ESR) and spin-trap-
ping studies. The peroxynitrite-dependent formation of
such free radicals is revealed in blood plasma, in addi-

Figure 1. Reactions of oxidation by peroxynitrite.

2 Three recent publications suggest that peroxynitrous acid
(ONOOH) homolytically decomposes to generate HO� and �NO2.
1. Merenyi G., Lind J., Golstein S. and Czalski G. (1998) Perox-
ynitrous acid homolyzes into HO� and �NO2 radicals. Chem. Res.
Toxicol. 11: 712-713.
2. Coddington J. W., Hurst J. K. and Lymar S. V. (1999)
Hydroxyl radical formation during peroxynitrous acid decomposi-
tion. J. Am. Chem. Soc. 121: 2438–2443.
3. Richeson C. E., Mulder P., Bowry V. W. and Ingold
K. U. (1998) The complex chemistry of peroxynitrite decomposi-
tion: new insights. J. Am. Chem. Soc. 120: 7211–7219.
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Figure 2. Mechanisms of thiol oxidation by peroxynitrite.

metabolism in Trypanosoma cruzi [57]. �NO synthases
are inhibited by peroxynitrite by irreversible oxidation
of the haem thiolate bond located in the catalytic site
[58].
Peroxynitrite can modify methionine via one-electron
and two-electron processes. The one-electron pathway
occurs only to a lesser extent under acidic conditions
and with low substrate concentration, leading to a me-
thionine sulphide radical cation, which decomposes to
methional and ethylene [59]. The major reaction forms
the two-electron oxidation product methionine sulphox-
ide with a rate constant of 280 M−1 s−1 at pH 7.4 [60].
As with thiols, added bicarbonate inhibits this oxidation
[61]. Such modification of methionine by peroxynitrite
has been reported to be responsible for the inactivation
of several proteins and enzymes [62], such as a-1-an-
tiproteinase [63], calmodulin [64] and Escherichia coli
glutamine synthetase [61].

Nitration and oxidation of tyrosine by peroxynitrite

Both nitration and dimerization of tyrosine are two-elec-
tron processes. The reaction stoichiometry shows that at
most 16 and 38% of the peroxynitrite are available for
oxidation and nitration in the absence and presence of
bicarbonate, respectively [65]. With regard to the degra-
dation kinetics of peroxynitrite in the presence of CO2,
recent data [44] show that 33% of nitrosodioxycarboxy-
late (O=N-O-O-CO2

−) is converted to reactants which
could be the pair of radicals (eq. 1) or nitrooxocarboxy-
late (O2N-O-CO2

−) (eq. 2).

O=N-O-O− +CO2�O=N-O-O-CO2
−

�O=N-O�+�O-CO2
− (1)

O=N-O-O-CO2
−�O2N-O-CO2

− (2)

At present, the nitronium NO2
+ is always excluded as

the nitrating agent due to its very short life span, and
from thermodynamic calculations. With regard to a
radical mechanism, the formation of tyrosyl radical is a
pH-dependent reaction that could be due to �NO2

�CO3
−

for example, with �NO2, the rate constants are 3.2×105

M−1 s−1 at pH 7.5 and 7.5×106 M−1 s−1 at pH 9.6.
Radical processes (via O=N-O�+ �O-CO2

−) account
well for the identical t1/2 for peroxynitrite disappearance
(3 ms) and for tyrosine nitration (2.5 ms) [65]. On the
other hand, the caged ion and radical pairs formed from
the nitrosodioxycarboxylate may not diffuse out of sol-
vent cages and thus cannot account for the formation of
nitrite and nitrate ions detected in phosphate buffers
with or without added bicarbonate. However, nitrooxo-
carboxylate anion (O2N-O-CO2

−) resulting from a rear-
rangement in the caged radical pair could also be the
nitrating agent [41].

tion to ascorbyl, urate-derived and tryptophan-centred
radicals [49–51]. Thiyl radicals can link oxygen, pro-
moting oxidative stress. Electron paramagnetic reso-
nance (EPR) and oxygen consumption experiments have
led to a proposed mechanism shown in figure 2 [48].
Thiols and CO2 could compete for peroxynitrite reac-
tions. Rate constants for the reaction of peroxynitrite
with carbon dioxide and with sulphhydryls have been
reported as 5.8×104 M−1 s−1 and 2–5×103 M−1 s−1,
respectively. Considering these reaction rates and their
respective concentrations in extra- and intracellular
fluids, it may be possible that excited intermediate could
not be involved in vivo. However, the participation of
several oxidizing intermediates is supported by competi-
tion studies. The first-order rate for thiol concentration
indicates that the ground-state form of peroxynitrous
acid (ONOOH) can directly oxidize thiols. The presence
of bicarbonate partially inhibits peroxynitrite-dependent
oxidation of glutathione, indicating that the peroxyni-
trite-CO2 adduct is less efficient in oxidation than perox-
ynitrous acid [40, 52]. Similar results have also been
obtained with bovine serum albumin in vitro [40]. In
total human blood plasma, the formation of thiyl radi-
cals and disulphide cross-linking of the dimer of serum
albumin (50% by 500 mM peroxynitrite) is greatly depen-
dent on dissolved CO2 and ascorbate [53]. Moreover,
peroxynitrite (1–5 mM) also produces 5–14 mM thioni-
trite (albumin-S-NO) and thionitrate (albumin-S-NO2),
the yields of which double in the presence of CO2 [53].
Such S-nitrosation/nitration of endogenous glutathione
or protein thiols could explain some of the.NO-like
activities observed with peroxynitrite [54].
Reactions of peroxynitrite with critical thiols are respon-
sible for the inhibition of creatine kinase (with a rate
constant of 8.8–105 M−1 s−1) [55], a-1-antiproteinase
[56] and succinate dehydrogenase and fumarate reduc-
tase, which are critical enzymes for the energy
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Effects of iron and metal-containing compounds
Transition metals including Fe3+-EDTA and Cu/Zn-
SOD can catalyse peroxynitrite-mediated nitration of
phenolic compounds [66]. The nitronium-ion-like spe-
cies derived from peroxynitrite could be responsible for
the nitration:

ONOO− +Fe3+EDTA�NO2
+--O--Fe3+EDTA

The nitronium part could effect an electrophilic substi-
tution of the aromatic ring while the ferryl oxy group
traps the released protons to yield water and the origi-
nal catalyst. Furthermore, Fe3+-EDTA promotes the
nitration of tryptophan [67] and serotonin [68]. Cu-
SOD does not exert any effect on nitration of indole
derivatives but catalyses the nitration of specific ty-
rosine residues in some particular proteins such as neu-
rofilament and, to a lesser extent, serum albumin [69].
Nitration of 4-hydroxyphenylacetic acid by peroxyni-
trite is catalysed by other metalloproteins such as cata-
lase [70] and metal-containing substances such as

ternary copper complexes and manganese (III) te-
trakis(4-benzoic acid) porphyrin [71]. The presence of
CO2 inhibits metal-catalysed nitration by both Fe3+-
EDTA and Cu-SOD, which agrees with the preferential
formation of the nitrosodioxycarboxylate over the other
nitrating species [40].

Modifications of tyrosine-residues in proteins by
peroxynitrite
Nitration of tyrosine (fig. 3) and tyrosine-containing
proteins and their roles in pathophysiology have re-
cently been reviewed by Ischiropoulos [24]. Bovine
serum albumin contains 19 tyrosine residues: following
its reaction with 1:1, 1:5 and 1:10 ratios of protein to
peroxynitrite, 0.1, 1 and 3% of the tyrosine residues are
nitrated and 0.02, 0.09 and 0.1% are oxidized to dity-
rosine, respectively [72]. Despite low yields of tyrosine
modifications, nitration of tyrosine residues inactivates
important proteins such as Mn-SOD [73, 74]. It has

Figure 3. Mechanisms of tyrosine oxidation and nitration by peroxynitrite.
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recently been reported that among the nine total tyrosine
residues, only tyrosine 34 of Mn-SOD, which is located
near the manganese and O2

�− gateway, is nitrated by
peroxynitrite [74]. Mn-SOD is nitrated during human
kidney allograph rejection, strongly suggesting that per-
oxynitrite could be formed in vivo under certain patho-
physiological conditions [75].
Other proteins, in which tyrosine nitration by peroxyni-
trite is associated with inactivation of protein functions/
enzymatic activities, include neurofilament-L [69],
prostacycline synthase [76], surfactant protein A [77],
glutamine synthetase [61], tyrosine hydroxylase [78] and
P450 [79]. Neurofilament-L, which is the major neurofi-
lament subunit, maintaining axonal structural integrity,
appears to be one of the predominant proteins in brain
homogenates nitrated by peroxynitrite [69]. Nitrated
neurofilament-L inhibits the assembly of unmodified
neurofilament subunits. Regulation of glutamine syn-
thetase activity of E. coli involves adenylation of tyrosine
residues. Adenylation and nitration of critical tyrosine
residues provoke changes in the affinity for substrates
and allosteric effectors [61].
Nitration of tyrosine residues by peroxynitrite disrupts
the phosphorylation of tyrosine residues in proteins
involved in cell signalling networks [80]. However, re-
cently, an enzymatic activity, which modifies nitroty-
rosine-containing proteins (a ‘nitrotyrosine denitrase’),
has been reported in homogenates of rat tissue. The
activity is increased about twofold in spleen extracts after
endotoxin (bacterial lipopolysaccharide) treatment of
animals, suggesting that the activity is inducible or
regulated [81]. Thus, nitration of tyrosine could be one
of the important post-translational modifications of
proteins, the levels of which should be regulated
biologically.
It should be noted that nitrotyrosine can be formed by
various nitrating agents, including peroxynitrite, nitrous
acid, N2O3 and NO2 [24, 82, 83]. �NO may also react
directly with tyrosyl radicals (e.g. stable radicals such as
that found in ribonucleotide reductase or those formed
by H2O2 or others oxidants) to form nitroso or nitro
derivatives. Prostaglandin H synthase-2, which exhibits
a tyrosyl radical during the catalytic production of
prostaglandins, has been reported to react with �NO to
form an iminoxyl radical which is in turn oxidized into
nitrotyrosine [84]. Activated human polymorphonuclear
neutrophils convert NO2

− into NO2Cl and the �NO2

radical through myeloperoxidase-dependent pathways
[85]. Myeloperoxidase and horseradish peroxidase utilize
nitrite and hydrogen peroxide as substrates to catalyse
tyrosine nitration in proteins [86]. Thus, the occurrence
of nitrotyrosine-containing proteins in vivo should be
regarded as a general indication of tissue damage in-
duced by reactive nitrogen species such as peroxynitrite,
NOx and HOCl plus nitrite in the presence of peroxidase.

Reactivity with tryptophan

Tryptophan can be nitrated by peroxynitrite on its
benzene ring with an apparent second-order rate con-
stant of 184 M−1 s−1 at 37 °C. Nitration is moderately
increased by Fe3+-EDTA or by the addition of bicar-
bonate. Besides nitro derivatives, several oxidation prod-
ucts are formed. Peroxynitrite-mediated one-electron
oxidation of tryptophan, leading to the tryptophanyl
radical, is enhanced by bicarbonate [67]. The reaction of
proteins with peroxynitrite has been reported to result in
a decrease in tryptophan fluorescence, although the
nature of the transformation is not specified. For in-
stance, 12, 30 and 45% oxidation of tryptophan residues
is observed following reaction of bovine serum albumin
with peroxynitrite at ratios of 1:1, 1:5 and 1:10, respec-
tively [72].

Reactivity with antioxidants

Phenolic compounds
Catecholamines, which act as antioxidants by donating
electrons, react with peroxynitrite to form semiquinones
and quinones [87]. The ability of different hydroxycinna-
mates to inhibit peroxynitrite-mediated tyrosine nitra-
tion has been compared to that of trolox. Ferulic and p-
and o-coumaric acids undergo nitration by peroxynitrite,
although catechol derivatives lead to relatively unstable
products presenting the characteristics of quinones [88].
Furthermore, the ability of chlorogenic acid to protect
DNA against peroxynitrite-induced oxidative damage is
markedly enhanced in the presence of a catalytic amount
of the haem-containing enzyme horseradish peroxidase
[89]. Various flavonoids including (− )-epigallocatechin
gallate (polyphenol) inhibit peroxynitrite-mediated oxi-
dation and nitration reactions [88, 90, 91].
Vitamin E, the major lipophilic antioxidant, consists of
a-, b- and g-tocopherols. g-Tocopherol bears an addi-
tional methyl group at position 5 of a-tocopherol. Perox-
ynitrite converts a-tocopherol into tocopherolquinone in
nearly quantitative yields [92], whereas g-tocopherol is
nitrated by peroxynitrite [93].

Ebselen and seleno compounds
Ebselen [2-phenyl-1,2-benzisoselenazol-3(2H)-one], an
organoselenium compound with glutathione-peroxidase-
like activity, reacts with peroxynitrite very efficiently,
yielding the corresponding selenoxide as the sole sele-
nium-containing product with a rate constant of 2×106

M−1 s−1 [94]. Rate constants of oxidation of D,L-se-
lenomethionine by peroxynitrite are 10- to 1000-fold
higher than those for the reactions of methionine with
peroxynitrite [95]. Seleno-organic compounds can inhibit
oxidation and nitration reactions mediated by peroxyni-
trite [96].
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Glutathione peroxidase protects against peroxynitrite-
mediated oxidation and nitration in the presence of
glutathione more effectively than ebselen, thus probably
acting as a peroxynitrite reductase in vivo to defend
against peroxynitrite-induced tissue/DNA damage [97].

Haemoproteins and porphyrin derivatives
The peroxynitrite-mediated oxidation of oxy-
haemoglobin is indistinguishable from that obtained with
�NO. The oxidation rate of ferrocytochrome c by perox-
ynitrite is estimated to be 1.6×105 M−1 s−1, which is
comparable to that obtained with myeloperoxidase (5×
105 M−1 s−1). Simulation of fluxes of �NO and superoxide
in the presence of oxyhaemoglobin and ferricytochrome
c, which are able to trap �NO and O2

�−, respectively,
demonstrates that very little peroxynitrite is formed in the
presence of micromolar amounts of haemoproteins [16].
Synthetic iron (III) and manganese (II) porphyrin deriva-
tives react rapidly with peroxynitrite (� 2×106 M−1

s−1). 5,10,15,20-Tetrakis(2,4,6-trimethyl-3,5-disulphon-
atophenyl)-porphyrinato iron (III) is effective against
cytotoxicity caused by exogenously added peroxynitrite
as well as inflammation induced by carrageenan in rats
[98].

Other antioxidants
Reactions of peroxynitrite with ascorbate (1×102 M−1

s−1) and uric acid have been reported [49, 99–101].
Peroxynitrite-mediated haemolysis is effectively inhibited
by glutathione, N-acetylcysteine and albumin, while
trolox, a water-soluble analogue of tocopherol, and uric
acid do not seem to be very effective [102]. CO2/bicarbon-
ate is an efficient antioxidant against peroxynitrite dam-
age in extracellular fluids. Although glutathione, uric acid
and ascorbate do not react efficiently with the peroxyni-
trite-CO2 adduct, they are able to scavenge tyrosyl and
tryptophanyl radicals which are created by peroxynitrite
[49]. �NO itself is a very efficient scavenger of these
radicals. Other antioxidants, which have been reported to
react with or scavenge peroxynitrite, include bilirubin
[103], b-carotene [104] and melatonin [105]. Furthermore,
uric acid is converted by peroxynitrite to an unstable
vasorelaxant product suggesting a reductive role of urate
which is able to produce �NO from peroxynitrite [106].

DNA base modifications

DNA damage induced by peroxynitrite has recently been
reviewed [107]. In accordance with other biomolecular
targets, DNA is damaged by peroxynitrite through nitra-
tion and oxidation. Reactions of isolated DNA with
authentic peroxynitrite form 8-nitroguanine dose depen-

dently [108]. Only peroxynitrite, but not nitrous acid,
tetranitromethane or �NO-releasing compounds, forms
8-nitroguanine. Therefore, 8-nitroguanine in DNA could
be measured as a specific marker for peroxynitrite-medi-
ated DNA damage. Bicarbonate (0–10 mM) causes a
dose-dependent increase of up to sixfold in the formation
of 8-nitroguanine in DNA. The reaction of 2%-de-
oxyguanosine with peroxynitrite was also shown to yield
several compounds, two of which were identified
as 4,5-dihydro-5-hydroxy-4-(nitrosooxy)-2%-deoxyguan-
osine and 8-nitroguanine [109]. The reaction of deoxynu-
cleosides with peroxynitrite has been reported to yield
highly cytotoxic base-propenals (base-CH=CH-CHO)
[43, 110]. On the other hand, peroxynitrite induces only
small increases in some oxidized bases including 8-ox-
oguanine, FAPy-guanine, 8-oxoadenine and oxazolone
[108, 111, 112]. One possible explanation would be that
oxidized bases such as 8-oxoguanine may be further
oxidized into the ring cleavage product by peroxynitrite
[113].
Single-strand breakage can occur in plasmid DNA fol-
lowing treatment with concentrations of peroxynitrite as
low as 1 mM [110]. Peroxynitrite induces significantly
more single-strand scissions at acidic pH than at neutral
or alkaline pH. The presence of CO2/bicarbonate inhibits
the DNA breakage, suggesting that peroxynitrous acid
(ONOOH) is responsible for the damage [43]. Concurrent
generation of �NO and superoxide can also induce strand
breakage under a variety of conditions. 3-Morpholi-
nosydnonimine (SIN-1), that is assumed to generate
simultaneously �NO and superoxide, thus possibly form-
ing peroxynitrite, has also been used to study DNA
damage. Yermilov et al. [108] have reported that SIN-1
increases dose dependently the level of 8-oxoguanine, but
not that of 8-nitroguanine, in DNA, in contrast with the
fact that authentic peroxynitrite formed 8-nitroguanine,
but not 8-oxoguanine, in DNA. One possible reason for
this observation could be that SIN-1 may produce uniden-
tified reactive oxidants, which may be responsible for the
formation of 8-oxoguanine [108, 114].

Conclusion

Peroxynitrite is a fascinating molecule and presents
multiple facets that account for its complex chemistry
which is strictly dependent on the environment. Indeed,
the ratio of superoxide to �NO is important in determining
the reactivity of peroxynitrite: excess �NO or excess
superoxide affects the oxidation and nitration reactions
elicited by peroxynitrite [4, 23]. There is now good
evidence suggesting that peroxynitrite is formed in vivo
and plays an important role in diverse pathophysiological
conditions such as inflammation, neurodegenerative dis-
eases and cardiovascular disorders.
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