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Abstract. A review of the literature accumulated re-
cently on nuclear structure and function reveals that: (1)
The nucleus is the interphase form of chromosomes
(chromatin organizes and compartmentalizes the nu-
cleus). (2) These organizational programs are morpho-
genetic in nature and are regulated by both DNA
content and by epigenetic interactions. (3) In mammals
with a diploid complement, it is very likely that chro-
mosomes construct interphase domains based on their
structural milieu (including any imprinted areas). These
are the same structured areas that correspond to G- and
R-bands with their varying DNA content and early
versus late replication. (4) Changes in a position of a

segment of DNA from one chromatin environment to
another changes its availability to early replication fac-
tors and transcription factors as well as its nuclear
positioning and chromatin architecture. This process
was first described as positional effect variegation in
Drosophila but is now found to be more general and
explains many cases of direct clinical relevance. Exam-
ples in mammals include spreading of X inactivation,
imprinting and changes in chromatin associated with
chromosome translocation. (5) Chromosomal autocon-
struction and reconstruction into a functional nucleus
are altered during cell cycle and during differentiation
(much more work needed on this area).
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Introduction

nucleus (Brown 1831)—a membrane-enclosed cell or-
ganelle which represents one of the two main compart-
ments of the eucell and contains the bulk of its genetic
information (nuclear DNA) in the form of chromatin.
(From: Rieger et al., Glossary of Genetics, 5th ed., 1991,
Springer-Verlag, Berlin).

Research on nuclear structure is as old as the sugges-
tion over 110 years ago that chromosomes occupy
specific domains in the interphase nucleus [1, 2]. How-
ever, the nucleus remains far more complicated and
misunderstood than any other cellular organelle, and
only in the past decade have advances in technology

allowed us to make significant progress in understand-
ing the structure and function of chromatin in the
interphase nucleus. This is not intended as a review of
chromosome structure and function; excellent sum-
maries of these areas abound (Wolffe [3] as an exam-
ple). Rather, T will provide a selective review that
supports new models based on the ideas that
chromosomes and chromatin orchestrate an interphase
nuclear environment that regulates gene activity not
only during the cell cycle but also in diverse processes
from differentiation to malignancy. In other words, I
review how chromatin changes its environment to
produce the functioning structure we call an
interphase nucleus.
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A problem of terminology

Much of the literature in this field uses terminology that
keeps us thinking in terms of distinct objects (chromo-
somes, subnuclear compartments, nuclear matrix etc.)
affecting or regulating each other. Thus, we use such
statements as ‘the nucleus contains chromosomes’ or
‘chromosomes attached to the nuclear envelope.” Chro-
mosomes are the building blocks as well as the builders
for the nucleus (they form structures and function).
Nuclear formation following metaphase is essentially a
morphogenetic process, and chromatids can be thought
of as prenuclei [4-6]. We should then realign our
thoughts to think of the nuclear structures as byprod-
ucts of chromosomes (i.e. the nucleus is just an inter-
phase form of chromatin). After all, chromosomes do
acquire many new proteins for each stage of the cell
cycle (including interphase and metaphase). This re-
modeled chromatin at interphase is the nucleus with its
various compartments. I would prefer that we think in
terms of chromosomal assembly and remodeling into
functional nuclear or chromatin structure (i.e. nuclear
assembly) or alterations of chromosomal states to cre-
ate various functioning entities. These include chromo-
somal compartments (CCs), subchromosomal domains
(SCDs), and interchromosomal compartments (ICCs).
We are then able to address the dilemma articulated by
Singer and Green [7] of which came first ‘in the nu-
cleus’: the concentration of transcription and splicing
factors or the gene activity (recruiting such factors into
compartments). Recent work on one transcription regu-
lator (yeast GCNS5p) suggests that it functions in collab-
oration with other molecules as a histone acetyl-
transferase and thus alters nucleosomal (chromatin)
conformation [8]. Histone acetylation plays a central
role in chromatin accessibility and transcriptional activ-
ity [9]. Since all such transcription factors bind specific
segments of DNA, we can think of DNA as the ulti-
mate builder of its own functioning environment (the
chromatin state). Of course, there are certain situations
where DNA states can be modified by external factors
(e.g. imprinting by methylation of CpG residue), but
then these modified DNA sequences will build the cor-
rect structural chromatin milieu. We review several lines
of evidence that demonstrate the ordered complexity of
chromatin and factors that influence chromatin func-
tion in its metaphase and interphase states.

Chromosomes organize distinct domains in the
interphase nucleus

The seminal observations of Rabl and Boveri [1, 2]
clearly suggested a nonrandom arrangement of chromo-
somes when the nucleus is reconstructed following divi-
sion. An ordered chromosomal structure is visible in
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microscopic examinations of the ultrastructure of the
nucleus [10]. With the advent of fluorescence in situ
hybridization (FISH) it became possible to examine the
positions of specific chromosomes in interphase, further
confirming an ordered nuclear structure [11-14]. Even
in somatic cell hybrids, it appears that genomes and
chromosomes are allotted certain domains [15, 16].
Mathematical models based on data from chromosome
exchanges following irradiation also support a con-
finement of chromosomes to domains in the interphase
nucleus [17]. The segregation of chromosomal territo-
ries in the interphase nucleus is even detected in living
cells [18, 19]. In three-dimensional (3D) reconstruction
of GO rat lymphocyte nuclei, bodies of chromatin are
most condensed at the nuclear envelope, and there were
22 such domains approximating the haploid chromo-
some number [20]. This suggested that chromosomes
are paired somehow in these interphase nuclei. The
possibility that heterologs (chromosomes that are not
homologous) form clusters is not excluded.

Chromosome painting and 3D reconstruction provide
some additional data to support a domain organization
for each chromosome. However, this is not to suggest a
fixed chromosome orientation in the interphase nucleus.
A repositioning of the centromeres from the periphery
towards the nuclear center occurs with cell cycle events
in human [21] and mouse [22] lymphocytes. In mouse
lymphocytes, 65% of the centromeres are found in the
outer 50% of nuclear volume at G1, but this percentage
drops significantly as centromeres reposition to the inte-
rior of the nucleus from S to G2 [22]. Human
lymphocytes show 85—-100% of centromeres on the nu-
clear periphery, and these reorganize to the interior
earlier in the cell cycle from Gl to S phase [21]. In
Drosophila, chromosomes maintain a Rabl orientation
(polar orientation of telomeres and centromeres) for less
than 2 h following mitosis and then reorient while
maintaining heterochromatic areas at the nuclear pe-
riphery [23, 24]. Work with pulse labeling of living cells
demonstrated that subchromosomal foci in interphase
(of about 400—800 nm) exhibit slight changes in both
position and size [19]. Changes in chromatin distribu-
tion have also been documented during other develop-
ment and differentiation events such as during chick
embryo chondrogenesis [25] and during myogenesis in
rat LO6E9 cells [26]. Nuclear and chromosomal changes
accompany and could induce differentiation [27]. As an
example, reverse transformation of a malignant
fibrosarcoma cell line results in clustering of the acro-
centric chromosomes in association with the nucleolar
periphery [28]. Different cell types in the same organism
may carry different chromosome positioning in inter-
phase suggesting a possible role in differentiation [29—
34]. These data and calculations based on electric
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charge differences and viscosity values [35] suggest that
chromosome territories are important functional and
structural components of interphase chromatin.

Functional subchromosomal domains in interphase
related to those of metaphase

There are several reported subnuclear organizational
centers which have (or are presumed to have) defined
specific functional and structural correlates:

1) Nucleolus. The nucleolus represents a distinct subnu-
clear structure which may provide (at least partially) a
model for other nuclear compartments. In humans, the
nucleolus as a compartment is organized by a subset of
the chromatin localized at the stalks of acrocentric
chromosomes (areas named nucleolar organizer regions,
NORs). The position of the short arms containing
NORs of the acrocentric chromosomes appears to be
highly organized forming the nucleolus [36]. NORs con-
tain the ribosomal RNA coding genes. In the interphase
nucleolus, these genes form a fibrillar center with the
regulatory and nucleoprotein complexes including RNA
polymerase I, class I transcription factors and topoiso-
merase [37—-41]. This center is surrounded by a dense
component that includes nascent transcripts and associ-
ated processing machinery and this in turn is sur-
rounded by a granular area which includes mature 28S
and 18S ribosomal RNA (rRNA) as well as various
stages of ribosome assembly (reviewed in [41]). Electron
microscopic studies suggest that the heterochromatic
regions are located on the periphery of the nucleolar
mass [42, 43]. FISH studies confirm a peripheral loca-
tion of the centromeric repeats at the outside of the
nucleus with stalk elements inside the nucleolus and
rDNA sequences located at the periphery [44] (fig. 1A).
2) Coiled bodies. While first described in 1903 [45] as
nucleolar accessory bodies, coiled bodies are now
known to include small nuclear ribonucleoproteins, nu-
cleolar DNA and proteins, and a peculiar protein called
coilin [46, 47].

3) Gems (Gemini of coiled bodies). A novel class of
nuclear structures occurring near coiled bodies, contain
the ‘survival of motor neuron’ proteins but are other-
wise of unknown function [48].

4) PML oncogenic domain (POD). This is a dense fibril-
lar ring occurring in normal cells but is fragmented in
promyelocytic leukemia (PML) [49, 50]. Structural dis-
integration of the POD accompanies the classic translo-
cation 15;17 that produces a fusion protein containing
PML and retinoic acid receptor o« [51-53].

5) Perinucleolar compartment (PNC). This structure
contains several RNAs transcribed by RNA polymerase
1T including RNAase P, multi-drug resistant protein
RNAs and multiple Y RNAs as well as a polypyrim-
idine tract-binding protein [54, 55].
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Besides these five specific subnuclear structures, the
chromatin is organized in specific fashion into SCDs.
The first identification of an order in chromosomal
DNA was the recognition that Drosophila chromosomes
have bands and chromatin loops that correspond to
actively transcribed and more repressed domains [S6—
58]. Similarly, mammalian chromosomes are divided
into distinct areas with correlated transcriptional and
structural differences: G-bands, R-bands and T-bands
[59-62]. R-bands (G-band negative regions) are GC
rich, replicate early in S phase, have a higher concentra-
tion of CpG islands, high gene concentration and high
transcriptional and recombinational activities [62—65].
In contrast, G-bands (R-negative) are AT rich, replicate
late in S phase, contain more repetitive DNA and have
low gene concentration (mostly tissue specific genes). It
is likely that waves of replication correspond to the
structural components of the chromosome, that is R-
and G-bands [66]. The presence of expanded repeats in
the genome can delay replication [67]. In general, spatial
variations in chromatin structure as seen in metaphase
is related to replication and transcription [63].

The patterns of G- and R-bands along the length of the
metaphase chromosome, when decondensed in inter-
phase, are maintained and are also clearly related to
both replication and transcription. Transcribed genes
occur in early replicating regions of the genome, areas
of chromatin that are generally more decondensed in
interphase [68, 69]. While each chromosome occupies a
discrete domain [70, 12], the G-chromatin of that par-
ticular chromosome is more condensed and localizes on
the nuclear periphery and the perinucleolar area, while
the R-chromatin areas are more diffuse and localize to
the interior and at the periphery of chromosomal do-
mains (fig. 1A). Evidence for these structural and func-
tional relationships come from recent FISH studies.
Active genes localize in the periphery of the respective
chromosomal domains [35, 71, 72]. These transcribed
areas will also recruit a high concentration of splicing
factors to their locations between chromosomal do-
mains [73]. A subset of the R-band positive areas is the
so called T-bands for telomeric bands. These are usually
areas that are over 100-300 kb proximal to the telom-
ere and they are GC-rich, suggesting that they have a
high gene concentration [64]. Figure 1A summarizes
results of many experiments and is a simplification of
this nuclear substructure. It is based on the now well-
documented correlation between structural elements of
the metaphase chromosome and structural and func-
tional elements of the interphase form of the chromo-
some. Let us explore these concepts further.

Even at metaphase, chromosomes begin to attract lamin
proteins, which would form the mesh of proteins at the
inner surface of the nuclear membrane [4]. All SCDs
including telomeres are attached to the nuclear matrix
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Figure 1. (4) Consensus model of nuclear structure and function relationship. Top left shows a partial representation of an
acrocentric chromosome (short arm pointing down) at prometaphase. Chromosomes reconstitute the nucleus at telophase by using
specific subchromosomal domains (SCDs, e.g. telomeres, and heterochromatic regions) to attract lamins, nuclear matrix and other
nuclear components. Some SCD (e.g. R-bands) are important in constructing the inter- and intrachromosomal compartments
(ICCs) which are a network of areas in the nucleus for transcription and mRNA processing (insert) and are linked to the nuclear
pores via channels. The functioning genes in those areas are in extended DNA loops of 100-200 kb likely representing replicons.
The transcribed genes are thought to occur in the decondensed fibers (11 nm), whereas the untranscribed repressed chromatin is in
more condensed fibers (30 nm to 100-200 nm). This explains the difference microscopically between areas of condensed chromatin
(e.g. at the nuclear periphery and just outside the nucleolus) and more open areas (at the chromosome domain periphery). Modified
from various sources [41, 43, 98, 171-174]. (B) A potential model for the impact of an extra chromosome or chromosome segment
(such as in a translocation) on nearby chromosomal and subchromosomal domains. Extra material or repositioned chromatin in
translocations shown by an arrow in the nucleus at bottom could cause changes analogous to those seen with the Drosophila trans
position effects of BrownPoment mutation. See text for detail. (C) FISH using two probes on the long arm of chromosome 7 (green
and red) at metaphase and interphase. Note parallel orientation at interphase of both homologues.
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[74]. However, only a small subset of these SCDs orga-
nize and are attached to the nuclear lamina (nuclear
envelope). Telomeres have a unique peripheral organi-
zation in interphase [75—77]. Since they must recombine
with each other to maintain homogeneity of telomere
sequences, it is possible that clusters of nonhomologous
telomeres occur in compartments at the nuclear periph-
ery [78]. Constitutive heterochromatic regions also form
SCDs that are preferentially organized, locating to (and
perhaps essential for constituting) the nuclear periphery
and the perinucleolar domains [79-81]. SCDs with ac-
tive transcription (R-bands and T-bands) organize in-
ternal nuclear compartments for gene transcription [82].
As an example, the gene ERBB-2 is localized on the
surface of the chromosome 17 domain in interphase
nuclei in a DNase-hypersensitive domain facing the
nuclear periphery [83]. The data support the concept
that chromosomes and SCDs build unique spatial rela-
tionships with other SCDs when constructing the nu-
cleus at telophase (see fig. 1A). In a separate section I
will discuss how such organization could directly impact
function (gene expression) and how it may be altered in
certain situations (chromosome abnormalities, differen-
tiation etc.).

The published data collectively support a close struc-
ture-function relationship of both metaphase and inter-
phase chromatin at the visible microscopic level. The
structures are also related at the submicroscopic level.
In examined eukaryotic nuclei, loops likely representing
a single replicating unit (replicons) are attached to the
nuclear matrix at areas called matrix attachment re-
gions (MARs) or scaffold attached regions (SARs).
These MARSs are found both in mitosis and in inter-
phase. They contain topoisomerase II, DNA poly-
merase o and primase as well as other structural and
functional proteins and function in replication as well as
in transcription [84-92]. The latter studies taken to-
gether support a model of chromatin structure whereby
chromatin fibers are attached to MARs which regulate
both replication and transcription of genes in units
representing the replicon (fig. 1A, insert).

RNA processing along compartmentalized inter- and
intrachromosomal domains in the interphase nucleus

The nature and function of the ‘spaces’ between chro-
mosomes and those between subchromosomal domains
is debated. There are specific nuclear compartments for
transcribed DNA and for RNA synthesis and process-
ing [93-96]. It is also becoming clear that areas of
active nuclear transcription release their RNA into dis-
tinct interchromatin granule clusters (IGCs) [97] or in-
terchromosomal compartments (ICCs) [98]. These areas
can also form ‘channels’ along which RNA is trans-
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ported out of the nucleus [35, 98—100] ICCs also extend
to the interior of chromosome domains [87]. There is a
correlation between the positions of certain genes, their
RNA products and splicing factors (as measured by
anti SC-35 antibodies) [101]. Basically, active genes are
at the edge of a compartment of splicing factors of
which pre-messenger RNA (mRNA) forms only a
smaller portion (in some genes only coincident with the
transcribing DNA). By contrast, inactive genes are not
related in their position to the common SC-35 domains
and were shown by numerous works to be more interior
in the chromosome domain [35, 98]. Since there are
about 50 SC-35 domains [102], clearly each domain
must encompass multiple active genes. A summary of
these findings is illustrated in the insert in figure 1.
From an evolutionary standpoint, one can assume a
selective advantage for this model based on the relative
conservation of diffusible factors controlling gene ex-
pression and splicing factors as well as in shielding
inactive genes from potential reactivation.

Dynamic genetic and epigenetic changes in chromatin
state and gene activity

Although much more work is needed, numerous studies
have documented the effect of chromatin state on gene
transcription both in cis and in trans. The best examples
of these effects are in position effect variegation (PEV)
in Drosophila. Basically, PEV occurs when genes nor-
mally expressed in euchromatic areas are translocated
to areas with heterochromatin or vice versa, resulting in
variegated (mosaic) expression patterns. While these
genes are intact, their expression suffers significantly if
they are not in their correct ‘chromatin environment’,
and such altered chromatin environment changes gene
expression [103—105]. Most earlier work on PEV dealt
with the effects of the translocation on gene expression
in the vicinity and on the same chromosome (i.e. in cis)
[106—111]. More fascinating are the newer data on
position effect variegation in trans (on other genes not
colinear with the disrupted gene). The best example of
this is the Brown (bw) eye mutation called ‘dominant.’
The mutated allele results from an insertion of a large
block of heterochromatin into bw. The curious result is
that the expression of the normal homologous allele is
effected in a variegated pattern. Detailed cytological
investigations showed that this is explained by hete-
rochromatic associations of the dbw? with centromeric
heterochromatin and bringing in the wild-type allele to
associate with this repressive heterochromatic complex
at the nuclear periphery [23, 24, 112, 113].

The data on PEV make sense in light of our under-
standing of the relationship between nuclear position-
ing, chromatin assembly and disassembly, and
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transcription. Transcription requires nucleosome dis-
placement [114] and thus a loose chromatin environ-
ment. It is also known that replication-coupled
chromatin assembly can inhibit basal transcription
[115]. Chromatin decondensation is needed during dif-
ferentiation to accommodate transcription and vice
versa [116—120]. Experimental evidence in Saccha-
romyces shows that perinuclear localization of chro-
matin facilitates transcriptional silencing [121]. There
are genes that regulate chromatin condensation and
PEV in Drosophila [122, 123] and those that regulate
chromatin condensation in mammals [124]. It is becom-
ing apparent that PEV and other forms of chromatin
changes can be considered epigenetic modification but
are also directly and intimately effected by mutations
and chromosome rearrangements both in cis and trans.
Even earlier recognition of the impact of epigenetic
chromatin modification came from studies of X chro-
mosome ‘Lyonization’ (inactivation) in the XX female.
The inactive X chromosome replicates later than the
active X chromosome, and many genes are inactivated
on the inactive and condensed X chromosome and are
thus functionally hemizygous in the female. Late repli-
cation appears to be a prerequisite step for X inactiva-
tion but is then followed by CpG island methylation
and histone H4 deacetylation, which stabilizes the inac-
tivated region [68, 69, 125—128]. The inactivation pro-
cess involves expression of Xist initially solely from the
paternal X chromosome and suppression of the mater-
nal Xist gene (maternal X active). Then, at the morula
stage, the parental imprints are erased, and a mecha-
nism counting X chromosomes is initiated that results
in random X inactivation [129]. The organization of the
inactive X in the interphase nucleus is unique and is
formed by telomere association to form the Barr body
[130]. While roughly equivalent in nuclear total volume,
the active X is more elongated with a larger surface area
and shows much less condensation and less methylation
[35, 131]. In X-autosome translocations, the chromatin
environment of inactivation can spread from the X
segments to several G-bands of the translocated auto-
some [132].

Other epigenetic changes in chromatin structure were
reported. Carcinogens can alter chromatin states by
epigenetic mechanisms involving DNA methylation
without affecting the sequence [133]. Methylation in-
duces acetylation and is a very strong modifier of chro-
matin structure [134-136]. As any cytogeneticist and
pathologist knows, cancer cells have altered chromatin
shape in both metaphase and anaphase. Cells undergo-
ing senescence can also have significant chromatin reor-
ganization [137]. It is interesting to note that telomere
lengths can increase in cancer cells and are decreased in
senescent cells, suggesting a possible role for telomeres
in these chromatin changes.

Structure and function of the nucleus

Genetic factors that lead to chromatin changes include
GC content and other factors that regulate formation of
R-, G- and T-bands at metaphase as discussed above
[63]. There are many other mutational changes that can
lead to different chromatin configurations. An example
of interest is that the expansion of the CTG triplet
repeats in myotonic dystrophy is believed to increase
assembly of nucleosomes and thus to a repressed chro-
matin configuration [138]. This is similar to the observa-
tion in Drosophila that expansion of transgene repeats
leads to heterochromatin formation and gene silencing
[103]. Other studies in humans and mice show that
certain sequences (e.g. CD2 locus control region) oper-
ate by altering the chromatin environment, thus insur-
ing an open reading frame [139]. Experimental
approaches to reconstituting active and inactive chro-
matin states in vitro are at their infancy, but it is clear
that coding sequences recruit proteins that can alter the
nearby chromatin environment [81]. These factors likely
explain why some rearrangements cause human disease
even when the breakpoints are far (few to hundreds of
kb) from the target gene [140]. While the chromatin
environment is correlated to transcriptional states in
many (perhaps most) cases, there are some conflicting
data (perhaps exceptions to the rule). Experimental
evidence, such as DNase sensitivity, suggests that differ-
ential chromatin states can be maintained through both
meiosis [141] and mitosis (see data discussed above)
despite the suppression of transcriptional activities.
Further, the male X chromosome becomes inactivated
(facultatively heterochromatized) during meiosis but re-
activates at the blastocyst stage in all tissues except
trophoectoderm in mammals [142].

Genomic imprinting provides another cogent example
of regulation of gene expression by chromatin environ-
ment and epigenetic modifications. There are many
mammalian autosomal genes that are now known to
have normal expression from only one homolog (pater-
nal or maternal) but not both. Mutation or abnormality
of these genes show different phenotypic effects depend-
ing on the chromosome involved (paternal or maternal).
A review of imprinting is beyond the scope of this
paper, but there is some evidence that the silencing of
some imprinted genes is likely explained by models
involving a protein factor(s) that regulates transcription
by affecting chromatin structure [143-145].

Chromosome abnormalities and interphase chromatin
states

Chromosome rearrangements are clearly deleterious in
many situations. Rearrangements in a heterozygous
state, even when balanced, can cause a direct pheno-
typic effect on the individual and can also negatively
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affect reproduction (a phenomenon known as negative
heterosis). The direct phenotypic effects of rearrange-
ments are numerous and well illustrated. Somatically
acquired chromosome rearrangements could cause can-
cer, reproductive problems and development of mosaic
conditions with an abnormal phenotype. Constitutional
chromosome rearrangements could cause arrested devel-
opment, fetal loss, growth retardation and/or congenital
anomalies [146]. It is not surprising thus that evolution
favored development of numerous mechanisms that re-
duce the rate of chromosome aberrations including [147]
(1) increased efficiency of DNA repair, (ii) nuclear archi-
tecture including chromosome domains, (iii) increased
nuclear size in the gametocytes, (iv) chromatin organiza-
tion and (v) asynchrony of DNA replication.

Despite these mechanisms, a high incidence of chromo-
some abnormalities clearly remains, at least in humans
[148, 149]. Rearrangements cause reduction in fertility
in some situations but not others [150]. This is a rather
complicated area of study, but clearly negative heterosis
is affected by the type of rearrangement, the species
involved and possible other factors [151]. Negative het-
erosis must be overcome if a rearrangement is to be
fixed to a homozygous condition in a population. This
can and does happen when a rearrangement has a
selective advantage that outweighs its distinct harmful
effects in meiosis and reproduction.

The mechanisms by which chromosome rearrangements
exert an effect on the phenotype are varied. Clearly,
balanced translocations in cancer lead to fusion prod-
ucts or gene regulation changes (e.g. overexpression of
certain genes) that have a direct impact on cellular
proliferation. In the case of deletions, duplications,
trisomies and monosomies, a gene dosage effect can also
be involved. However, these two mechanisms (gene
regulation at the translocation breakpoint or dosage
effects) probably do not explain all cases. Other in-
volved mechanisms include gene interactions, imprint-
ing and/or position effects [16].

As discussed above, each chromosome constructs and
occupies a specific compartment including its attendant
inter- and intrachromosomal (sub)compartments. The
effect of translocations on chromatin configuration and
thus gene expression is now well established. Position
effect variegation was discussed earlier, but it is not the
only example of translocations or chromosome abnor-
malities leading to chromatin changes and to gene
dosage effects. Expression of a growing list of human
genes causing disease was found to be affected at a
distance by chromosome translocations [152, 140]. In
fact, an electron microscopic examination of translo-
cated human chromosomes does reveal structural aber-
rations detected at metaphase [153]. More dramatic data
on such translocation-induced genetic changes at a dis-
tance are provided by X-autosome translocations,

Review Article 1135

whereby X inactivation spreads into the translocated
autosomal segment [154]. Such an open or repressed
chromatin state can be maintained through cell division
and differentiation [155, 158]. Other chromatin changes
such as the somatic pairing of homologs of chromosome
4 in Drosophila melanogaster causes gene suppression
[156]. Chromosome position also effects the expression
of foreign genes in transgenic animals [157]. As dis-
cussed earlier, the effects of rearrangements can cause
gene silencing both in cis and trans arrangements.

In diploid organisms each autosome has a homologs
and the organization of the homologs can change in
cells with aneuploidy (e.g. disomy or monosomy) or
structural abnormalities. Recent work using FISH sug-
gests that in normal undifferentiated diploid cells, ho-
mologs can be arranged symmetrically on either side of
the interphase nucleus [158, 159]. We observed similar
patterns in lymphocytes following in situ hybridization
(fig. 1C as an example). We had asked the question of
the impact of aneuploidy or structural chromosome
aberrations on this arrangement. For aneuploidy, our
preliminary data, both in lymphocytes with trisomy 18
[16] and polymorphonuclear cells in trisomy 13 [160],
showed destabilization of the symmetric arrangement.
In the case of trisomy 13, we believe that the extra
chromosome is responsible in a structural sense for
producing the so-called nuclear projections in the seg-
mented mature neutrophils. For structural abnormali-
ties, some cases of both balanced and unbalanced
translocations seem to destabilize nuclear architecture
and result in formation of micronuclei [16]. Trisomy 21
patients show loss of the extra 21 with aging [161]. We
recently studied a case of maternally inherited balanced
translocation between chromosome 7 and 8 in a child
with multiple congenital anomalies. The mother (who is
phenotypically normal) had a different nuclear organi-
zation for these chromosomes than child. This finding,
albeit in only one family, supports the mechanism I
proposed earlier [16] for the manner in which a balanced
rearrangement could produce a phenotypic effect.

Taken together with the data on PEV both in cis and
trans, these data suggest that aneuploidy and structural
chromosome abnormalities can impact gene expression
not only of the affected chromosomes but also of nearby
chromosomal regions (fig. 1B). These long-range posi-
tional effects, so well documented in the Drosophila
genome (see discussion above for Browndomnant muta-
tions), are just beginning to be applied to human genetic
diseases. Thus, chromosome rearrangements impact nu-
clear architecture, can destabilize the nucleus predispos-
ing to additional rearrangements and can impact nearby
gene expression in cis and trans. Conversely, nuclear
architecture can itself predispose to certain rearrange-
ments. A good example of this phenomenon is the
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proposed origin of Robertsonian translocations in hu-
mans because of the facilitation of proximity at the
nucleolar sites [162]. Another example is cited for the
repeated establishment of isochromosome 17q in certain
cancers [163]. In mammalian evolution, karyotypic or-
thoselection whereby a lineage can acquire many rear-
rangements of a particular type [16, 150, 151] may be
explained by nuclear position effects. Other examples
reported include the predisposition to additional genetic
events in individuals with specific abnormalities and the
acquisition of ‘suites’ of particular chromosome rear-
rangements in cancers following the presumed initial
cancer genetic change [16]. Thus, there is an intertwined
dynamic relationship between chromosome structure
(including rearrangements) and function (including gene
regulation and karyotypic evolution).

Outlook and future issues to address

There has been extensive growth of this field of chro-
matin structural and functional relationships. I had
attempted to give a brief entry into this complex area of
investigation. It is an area that is bound to see significant
growth in the next few years and to have direct impact
on both basic genetics and clinical science. While we
generally attempt to provide simple models as explana-
tions for the data generated (i.e. parsimony), there are
many problematical areas, and the models provided
must remain as tentative ideas pending further data.
Much more needs to be done to understand chromatin
changes affecting transcription, and many questions are
raised by the available data.

(1) The nucleus is the interphase form of chromosomes
(chromatin organizes and compartmentalizes the nu-
cleus). These organizational programs are morpho-
genetic in nature and are regulated by both DNA content
and by epigenetic interactions as reviewed above. How-
ever, the many factors involved in transforming the
linear DNA sequence (two-dimensional) to produce the
three-dimensional patterns of chromomeres, bands and
sub-bands remain to be elucidated [119, 164].

(2) In mammals with a diploid complement, it is very
likely that chromosomes construct interphase domains
based on their structural milieu (including centromeres,
telomeres, bands, heterochromatin and any imprinted
areas). Their function and effect on somatic divisions
and reconstruction of the interphase nucleus was dis-
cussed. Much more remains to be learned about these
structures and their impact on cell cycle events and in
development. In particular, it would be very important
to do more research on the impact of changes in chro-
matin structure (telomeres, centromeres, bands, translo-
cations etc.) on meiosis [165] and recombination.

(3) We can demonstrate the impact of rearrangements on

Structure and function of the nucleus

chromatin environment both in cis and in trans. Changes
in a position of a segment of DNA from one chromatin
environment to another changes its availability to early
replication factors and transcription factors as well as its
nuclear positioning and chromatin architecture. This
process was first described as positional effect variega-
tion in Drosophila but is now found to be more general
and explains many cases of direct clinical relevance.
Examples in mammals include spreading of X inactiva-
tion, imprinting and changes in chromatin associated
with chromosome translocation. Much more needs to be
learned about how meiotic events (such as crossing over
and susceptibility to nondisjunction) are affected by
these rearrangements [166—168].

(4) Most current work on chromatin deals with undiffer-
entiated or dedifferentiated cells [14]. More work is
needed on a variety of differentiated cells and on how
changes in cellular states in general (differentiation,
transformation etc.) affect chromatin reorganization and
what the significance of such changes is [22, 27, 169].
(5) Chromosomal autoconstruction and reconstruction
into a functional nucleus are essentially dynamic mor-
phogenetic processes apparently impacted by stage of the
cell cycle, degree of differentiation, and by chromosome
abnormalities and epigenetic factors. This area is a fertile
field of research that could potentially explain mental
retardation and other developmental problems in pa-
tients with specific chromosome abnormalities [16].
The study of human anatomy certainly had a long
history of development before functional (physiologic)
relationships could be established for the various compo-
nents (organs and tissues). Similarly, recent technologi-
cal advances such as three-dimensional fluorescence
microscopy [170] are very promising in linking structural
(anatomical) to functional (physiological) aspects of
interphase chromosome states. This understanding will
be crucial to many areas of clinical laboratory medicine
as well as to basic research in genetics (including gene
therapy).
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