
CMLS, Cell. Mol. Life Sci. 55 (1999) 1206–1215
1420-682X/99/101206-10 $ 1.50+0.20/0
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Abstract. During the development of the neocortex, essentially normal afferent and efferent connections,
which has been interpreted as evidence that the connec-neurogenesis and neuronal differentiation occur in two

separate locations. Thus neurons have to migrate tion pattern of cortical neurons is specified prior to
migration. In addition, recent data show that hetero-through the future white matter. Arrested or excessive

migration leads neurons to differentiate in a heterotopic topic neurons can be contacted by environmental, that
is local, fibres that normally never innervate the neocor-position. Such neuronal migration disorders (NMDs)

occur sporadically in normal development but are tex. This dual connectivity leads heterotopias to form
bridges between their environmental and original net-markedly increased as a consequence of genetic defects

or after exposure to toxic drugs during the period of work. Such an abnormal pattern of connectivity could
contribute to the pathophysiology of disorders associ-migration. Anatomofunctional studies in rodents with

NMDs have revealed that heterotopic neurons form ated with NMDs such as epilepsy.
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Introduction

The neocortex is a thin layer of grey matter that forms
the external part of the cerebral hemispheres. Histologi-
cally, the mammalian neocortex is formed by six layers
that can be distinguished by the size, shape and pattern
of connections of their constituent neurons. Most
neocortical neurons originate from the proliferative
neuroepithelium that forms the external border of the
neural tube. After completing their last mitosis, neurons
engage into a long migration through the intermediate
zone (future white matter) toward the cortical plate
where they settle and differentiate (normal cortical de-

velopment is summarised in fig. 1). Neuronal migration
in the neocortex occurs between the 8th and the 20th
weeks of gestation [1] in humans, and between E14 and
P5 in rats [2].
The process of neuronal migration involves three main
steps: (i) commitment to a specific cortical layer, (ii)
migration proper and (iii) cessation of migration in the
appropriate layer. These three steps are under different
control mechanisms. Briefly, neuroblasts become deter-
mined to develop into a laminar subtype during the S
phase of their final division by presently unidentified
molecular cues, as evidenced by the results of hete-
rochronic transplantation [3–7]. The migration proper
is guided by the processes of radial glial cells that span
radially from the ventricular zone to the pial surface* Corresponding author.
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[8–11]. Neuronal locomotion is achieved by a complex
neuronal machinery [12] that can be modulated by
cell-cell and cell-matrix interactions [13–15] as well as
by ionic flux [16, 17]. Finally, the end of the migration
involves the detachment from the radial glia fibres trig-
gered by local signals [18–20], some of them emitted by
the Cajal-Retzius cells of the marginal zone (reviewed in
[21, 22]).
This very brief presentation of cortical migration hints
at the complexity of the processes involved in this
phenomenon. Thus it is not surprising that migration
can be perturbed by mutations, teratogenic (e.g. alcohol
or cocaine), physical (e.g. irradiation) and biological

(e.g. viral infection) influences that occur during the
period of migration. The use of such agents has there-
fore provided animal, primarily rodent, models of neu-
ronal migration disorders (NMDs). The paradigmatic
genetic model is the reeler mutant mouse ([23], fig. 1),
which belongs to the expanding family of transgenic
mice with a reeler-like phenotype [24–26]. Nongenetic
models have been generated by exposure of pregnant
females during the early period of migration to irradia-
tion or toxic substances such as the antimitotic agent
methylazoxymethanol (MAM) [27, 28], cocaine [29] or
ethanol [30, 31]. Whatever their respective mechanisms,
all these influences will lead neurons to differentiate in

Figure 1. Cortical development in three current rodent models of cortical malformation. The cortical organisation is schematised at
embryonic day (E) 12,13, 15, at postnatal day 0 (P0) and in adult control rat, tish mutant rat, reeler and reeler-like mutant mouse and
in rats with prenatal treatment at E14–E15 with MAM or irradiation. These examples show that neuronal migration disorders can
result from an abnormal neurogenesis (tish), a failure of preplate splitting (reeler) or a lesion of radial glia (MAM).
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an abnormal heterotopic position. Absence, interruption
or excessive migration will lead neurons to differentiate
respectively in a subcortical (i.e. along the ventricle),
intracortical (i.e. in the white matter or in an inappropri-
ate layer) or extracortical (i.e. in the submeningeal space)
position.
Clinicians have long been interested in the pathophysiol-
ogy of such displaced neurons, since they have been
observed in the brains of patients suffering from epilepsy
[32–42] and, more controversially, from schizophrenia
[43–47]. The purpose of the present article is to review
the literature on the properties of such displaced neurons
in animal models in an attempt to clarify their possible
contribution to pathophysiological disorders.

What is a neuronal migration disorder?

Distinction between variations and errors

Like any complex biological process, cortical migration
depicts some interindividual variability that is at-
tributable to slight alterations of the normal process.
Indeed, abnormally positioned cortical neurons, that is
neurons with a cortical-like morphology situated along
their normal migratory pathway, are commonly encoun-
tered in the white matter of control brains, especially in
young animals as well as in children [48, 49]. These
alterations are likely to result from arrest of normal
migration, for instance because of obstruction of their
migratory path by a blood vessel. These ‘developmental’
heterotopic neurons tend to be sparser in adults, likely
because of their elimination by ontogenetic cell death.
Given the existence of such normally occurring hetero-
topic neurons, the distinction between normally occur-
ring and pathological heterotopic neurons appears to be
difficult. In practice, the distinction mostly relies on the
arrangement of heterotopic neurons. Isolated hetero-
topic neurons are usually considered nonpathologic (but
see [50]). By contrast, heterotopic neurons grouped into
nodular or band heterotopias are hallmarks of estab-
lished neuronal migration disorders (fig. 2).

Not all migration disorders are migration disorders
Another problem of definition concerns the mechanistic
hypothesis included in the term ‘neuronal migration
disorder’. The vast majority of experimental NMDs can
indeed be attributed to either a failure of neuronal
locomotion machinery [51, 52], a disruption of radial glia
[30, 53–55] or an alteration of the end migration sig-
nalling ([56], reviewed in [57]). These pathological alter-
ations are pure migration disorders, in the sense that they
actually result from a disorder of migration.

Figure 2. Neuronal migration disorders in rats with prenatal
treatment with MAM. (A) Cresyl violet-stained section showing a
large subcortical heterotopia (star). (B) The origin of heterotopic
cells can be investigated by immunohistochemical revelation of
the S phase marker bromodeoxy uridine (BrdU) injected at E18.
This shows that a large number of heterotopic cells, likely normo-
topic external layer cells, have their last division at E18. Arrow
point at a mild NMD, that is a columnar arrangement of neurons
born on the same date. (C) Immunostaining for calbindin, a
calcium-binding protein densely expressed in external layers,
confirms the BrdU studies by showing that subcortical hetero-
topias (star) as well as abnormal columns are densely immunore-
active for calbindin (arrow) as if they were normally situated in
the external layers. Scale bar, 500 �m.

However, embryological studies in mutant rodents with
NMDs have shown that the perturbation of other de-
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velopmental processes can also be involved in the
pathogenesis of NMDs. For example, tish rat embryos
display a second ectopic germinative zone [58], external
to the normal periventricular germinative zone (fig. 2B).
This second zone can generate neurons that differenti-
ate locally without previous complete migration. An-
other example involves genetically engineered mice in
which CPP32, a gene required for developmental apop-
tosis, has been disrupted [59]. These mice exhibit periv-
entricular cortical heterotopias which are believed to be
formed by excess neurons that failed to migrate—nor-
mally these cells would have undergone developmental
apoptosis and died during development. Both these
examples show that apparent NMDs can indeed result
from alterations of neurogenesis prior to migration.

Endogenous properties of heterotopic neurons

The morphology of heterotopic—mostly subcortical—
neurons has been investigated using Golgi impregna-
tions in the prenatal irradiation [60, 61] and MAM [27,
62] models of NMDs. Both pyramidal and nonpyrami-
dal neurons have been identified (fig. 3). Pyramidal
neurons have their usual triangular soma, with con-
served morphometric parameters [63] and a well-differ-

entiated apical dendrite. However, the dendritic
branching pattern appears to be altered, with bent and
distorted dendrites. Abnormal neurons are especially
conspicuous at the borders of the heterotopia (fig. 3D).
Neither a laminated nor a columnar organised structure
is observed. The axons of pyramidal neurons course
and ramify within the heterotopia, but a substantial
number reach the white matter or penetrate the adja-
cent cortex after a short oblique course. It should be
noted that the morphological features of subcortical
heterotopic neurons are strikingly similar to those ob-
served in transplants of immature neocortex in adult rat
[64–66].
The expression of several proteins has been investigated
in a model of intrahippocampal neocortical heterotopia
[67, 68] that provides an opportunity to compare the
expression of hippocampal (i.e. environmental) and
neocortical (i.e. committed) markers in heterotopic neu-
rons. Heterotopic neurons acquire the expression of all
investigated cortical markers on the same schedule. By
contrast, they fail to express hippocampal markers such
as the GluR2 flip subunits of glutamate receptors [69],
and the limbic associated membrane protein [68].
Physiological endogenous properties of subcortical het-
erotopic neurons have also been investigated in subcor-

Figure 3. Neuronal morphology in subcortical heterotopias in MAM-treated rats. (A) Various cortical neuronal types are recognised
in rapid Golgi impregnations in subcortical heterotopias of under the somatosensory cortex such as spiny pyramidal (p) neurons [at
higher magnification in B ] and smooth nonpyramidal (np) neurons (C). The abnormal shape of the dendritic tree (note the absence of
an apical dendrite) is frequent at the border of the heterotopia (D) near the white matter (wm). Scale bar, 100 �m in A, 40 �m in B–D.
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tical heterotopias in the MAM model [63, 70, 71], as
well as in the inverted cortex of reeler mice [72]. Mem-
brane potential and input resistance values turned out
to be similar to those of normotopic neurons, suggest-
ing a wide conservation of these parameters despite the
abnormal position of these cells.
These three lines of evidence tend to suggest that het-
erotopic cortical neurons closely resemble normotopic
neurons. Similar conclusions had been drawn from the
study of heterotopic cerebellar neurons in mutant mice
(reviewed in [72]). However, this claim is somehow
tautological. One should be aware of the fact that
displaced neurons that would not resemble neocortical
neurons could have been missed, especially in unusual
position (see below).

Connections of heterotopic neurons

Efferent connections

Layer 5 cortical neurons are a major output source of
the neocortex, sending axonal projection to subcortical
targets such as the spinal cord (in motor areas), the
tectum (in visual areas) or the basilar pons. Given this
well-described projection pattern, there has been consid-
erable interest in determining the projection targets of
displaced layer 5 pyramidal neurons.
Corticospinal neurons identified by retrograde labelling
after spinal injection of horseradish peroxidase (HRP)
have been observed in subcortical heterotopias after
prenatal irradiation [73], in the external neocortical
layers after prenatal ethanol treatment [74] or dispersed
in the whole cortical thickness in reeler mutants [75, 76].
Interestingly, corticospinal neurons situated in the ex-
ternal cortical layers, identified in vivo by their an-
tidromic response to the stimulation of the pyramidal
tract, turned out to have a morphology of supragranu-
lar neurons [77], reinforcing the previous claim that
heterotopic neurons with altered morphology could be
underestimated.
These paradigm studies of the corticospinal projection
have been extended to other projection systems such as
callosal neurons normally encountered in external lay-
ers and in layer 5 of the rodent cortex. Callosally
projecting neurons were found in subcortical hetero-
topias in MAM-treated rats [27] and widely dispersed in
the cortex of rats prenatally treated with ethanol [78] as
well as in reeler mice [79]. Subcortical efferent projec-
tions have also been described in the large band hetero-
topias of tish mutant rats [80]. Together, these data
suggest that heterotopic neurons are able to extend
long-range projections and reach the target they would
have contacted in normotopic position.

Afferent connections

There are three main types of afferent systems to the
neocortex: monoaminergic fibres from the brainstem,
thalamic fibres and cortical fibres from contralateral
and associative areas.
To our knowledge, the presence of monoaminergic
fibres in subcortical heterotopias has never been investi-
gated. By contrast, thalamic fibres have been shown to
contact the large subcortical heterotopias of the tish
mutant rat [80] as well as the abnormally positioned
layer 4 neurons of the cortex of reeler mice [81, 82] in an
apparently conserved topographical arrangement [13].
The case of corticocortical connections seems to be
more complex. Subcortical heterotopias clearly receive
cortical connections [83], although their density seems
to be smaller than in adjacent normotopic cortex. This
could explain the deafferented appearance of subcorti-
cal heterotopias when stained for fibres (fig. 4).
The previous examples show that heterotopic neurons
can form apparently qualitatively normal connections
with fibres afferent to the normotopic cortex. However,
they can also form aberrant connections with fibres that
normally do not contact the normotopic cortex. One
such example was provided by the study of the previ-
ously mentioned intrahippocampal cortical hetero-
topias. Surprisingly, these heterotopic neurons are
contacted by the same afferent fibres as the adjacent
CA1 neurons, that is the Schaffer collaterals from CA3
[63] and the temporoammonic path from the entorhinal
cortex [84]. These connections are formed on distal
dendrites of heterotopic neurons since Schaffer collater-
als avoid the heterotopic core.

Heterotopic neurons as a tool to study the specification

of axonal projections

There are two ways of looking at axonal pathfinding.
One can address either the issue of the developmental
decisions that govern the specific behaviour of the dif-
ferent projection neurons or the issue of the molecular
mechanisms that guide the growth cone to its target.
Both these approaches have been developed using an
elegant system of in vitro cocultures (reviewed in [82]).
In addition, several investigators have taken advantage
of NMDs as a tool to investigate these issues in vivo
[85].
The conservation of subcortical projections formed by
heterotopic neurons has been interpreted as evidence
that cell types are determined by interactions that occur
within the ventricular zone, and not by information
gained along the migratory pathway or by positional
information in the cortex. This view has been reinforced
by a recent experiment that was lacking in previous
studies: using double labelling, Polleux et al. have inves-
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Figure 4. Connections of subcortical heterotopias in MAM-treated rats. Gold staining for fibres (A) or myelin (B) shows that
subcortical heterotopias (star) are sparsely contacted by WM fibres, as compared with the adjacent cortex. However, tracing studies
using a cortical injection of carbocyanine reveal neocortical fibres entering the heterotopia, which shows that heterotopias are integrated
in the cortical network (C). Scale bar, 500 �m in A–B, 100 �m in C.

tigated the correlation between the birth date of neurons
(determined by tritiated thymidine injection) and their
projection pattern in the adult reeler mutant [86]. They
found that in reeler mutant mice corticospinal neurons
are generated over the same 3-day periods as in normals.
They conclude that a cell’s birth date and its projection
sites are closely related, even when migration and lami-
nar environment are altered. However, neurons gener-
ated during this period show an increased probability to
project to the spinal cord. In the same line, Miller
observed an increased number of callosally projecting
neurons in the somatosensory cortex of rats with prena-
tal treatment with ethanol [78]. This could reflect an
alteration of either the premigratory instructions given
in the ventricular zone or the postmigratory influences
exerted in the cortical plate, notably on the pruning of
transient axon collaterals [87, 88]. This suggests that
even if efferent projections of heterotopic neurons are
qualitatively normal, quantitative analysis of their ax-
onal branching would likely reveal abnormalities, in-
cluding excessive branching and conservation of
transient projections.
On the other hand, the study of the afferent projections
to heterotopic neurons offers an in vivo tool to investi-
gate the reaction of axons to a displacement of their
normal target. The conservation of most afferent projec-

tions in subcortical and intracortical heterotopias sug-
gests that heterotopic cortical neurons are able to form
normal, at least qualitatively, afferent connections. Sim-
ilar conclusions had been drawn from the study of the
cerebellum of mutant mice. Thus, granule cells hetero-
topically situated in the external granule layers receive
afferent synapses from the mossy fibres in control rats
[89, 90] and more strikingly in wea�er mutant mice [91].
Heterotopic Purkinje cells in reeler mice are also con-
tacted by parallel fibres [92]. This was interpreted as
evidence of the chemotropic hypothesis that target neu-
rons emit an attractive signal for growing fibres [88].
However, one should be cautious before transposing to
normal conditions the lessons from pathological models.
For example, an alternative to the chemotropic hypoth-
esis would be that a similar cue, eventually disrupted in
pathological conditions, would both guide the cell to its
final position and attract its afferent fibres there.

The pathophysiology of heterotopic neurons

Neurological deficits in rodents with neuronal migration

disorders

Rodents with neuronal migration disorders exhibit vari-
ous neurological deficits including ataxia in reeler mu-
tant mice [23], learning disabilities in rats with prenatal
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MAM injection or irradiation [93–95] and seizure disor-
ders or at least cortical hyperexcitability (reviewed in
[96]). However, these animals also present other cerebral
dysgenesis such as cerebellar atrophy in reeler mice or
microcephaly in rats with prenatal MAM. Animal stud-
ies therefore could not provide compelling evidence
about the precise role of NMDs in neurological disor-
ders (for further discussion, see [97]). Nevertheless, the
analysis of the abnormal networks involved in NMDs
provides a rational substrate for them, and a way to
speculate on the pathophysiological consequences of
NMDs. These points constitute the subject of the last
section.

The intraheterotopic network

Very little is known about the functional organisation of
the intraheterotopic network. For instance, the organisa-
tion of radial interlaminar and tangential intercolumnar
connections, the latter being very sensitive to activity-de-
pendant modulation [56], in cortical heterotopias is
completely unknown. However, a number of morpho-
logical observations suggest that the intraheterotopic
network may be organised very differently from the
normotopic neocortical network. The first example of
this is the ramification pattern of the dendritic tree of
heterotopic neurons, which we have seen above to be
clearly different from that of normotopic neurons. Given
the key role of this parameter in dendritic integration, it
is reasonable to suggest that this alteration should have
consequences on signal processing by heterotopic neu-
rons.
The second point we would like to emphasise is related
to the apparent deafferentiation of heterotopic regions
(fig. 4). It is well known that deafferented regions de-
velop a dense network of interconnections that is
thought to compensate for the absence of external con-
nections [98]. Morphological evidence for such axonal
profusion and disorganisation has been provided by
Golgi analysis of human specimens of subcortical het-
erotopias [99, 100]. Such interconnections may con-
tribute to the synchronisation of neuronal discharges
within the heterotopia and putatively to the formation of
an epileptogenic focus.

Heterotopias can form bridges between normally

unconnected structures

We have recently defined a pathophysiological mecha-
nism by forming of abnormal networks involving hetero-
topias using a model of intrahippocampal cortical
heterotopias after prenatal treatment with MAM. As
discussed above, these heterotopic neurons are contacted
by afferent fibres from both the hippocampus and the
white matter, while sending their axons to the neocortex.

Using electrophysiological recordings in a slice prepara-
tion, we demonstrated that these heterotopic neurons
have bidirectional connections with the adjacent neocor-
tex, while receiving an excitatory monosynaptic input
from hippocampal fibres. A functional consequence of
these aberrant connections is that bicuculline-induced
paroxysmal activity triggered in the hippocampus can
spread directly to the neocortex [63].
Two in vivo observations additionally support the exis-
tence of a bridge between the hippocampus and the
neocortex in MAM rats. First, focal hippocampal
seizure activity induced in vivo by electrical stimulation
propagates more frequently to the frontal neocortex in
MAM-treated rats than in controls [101]. Second, the
increased sensitivity of MAM rats to KA-induced
seizures has been shown [102–104] to be associated with
a more rapid generalisation of seizure activity monitored
by fos immunostaining of the neocortex [105]. Therefore,
it would appear that the dual integration of heterotopic
neurons into both hippocampal and neocortical circuitry
allows the rapid generalisation of hippocampal paroxys-
mal activity to the neocortex.

Conclusions

We have shown that heterotopic neocortical neurons
mostly resemble normotopic neurons and share with
them qualitatively similar morphology, afferent and ef-
ferent long-range connections. Anatomical [106, 107]
and functional imaging [108–110] in patients with sub-
cortical heterotopias support the view that similar
changes also operate in humans.
By contrast, virtually nothing is known about the organ-
isation of the intraheterotopic network. However, quan-
titative analyses suggest that displaced neurons are
altered in some parameters, for instance the dendritic
tree or the amount or topography of afferent fibres. This
in turn is likely to lead to altered discharge properties
which, in combination with the formation of functional
bridges between normally unrelated structures, con-
tribute to the pathogenesis of NMD-associated patholo-
gies such as epilepsy.
To conclude, we would like to recall a quotation of
Jacobson’s textbook on developmental neuroscience
[111]. ‘Displaced cells persist either because they are
integrated into the existing circuitry […] or because they
form novel functional systems or extend the functional
capabilities of preexisting systems. If variations arise
because of mutations whose effects are neutral, or are
corrected at later stages of development, they will not be
the subject of natural selection but will tend to accumu-
late.’ Our experimental demonstration that heterotopias
can form bridges between normally unconnected struc-
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tures suggests that one of the mechanisms that elimi-
nates mutations that create new networks involving
heterotopic neurons is the consecutive occurrence of
pathophysiological disorders such as epilepsy.
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