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and transactivate transcription factors, changing geneAbstract. Part of the cellular response to toxins, phys-
expression to promote growth, differentiation or mito-ical stresses and inflammatory cytokines occurs by sig-

nalling via the stress-activated protein kinase (SAPK) sis. By transducing signals through a cascade of ki-
and p38 reactivating kinase pathways. This results in nases, several options for control are introduced for
modification of cellular gene expression. These stress- amplifying and/or modifying the output signal. The
responsive kinase pathways are structurally similar, SAPK and p38 pathways are also hierarchically ar-
but functionally distinct, from the archetypal mitogen- ranged, but less is known about the upstream compo-

nents and the downstream effects of stimulation ofactivated protein kinases (MAPKs or ERKs). The
these pathways. Among the processes modulated byERK pathway is a hierarchical cascade originating at

the cell membrane with receptors for mitogens or stress-responsive pathways are apoptosis, transforma-
tion, development, immune activation, inflammationgrowth factors, which recruit, via adapter proteins and

exchange factors, the small guanosine triphosphatase and adaptation to environmental changes. This review
(GTPase) Ras (see fig. 1). Ras activates raf, a serine outlines the upstream componentry of these pathways

that interact with a variety of agonists to modify thethreonine kinase, which activates MEK (MAPK/ERK
activity of SAPK and p38, and explores the down-kinase). MEK, in turn, phosphorylates and activates

ERK1 and ERK2, which translocate to the nucleus stream functions of this activation.

Key words. Stress-activated protein kinase (SAPK); jun N-terminal kinase (JNK); p38; mitogen activated protein
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The components

The stress-activated protein kinases

SAPK was isolated initially as a novel 54-kDa MAPK
from the livers of rats treated with cycloheximide [1].
Subsequent amino acid determination and cloning re-
vealed three separate genes—the �, � and � SAPK
proteins, respectively. Alternative splicing of these genes
produces 8–10 isoforms (see table 1 for nomenclature)
[1–5]. Several isoforms of SAPK were independently

cloned and named Jun N-terminal kinases, or JNKs [2,
3].
SAPKs bind to [6] and phosphorylate the transcription
factor cJun. cJun is one component of the activator
protein 1 (AP-1) transcription factor complex; the oth-
ers include members of the cFos and cJun families.
Transactivation of cJun by the SAPKs leads to in-
creased expression of genes with AP-1 sites in their
promotors (see fig. 2). One of the primary targets of
AP-1 is the cJun gene itself, so transactivation of cJun
initiates a positive feedback loop. SAPKs can also phos-
phorylate other Jun family members if they are bound
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Figure 1. Signals from the cell surface are transduced through the cytoplasm by a cascade of protein kinases. In the mitogen-activated
protein kinase pathway, the cascade includes Raf, MEK and ERK. Kinases structurally analogous to MEK in the SAPK pathway are
SEK1 and MKK7; in the p38 pathway they are MKK3 and MKK6. SAPK and p38 are structurally similar to ERK.

to proteins with adequate docking sites [7]. Other nu-
clear targets include the ternary complex factors Elk-1
[8–14] and serum response factor accessory protein 1a
(Sap-1a) [15]. Since these factors positively regulate the
cFos promotor, their activation results in increased
expression of the cFos protein, further increasing AP-1
levels. Enhanced AP-1 transcription can also be medi-
ated by interactions of c-Jun with SMAD3 and may
potentially lead to synergism with signalling by trans-
forming growth factor � (TGF�) family members [16].
Activating transcription factor 2 (ATF-2), which can
form heterodimers with cJun and increase expression of
AP-1 controlled genes, is also a SAPK target [17], as is
the Ets-related transcription factor PEA3 [18]. Isoforms
of SAPK bind these transcription factor targets with
different affinity, perhaps leading to differential sig-
nalling based on the specific isoforms activated [5].
SAPK also phosphorylates the nuclear factor of acti-
vated T cells (NF-AT4), opposing its nuclear transloca-
tion during T cell activation [19, 20]. SAPKs translocate
to the nucleus when activated, presumably to phospho-
rylate their nuclear targets. However, it should not be
assumed that all SAPK targets are nuclear. A substan-
tial fraction of the kinases are present in the cytoplasm
even in activated cells, and it is likely that the enzymes
regulate translational as well as transcriptional pro-
cesses. For example, AUUUA-mediated stabilization of
interleukin 3 (IL-3) RNA is influenced by SAPK [21].

The p38 family of protein kinases

A second stress-activated MAPK family was first iden-
tified in budding yeast as a kinase activated by hyperos-
molarity, HOG1. There are five mammalian relatives of
this enzyme termed p38� [22], p38� [23], p38� [24],
SAPK3 [25] and SAPK4 [26]. p38� and � respond to
many of the same agonists that activate the structurally
similar SAPKs, but under certain circumstances they
are differentially regulated [27, 28]. They phosphorylate
the transcription factors ATF-2, Sap-1a [12, 13, 29] and
growth arrest and DNA damage transcription factor
153 (GADD153) [30] (see fig. 2), and are necessary for
the induction of cJun and cFos responses to anisomycin
and ultraviolet (UV) irradiation [31]. Certain isoforms

Table 1. SAPK/JNK nomenclature.

Rat Human Gupta et al.

p54 SAPK�1 JNK2�2
p46 SAPK�1 JNK2�1
p54 SAPK�2 JNK2 JNK2�2
p46 SAPK�2 JNK2�1

JNK3p54 SAPK� JNK2�2
p46 SAPK� JNK3�1
p54 SAPK� JNK1�2

JNK1�1JNK1p46 SAPK�
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Figure 2. SAPK activation leads to phosphorylation of specific transcription factors. Homodimers, heterodimers and multimers of these
transcription factors promote transcription of genes with binding sites for the AP-1 complex.

of p38 [25] also activate nontranscription factor targets
such as the mitogen-activated protein kinase-activated
protein kinases (MAPKAPKs -2, -3 and -5) [32, 33],
and the related protein MNK1 [34]. Some of these
MAPKAPKs phosphorylate and activate the small heat
shock protein hsp27, which may mediate changes in the
actin cytoskeleton and other downstream events [35].
New pharmacological compounds such as CSAIDs (cy-
tokine suppressing antiinflammatory drugs) bind to the
p38� and � proteins and inhibit their activity [36], and
this has allowed investigation into the differential regu-
lation of the downstream immediate early genes by the
p38�/� and SAPK pathways [37].

Dual-specificity kinases

Enzymes which can phosphorylate both tyrosine and
threonine residues form the next echelon in the SAPK
and p38 pathways. SEK1 (SAPK and ERK kinase 1)
[38] phosphorylates and activates SAPK [39]. It may
also phosphorylate p38 in vitro [40]. However, SEK1
may form complexes in vivo that limit its ability to
activate p38 under physiological conditions [41]. Several
distinct SAPK-activating proteins have been described,
based on their elution from chromatography columns
[40, 42]. The generation of SEK1 doubly deficient em-
bryonic stem cells revealed that there must be at least
one additional SAPK regulator, since some agonists
including UV irradiation and sorbitol could still acti-

vate SAPK in the complete absence of SEK1 [43–45].
Several groups subsequently cloned map kinase 7
(MKK7) [46–54] and have shown it to phosphorylate
and activate SAPK, while having no activity towards
p38. MKK7 and SEK1 are structurally quite similar
(49% identity) and do not appear to display any prefer-
ence for the different SAPK isoforms.
MKK3 [22] and MKK6 [55, 56] are dual-specificity
kinases that target the TGY (threonine-glycine-tyrosine)
activation motif within subdomain VIII of p38. MKK6
activates p38�, � and �, while MKK3 activates � and �

[23].

The MEKKs and the MLKs

The dual-specificity kinases are themselves dependent
upon phosphorylation for activity. These enzymes are
phosphorylated by two families of serine/threonine ki-
nases, the MEKKs (MAPK and ERK kinase kinases),
which were initially named for their role in the ERK
mitogen-activated protein kinase pathway, and the
mixed lineage kinases (MLKs) (see fig. 3). MEKK1
phosphorylates and activates SEK1 and MKK7 [51, 57,
58]. Studies of the regulation of the MEKKs have been
confounded by the constitutive activity of these proteins
when overexpressed. However, these molecules have
been reported to bind to upstream regulators (see be-
low). In addition, recent results have demonstrated that
MEKK1 is cleaved by the apoptotic machinery in the
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cell, removing a regulatory domain and causing its
activation [59–61]. MEKK1 may also be activated by
phosphorylation [62]. MEKK -2, -3 and -4 also activate
the SAPK pathway [63–67]. MEKK3 can phosphory-
late and activate MKK3 in vitro, but no activation of
p38 ensues when MEKK3 is expressed in vivo with or
without MKK3 [66].
The MLK family currently comprises six members
termed MLKs -1, -2 and -3, DLK/MUK/ZPK, LZK
and MTK1. MLK-3 binds to and phosphorylates SEK1
[68, 69] and MKK6 [69], thereby activating both the
SAPK and p38 pathways. MLK2 [58, 70, 71] and the
related DLK [72, 73], LZK [74] and MTK1 [75] also
activate SAPK with or without concomitant p38�/�
activation. The MLK family is characterized by posses-
sion of several structural features, including SH3 bind-
ing domains, leucine zippers and small GTPase binding
domains (see below). By binding through these do-
mains, MLKs may integrate inputs from several up-
stream regulators to the SAPK and p38 pathways.
MLK2 and -3 bind to components of the kinesin super-
family of motor proteins, suggesting a link between the
activation of the stress-responsive kinase pathways and
microtubule function [76].
Other kinases regulating the stress-responsive pathways
at the level of the MEKKs and MLKs include Tpl2
(tumour progression locus 2) [77], ASK1 (apoptosis
signal-regulating kinase 1) [78] and TAK1 (TGF�-acti-
vated kinase 1) [79, 80]. Tpl-2 activates both the SAPK
and MAPK protein kinase pathways via interactions

with SEK1 and MEK1, thereby allowing simultaneous
signalling through these two cascades [77]. Similar to
MEKK1, N-terminal truncation of Tpl-2 activates this
kinase [81]. TAK1 activates SEK1 and the SAPK path-
way [82], perhaps integrating signals from TGF� family
members to the SAPK cascade. ASK1 activates both
the SAPK and p38 pathways via SEK1 and MKK6
[78].

The Sterile 20 kinase family

The activity of the MEKK/MLK enzymes can be mod-
ulated by yet another tier of protein kinases, typified by
proteins related to the Ste20 protein in yeast (which has
been genetically placed upstream of the MEKK-like
Ste11 enzyme). The first mammalian relative of Ste20 to
be identified was germinal centre kinase (GCK) [83]. A
second member of the same family, hematopoietic pro-
genitor kinase (HPK1) stimulates the SAPK pathway
by binding to and phosphorylating MLK3 [84]. HPK1
may also interact with tyrosine kinases via SH3 binding
domains linked to Grb2 [85]. Nck interacting kinase
(NIK) similarly may interact with adapter proteins, and
it binds MEKK1 to activate SAPK [86]. Additional
Sterile 20-like kinases, KHS (kinase homologous to
SPS1/Ste20) [87], GLK (GCK-like kinase) [88] and
GCKR (GCK-related) [89] activate SAPK, but the in-
termediate signalling proteins are as yet unknown. Cas-
pases activate a protein termed Mst1 by cleaving off its
C-terminal tail, and this truncated kinase activates

Figure 3. Increased complexity of the pathways at the MEKK/MLK (green) and sterile 20 (red) levels are shown.
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MKK6, MKK7 and subsequently p38 and SAPK [90].
The p21-activated kinases (PAKs) have been proposed to
transduce signals from the small GTPases Cdc42 andRac
to the SAPK and p38 pathways. Although p65Pak1 can
activate SAPK in Xenopus oocyte extracts [91], only the
constitutively active hPAK1 [92, 93] or overexpressed
PAK1 [94] can activate SAPK in mammalian cells. PAK
is not involved in the SAPK activation initiated by the
Rho GTPase [95]. Activated PAK-3 stimulates p38 [92],
and dominant-negative PAK can inhibit p38 activation
by the small GTPases Rac and Cdc42 [96]. But the
physiological role of PAKs in the stress-activated and p38
pathways is not yet clear.
A putative scaffold protein which has binding regions for
SAPK, MKK7 and MLK family proteins, and which
associates with the Ste20 HPK1, has recently been de-
scribed to enhance the signalling via these kinases [97].
This JIP-1 (JNK-interacting protein 1) protein does not
bind SEK1, and it would suggest that similar scaffold
proteins may be responsible for aligning other signalling
modules to respond perhaps to specific agonists. In this
way, control of signalling may depend on the availability
of scaffolds within specific cell types.

Small GTPases

Rac and Cdc42, members of the Rho family of small
GTPases, activate the SAPK and p38 pathways [98–100].
They also modulate many cellular events not associated
with SAPK activation, such as membrane ruffling [101,
102], filopodia formation [103], invasiveness [104] and cell
cycle progression [102]. In some studies, mutants of Rac
[101, 105] and Cdc42 [105] that fail to bind PAK also do
not activate the SAPK pathway; however, others find
that PAK binding is unnecessary for SAPK activation
[102]. A specific target of Rac, POSH, contributes to
SAPK activation [106].
Ras activation may lead to subsequent activation of Rac
and other small GTPases, linking the ERK and SAPK
pathways [99]. Ras activation also seems to be important
for SAPK activation in response to some agonists, as
dominant-negative Ras blocks SAPK activation by an-
isomycin, but not by arsenite, osmotic stress or heat
shock [107], and SAPK activation by some cytokines is
at least partially ras-dependent [108–110].
Exchange factors such as vav [111–114], dbl [115], C3G
[116, 117], Tiam1 [118], trio [119] and FGD1 [112] that
facilitate the exchange of GDP for GTP on the small
GTPases also activate the SAPK and p38 pathways by
activating Rac, Rho, Cdc42 [103] or other as yet unchar-
acterized GTPases [103, 120].

Inflammatory cytokine receptor intermediates

TNF� is one of the best-characterized agonists of the
SAPK and p38 pathways. Binding of TNF� to the TNF
receptor 1 leads to the recruitment of several cytoplasmic
signalling molecules, including the TNF receptor-associ-
ated death domain protein (TRADD), which subse-
quently recruits the Fas-associated death domain protein
(FADD) and leads to activation of caspases [121]. Also
bound directly to the TNF� receptor II (TNF�RII), and
indirectly to the TNF�RI, is the TNF� receptor-associ-
ated protein 2 (TRAF2). TRAF2, [122, 123], TRAF 5
and TRAF 6 activate the SAPK and NF�B signalling
pathways via ASK1 (K. Hoeflich and J. Woodgett,
personal communication) [124], and these are indepen-
dent of the apoptosis-inducing FADD-mediated events
[121, 125, 126]. TRAF2 may be the point of bifurcation
of the signals to nuclear factor kappa B (NF�B), medi-
ated by NIK [127, 128] and the activation of SAPK,
reported to be mediated by GCKR (GCK-related), a
member of the Ste20 family of kinases [89] (see above ).
Activation of the Fas/Apo1 receptor, a member of the
TNF� receptor superfamily, leads to the activation of
SAPK and the induction of apoptosis, mediated by Daxx
[129], perhaps via ASK1 [130]. Another TNF� receptor
superfamily member, CD27, activates the SAPK path-
way via TRAF2 and TRAF5 [131].
Interleukin 1 also stimulates the SAPK and p38 path-
ways: IL-1 receptor-interacting kinases (IRAKs) [132]
and MyD88 [133] are required for this stimulation. The
human toll receptor, related to the IL-1 receptor, also
signals to SAPK via MyD88 and IRAK [134].

G-protein-linked receptors

Certain agonists of the SAPK pathway signal via G-
protein-associated receptors, but the intermediates in this
cascade are not yet elucidated. GTPase-deficient, acti-
vated forms of G� subunits G�q [135], G�12 [136–140]
G�13 [136, 138] G�16 [135, 141] all activate the stress-ac-
tivated kinases, and this activation can be inhibited by
dominant-negative mutants of Ras [136, 137, 139], Rac
[137, 139, 140] or Cdc42 [138]. Heterotrimeric G-protein
�/� subunits can also induce SAPK activity [142, 143].

Other agonists of the stress kinases

SAPKs were so named because they respond to noxious
chemicals and physical agents. UV light stimulates
SAPK, and singlet oxygen [144] or oxidative stress [145]
have been proposed as mediators, as have DNA damage
[146], RNA damage [147] and interactions between cell
surface receptors [145, 148]. The tyrosine kinase Pyk2/
CADTK/RAFTK [149], which is stimulated by changes
in intracellular calcium, is also activated and may work
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upstream of SAPK. In fact, several agonists of the SAPK
cascade signal via changes in the intracellular concentra-
tion of calcium. Involvement of the calcium/calmo-
dulin-dependent protein kinase IV [150] or the calcium-
dependent tyrosine kinase Pyk2/CADTK/RAFTK [149,
151, 152] have been proposed.
Oxidative stress [153] and nitric oxide [154, 155] stimulate
SAPK and p38 in some cell types, and intracellular
reactive oxygen intermediates have been proposed as
mediators of SAPK activation by cytokine receptors
[156] and by sodium arsenite [157]. The activation of the
cell surface Na+/H+ exchanger is associated with many
SAPK agonists, and elevation of cytosolic pH also
activates SAPK and p38 [158].
Certain chemotherapeutic agents activate the stress re-
sponsive kinases [159, 160]. Ara-C, cisplatinum, and
mitomycin C have been proposed to activate the c-abl
tyrosine kinase and subsequently SAPK [161, 162], but
other chemotherapeutics like the alkylating agent methyl
methane-sulphonate (MMS) can activate SAPK in c-abl-
deficient cells [163]. Reactive intermediates may be in-
volved in this case, as the level of intracellular glutathione
contributes to the ability ofMMS to activate SAPK, with
decreased glutathione augmenting SAPK activity [164].
Another anticancer agent, the microtubule-disrupting
drug paclitaxel (Taxol) activates SAPK via ras and the
apoptosis signal regulating kinase (ASK1) [165] (see
above).
Anisomycin, a protein synthesis inhibitor which inhibits
peptide chain elongation, is a potent activator of SAPK.
It activates SAPK at concentrations that are ineffective
to block protein synthesis. Anisomycin affects specific
intracellular targets, as shown by its ability to selectively
desensitize SAPK responses to itself, as well as to UV
light and hyperosmolar stimuli, sparing SAPK responses
to cytokines and growth factors [166]. Anisomycin binds
to the 28S ribosomal RNA (rRNA) and interferes with
ribosomal function [167]. This ‘ribotoxic stress’ only
occurs with ribosomes that are translationally active.
Other agonists which may signal via ribotoxic stress
include the tumor promotor palytoxin [168], certain
antibiotics [168] and UV light [147].

Negative regulation of the SAPK and p38 pathways

As the signalling cascades are induced by a series of
phosphorylation events, they are antagonized by the
activation of phosphatases. Over the past 5 years several
specific phosphatases have been identified that target
different components. Dual-specificity phosphatases
such as MAP kinase phosphatase 1 (MKP-1) terminate
kinase activity of SAPK, ERK and p38 by dephosphory-
lating the regulatory tyrosine and threonine residues [169,
170]. Within different cell types, MKP-1 can be induced
by calcium signalling [171], it can be induced by activa-

tion of the ERK pathway to inhibit SAPK and p38 signal
transduction [172] or, alternatively, it can be induced by
SAPK [173] or p38 [174] activation to dephosphorylate
ERK. MKP-2 inactivates ERK and SAPK preferentially
[169]. The relatedMKP-3/Pyst1 binds tightly to ERK via
its N-terminal domain, and dephosphorylates ERK spe-
cifically [175]. MKP-4 is a relatively nonspecific phos-
phatase [176, 177], and M3/6 phosphatase dephos-
phorylates SAPK and p38 [178]. SH2 domain-containing
protein tyrosine phosphatase 2 (SHP-2) inactivates
SAPK in response to cellular stress, but it is a positive
regulator of ERK signalling [179].
SAPK is negatively regulated by protein-protein interac-
tions which maintain it in the cytoplasm and prevent
nuclear translocation and subsequent cJun activation.
Overexpression of JIP-1 alone, without the upstream
components MKK7, MLK3 and HPK1, can sequester
SAPK in the cytoplasm, prevent its nuclear translocation
and inhibit its activity [97, 180]. Binding of SAPK to the
Cdk inhibitor p21/WAF1 also inhibits SAPK activity
nonenzymatically [181, 182].
Retinoids and steroid hormones antagonize cJun func-
tion as their receptors compete with AP-1 for CBP, but
they also inhibit the activation of the SAPK pathway by
unknown mechanisms [183, 184].
Pharmacologic inhibitors of some isoforms of p38 have
been described which bind to p38� and p38� [36]. These
pyridinyl-imidazole compounds, known as cytokine sup-
pressive anti-inflammatory drugs (CSAIDS), interfere
with the translation of TNF�, among other effects.
SAPK and the p38 family members SAPK3 and SAPK4
are not inhibited by these compounds, and this specificity
lies in the binding of these drugs to certain amino acid
residues in the ATP binding pocket of p38� and � [185,
186]. This differential affinity has been used to dissect the
functions of p38� and � from those of SAPK; however,
recent results show that much higher doses of the in-
hibitors can inhibit SAPK as well [187].

Functions of the stress-activated protein kinases

Apoptosis

Themost quoted function of the SAPKpathway is its role
in apoptosis or programmed cell death. This has been
exemplified in neuronal cells, which depend on growth
factors for their survival. In differentiated PC12 cells,
withdrawal of nerve growth factor (NGF) results in
activation of the SAPK and p38 pathways, inhibition of
the ERKS and apoptosis [188]. Blockade of the SAPK
pathway by expression of dominant negative cJun led to
increased survival, and SAPK was therefore proposed to
mediate the apoptotic events [188]. In these same cells,
apoptosis can be blocked by the antioxidant N-acetylcys-
teine and overexpression of Bcl-2, which decrease SAPK
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activity, but it can also be blocked by inhibitors of
caspase function and cell cycle progression [189], inter-
ventions which do not affect SAPK activation and
which suggest that caspases lie either downstream of
SAPK in this programmed cell death cascade or that
they are on separate pathways, simultaneously activated
by growth factor withdrawal.
In sympathetic neurons in culture, expression of
MEKK1 activates SAPK, increases cJun expression and
phosphorylation, and induces apoptosis, all of which
can be blocked by a dominant negative mutant of SEK1
termed SEK1-AL. However, SEK1-AL does not block
these same events after NGF withdrawal [190], suggest-
ing that other pathways are contributing to apoptosis
physiologically. A small molecule inhibitor of neuronal
apoptosis, CEP-1347, does decrease SAPK activity, but
may also have more generalized effects since it does not
interact with the MEKK1-SEK-SAPK cascade [191].
In vivo, after neuronal injury by ischemia and reperfu-
sion, SAPK is active and cJun is phosphorylated for up
to 5 days; Fas ligand is induced and cells undergo
apoptosis [192]. However, axonal injury increases
SAPK activation up to 50 days after injury, regardless
of whether the cells undergo apoptosis or survive [192].
In fact, the SAPK activity is decreased only when
regeneration is complete, and persists in those neurons
which demonstrate chronic axonal sprouting [193].
Excitatory neurotransmitters such as glutamate, in con-
junction with increased calcium, can induce apoptosis in
certain neurons after prolonged excitation. JNK3 (p54
SAPK�) knockout mice are protected from this apop-
tosis, suggesting that this isoform of SAPK mediates
the neurotoxicity [194]. In other studies, however, in-
hibitors of p38 can rescue cells from glutamate-induced
apoptosis [195]. In addition, insulin is neuroprotective,
and in cultured fetal neurons insulin signalling specifi-
cally inhibits p38 phosphorylation and activity, suggest-
ing p38 contributes to the cell death [196]. Taken
together, these data indicate that although SAPK is
activated in neurons on growth factor withdrawal or
toxic injury, its activation is not always sufficient to
induce apoptosis, and other pathways, including p38,
may have contributing roles.
Apoptosis can be induced in susceptible cells by ligation
of the Fas receptor. Fas receptor ligation induces SAPK
activity, and SAPK has been proposed as the mediator
of cell death, since dominant-negative components of
the SAPK pathway can block apoptosis in susceptible
neuroblastoma cells [197]. However, in these same cells,
dominant negative ERK pathway members also block
apoptosis [197], demonstrating multiple contributions
to cell death.
Thymocytes are also susceptible to Fas-mediated apop-
tosis. Thymocytes deficient in SEK1, though, were more
susceptible to Fas-induced cell death, suggesting that

activation of the SAPK pathway may mediate survival
signals in these cells [43]. In Jurkat T cells, SAPK
activation after Fas ligation can be blocked by express-
ing SEK1-AL, but this does not interfere with the
progression of apoptosis [198], demonstrating that
SAPK activation is not necessary for apoptosis to oc-
cur. Indeed, inhibitors of caspases prevent SAPK and
p38 activation [199–201], suggesting that the stress ki-
nase pathways may be activated as a result of the
apoptotic process, not as a cause.
A more direct approach to dissecting the role of SAPK
in apoptosis involves induction of dominant negative
FADD molecules which block Fas- and TNF�-induced
apoptosis, but leave signalling to SAPK, and down-
stream gene transcription, intact [202]. Also, in TRAF2-
deficient cells, there is a severe reduction in SAPK
activity but an increased sensitivity to TNF�-induced
cell death [203].
The lipid second messenger ceramide has been associ-
ated with activation of SAPK [204], and induction of
apoptosis secondary to TNF�, NGF and Fas signalling
[205]. Dominant negative components of the SAPK
pathway [206], or the p38 inhibitor, can block Fas- and
ceramide-induced apoptosis [207], suggesting a
causative role for ceramide-induced SAPK in the death
process. SAPK activation and ceramide signalling can
be isolated from one another, though. In BAF3 cells,
for example, ceramide-induced apoptosis proceeds even
when SAPK is inhibited by expression of the dual-spe-
cificity phosphatase M3/6 [208]. In addition, blockade
of ceramide generation after TNF� signalling does not
interfere with SAPK activation [209].
A metabolite of ceramide, sphingosine-1-phosphate, ac-
tivates the ERK pathway [210], and concomitant gener-
ation of sphingosine-1-phosphate [211, 212], or
stimulation of the ERK pathway by agonists [213], can
suppress ceramide- or TNF�-induced apoptosis. This
suggests the relative balance between ERK and SAPK
(and p38) signalling may determine susceptibility to
apoptosis induction.
In endothelial cells, where TNF� stimulates the expres-
sion of inflammatory molecules rather than apoptosis,
there is no correlation between TNF�-induced activa-
tion of SAPK, on the one hand, and ceramide produc-
tion on the other [214, 215]. In addition, TNF�

stimulates SAPK and p38 with bimodal kinetics, and it
appears that interruption of early SAPK or p38 activa-
tion can enhance TNF�-induced apoptosis, suggesting a
protective role for SAPK and p38 signals [216].
In various cell types, overexpression of components of
the SAPK pathway induce apoptosis. Fibroblasts trans-
fected with activated MEKK1 die by apoptosis [217],
and T cells expressing activated Cdc42 increase SAPK
and caspase activity and undergo apoptosis [218]. In
both cases apoptosis induction required constitutively
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activated forms of the components, and this may not
reflect the in vivo situation. Moreover, these components
affect multiple processes including NF-�B activation.
Heat shock-induced apoptosis is associated with SAPK
activation, and expression of high levels of heat shock
protein 70 inhibits SAPK [219, 220] and p38 activity
[219] and reduces cell death. Constitutive expression of
elevated levels of hsp70, though, while it inhibits cell
death, does not affect SAPK responses to heat shock and
ceramide [220]. These consitutively high hsp70 levels
interfere with processing of one of the caspase proteins
[220], and this may be the more relevant protective
mechanism.
UV light-induced apoptosis can be blocked by the condi-
tional expression of MKP-1 dual-specificity phos-
phatase, which decreases SAPK and p38 activity after
UV stimulation. This treatment also decreases caspase
activity, suggesting the caspases are downstream of
stress-responsive kinases in this system [221].
Induction of apoptosis in response to cellular stress and
chemotherapeutic agents has been linked to activation of
SAPK [222]. In support of this view, expression of a
dominant negative SEK1 blocks cisplatin-induced apop-
tosis [159], and antisense oligonucleotides to a SAPK
isoform block etoposide-induced apoptosis and decrease
caspase activity [223]. However, in other cell types,
SAPK activation is associated with DNA repair and
increased cell viability after cisplatin treatment [224].
Treatment of cells with adriamycin or vinblastine acti-
vates SAPK, but cell lines which are resistant to these
drugs have higher levels of active SAPK than the suscep-
tible lines, so SAPK activity may be in some way
protective [160]. In the case of etoposide, teniposide and
UV irradiation, SAPK and NF�B pathways are induced
and contribute to the expression of Fas ligand, perhaps
inducing apoptosis through Fas signalling [225]. Pro-
longed SAPK activation and Fas ligand expression are
also associated with anisomycin, UV, and �-irradiation-
induced apoptosis, but interference with Fas/Fas ligand
interactions only prevents apoptosis secondary to an-
isomycin stimulation [226], suggesting that this is not a
universal mechanism. As in the case with ceramide-in-
duced apoptosis, activation of the ERK pathway can
prevent cell death secondary to drugs or oxidative stress
[227, 228], implying that it is the relative balance between
the outputs of the stress-responsive and ERK pathways
that determines life or death.
Dexamethasone, a potent steroid, induces apoptosis in
hematologic malignant cells. This cell death is indepen-
dent of SAPK activation [229]. In fact, rapamycin, an
immunosuppressive agent, potentiates dexamethasone-
induced apoptosis by decreasing SAPK activity [230],
suggesting that SAPK plays a positive role in this
process.

‘Anoikis’ is the process of epithelial cell death after
detachment from extracellular matrix interactions [231].
SAPK is activated during this process, and was initially
thought to be causative for the cell death [231]. However,
recent studies demonstrate that SAPK activation can be
dissected from death induced by matrix detachment
[232].
SAPK and p38 are stimulated by ligands and treatments
which induce apoptosis in a variety of cell types. In some
cases there is incontrovertable evidence that SAPK plays
a role in the apoptotic process, as in the case of the JNK3
knockout mouse, where glutamate-induced hippocampal
cell death is prevented [194]. In many systems, there does
not seem to be a one-to-one relationship between SAPK
activation and cell death, and in certain situations SAPK
activity is protective. SAPK activation may induce
changes in gene transcription required for response to
the noxious stimuli, and while one of these responses
may be apoptosis, there are clearly other functions of
SAPK under these circumstances. In conclusion, al-
though SAPK activity may be necessary for apoptosis in
selected cell types using certain stimuli, and while it is
often activated during the process of apoptosis, it is not
sufficient to induce cell death in most systems.

Oncologic transformation

Transformation is associated with activity of the ras/
Raf/MEK/ERK cascade in many systems, but a contri-
bution of SAPK to the transformed phenotype is
emerging. Recent investigations into the mechanism of
ras-mediated transformation demonstrate that transfec-
tion of dominant negative SEK1 can block oncogenic
ras-induced SAPK activation and ras-induced transfor-
mation, whereas transfection of wild-type SEK1 en-
hances ras transforming ability, all without affecting
ERK [233].
The Bcr-Abl leukemia oncogene is a constitutively active
tyrosine kinase which activates ras, ERK and SAPK
[234]. In fibroblast and hematopoietic calls, Bcr-Abl
primarily activates SAPK, and a dominant negative cJun
mutant inhibits transformation [235]. Another tyrosine
kinase oncogene, Tpr-Met, also activates SAPK, and
dominant negative Grb-2 or Rac mutants which inhibit
transformation by Tpr-Met also block SAPK activity
[236].
The HER2/Neu receptor tyrosine kinase is overex-
pressed in over 20% of human breast tumors. HER2/Neu
activates ERK and SAPK, and dominant negative mu-
tants of components of either pathway partially inhibit
downstream transcription events [237].
Epidermal growth factor (EGF) is a mitogen that can
activate both the ERK and SAPK pathways. Blockade
of SAPK activation inhibits EGF-stimulated cell prolif-
eration in lung cancer cells [238]. In addition, the mu-
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tant EGF receptor EGFRvIII, which is constitutively
active and found in many tumors, activates SAPK, and
inhibition of SAPK activity is associated with loss of the
transformed phenotype [239].
The mas oncogene, a G-protein-coupled receptor, medi-
ates transformation via Rac and strongly activates SAPK
and p38 without activating ERK [240]. SAPK signalling
is also stimulated by the Ret protooncogene [241],
and human T lymphotrophic virus 1 (HTLV-1), which
causes adult T cell leukemia, constitutively activates
SAPK [242].
In Kapsosi’s sarcoma, growth factors and cytokines such
as vascular endothelial growth factor (VEGF), VEGF-re-
lated protein (VRP), oncostatin M, basic fibroblast
growth factor, TNF� and IL-6 all activate SAPK appar-
ently via the Pyk2/CADTK/RAFTK kinase [243]. The
Kapsosi’s sarcoma-associated herpes virus/human herpes
virus 8 (KSHV/HHV8), which is implicated in the patho-
genesis of Kaposi’s sarcoma, expresses a G-protein-cou-
pled receptor which activates SAPK and p38. This
receptormimics the growth factor signals in an agonist-in-
dependent manner, leads to cell transformation and
activates angiogenesis [244]. The virus therefore subverts
the normal growth factor signalling pathways involving
SAPK to promote oncogenesis.
The mechanisms by which SAPK contributes to transfor-
mation may involve interactions with the cell-cycle ma-
chinery. For example, SV40 small tumor antigen
contributes to SV40-induced transformation by stimulat-
ing the cyclin D1 promotor activity, and this event can
be inhibited by dominant negative mutants of MEK1,
ERK or SEK1, suggesting that the ERK and SAPK
pathways may both contribute to transforming ability
[245]. While SAPK activation may be associated with cell
cycle progression, p38 activity is required in Cdc42-in-
duced cell cycle arrest at G1/S [246], and active p38 can
cause mitotic arrest in somatic cell cycles at the spindle
assembly checkpoint [247].
SAPK activation, then, is associated with transformation
inmany oncogene and growth factor-mediated pathways,
and presumably the transactivation of cJun is important
for this effect. It is interesting that v-Jun, the oncogene
counterpart for cellular c-Jun, which lacks the �-domain
SAPK binding region, may mediate its transforming
abilities by being dissociated from SAPK signalling, and
downregulating TPA response element (TRE)-induced
gene expression [248, 249].

Development

While inhibition or deletion of different components of
the SAPK pathway are compatible with life in a tissue
culture dish, and appear to have no obvious effect on the
ability of cells to grow and divide normally, the lack of
SAPK components in multicellular organisms results in

severe defects. In the fruit fly, mutants which lack the
Drosophila homologues of cJun (DJUN), SAPK (DJNK)
[250] andMKK7 (Hemipterous, hep) [251] die at an early
stage in embryogenesis, with a failure of the dorsal
epidermis to close over the amnioserosa. The agonist to
which the SAPK pathway responds in normal cells at this
stage in embryogenesis is unknown. This Drosophila
SAPK pathway controls the expression of decapentplegic
(dpp), a TGF family member, in the dorsalmost cells of
the epithelium, instructing the ventral cells to stretch
[252]. DJNK increases expression of puckered [253–257],
a phosphatase which participates in a feedback loop to
control DJNK activity. DJNK has nonredundant func-
tions in phosphorylatingDJun in dorsal closure; however,
in the developing eye, DJun may be regulated by other
MAPK pathways [258, 259]. Upstream of the Drosophila
SAPK pathway lies Genghis Khan (GeK) [260], which is
homologous to Cdc42, and possibly Dishevelled, which
is also involved in the Wnt/wingless pathway [261].
Drosophila SAPK-like kinases may also be involved in
the establishment of tissue polarity [262].
The SAPK pathway is also important in mammalian
development. Mice deficient in SEK1 die in utero after
day 12.5. Thesemice have a defect in hepatogenesis, which
is incompatible with further development, but the specific
role of the SAPKpathway in this process is not yet known
[45].
The SAPK pathway is involved in the development and
differentiation of the mammalian immune system.
Lymphocyte development is dependent upon antigen
receptor signalling. In lymphocytes deficient in SEK1,
there are defects in either T cell development [43] or in
maintenance of peripheral lymphocyte numbers [263].

Immune activation

The SAPK pathway plays a key role in the induction of
the specific immune response to antigens mediated by T
cells. T cell activation and the downstream expression of
IL-2 require signalling through the T cell receptor (TCR)
complex and costimulation mediated by CD28, which
binds to B7-1 andB7-2 on antigen-presenting cells. SAPK
is synergistically activated by simultaneous signalling
through the T cell receptor and CD28, or by coadminis-
tration of phorbol myristate acetate (PMA) and calcium
ionophore, which mimics TCR/CD28 signalling [264].
Activation of the SAPKpathway induces expression from
the IL-2 promotor [265]. In addition to the IL-2 promo-
tor, SAPK also regulates the IL-2 enhancer element, in
conjunction with the ERK signalling pathway [266].
Stimulation of the SAPK pathway also stabilizes the
messenger RNA (mRNA) for IL-2 inactivated T cells
[267]. IL-2 expression is a requirement for T cell prolif-
eration. SAPK, therefore, is stimulated by activation
signals and is important in the downstream effector
functions of T cells.
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A role of SEK1 in this signalling cascade was demon-
strated in thymocytes and T cells from RAG2/SEK1
doubly deficient mice. T cells from these mice are im-
paired in their proliferation and IL-2 production after
CD3/CD28 costimulation, but still activate SAPK when
stimulated with PMA and calcium ionophore [268].
Thymocytes, on the other hand, do not activate SAPK
[268]. This suggests that SAPK activation by SEK1 is
developmentally regulated. In T lymphocytes, SAPK
may be activated by MKK7, and expression of domi-
nant negative MKK7 abrogates transcription from the
IL-2 promotor [269].
Upstream components of the T cell activation cascade
may involve MEKK1 [265], Rac and the protein ty-
rosine kinase Syk [270], as well as protein kinase C �

[271]. ERK is activated by TCR signalling alone (i.e.
without costimulation through CD28), and p38, while it
is activated by TCR with CD28, is equally well acti-
vated by TCR ligation alone [272]. p38 does contribute
to IL-2 expression, however, since a specific inhibitor of
p38, SB203580, or expression of a dominant-negative
MKK6 suppressed transcriptional activation of the IL-2
promotor [269].
IL-2 expression is dependent upon AP-1 and NF-AT
transcription factors, and the potent immunosuppres-
sive cyclosporine A blocks NF-AT translocation by
inhibiting the phosphatase calcineurin. Cyclosporine A,
however, also partially inhibits SAPK [269, 271] and
p38 [269] activity, and may cause decreased IL-2 pro-
duction, and therefore immunosuppression, by this
mechanism.
IL-2 expression, along with IL-2 receptor expression,
leads to positive feedback of T cell proliferation. ERK,
SAPK and p38 are activated in T cells treated with
IL-2, but blockade of p38 with SB203580 is effective in
suppressing proliferation [273]. T cell responses are ter-
minated by signals from the cell surface molecule cyto-
toxic T-lymphocyte antigen 4 (CTLA-4), which is
induced by T cell activation to limit responses. CTLA-4
not only competes with CD28 for B7-1 and B7-2 bind-
ing [274], but also signals independently of CD28 to
inhibit T cell activation [275, 276]. Ligation of CTLA-4
downregulates ERK and SAPK activity and interferes
with IL-2 production and T cell proliferation [277].
T cell anergy is a state of unresponsiveness to antigens,
important in the peripheral suppression of T cell func-
tion, or tolerance. T cell anergy can be induced by
stimulation of the T cell receptor without costimulatory
signals. SAPK and ERK activities after T cell activation
stimuli are reduced in anergic T cells [278, 279], as is
p38 activity [272]. Interestingly, human immunodefi-
ciency virus (HIV) capitalizes on this phenomenon—its
gp160 protein binds to CD4 on T cells, and this de-
creases the ability of SAPK and ERK to respond to T
cell activation stimuli [280].

Other cell surface molecules stimulate T cells and con-
tribute to their activation. CD40 ligand activates SAPK
and p38 in T cells [281], and signalling via the cell
adhesion molecule L-selectin activates SAPK [282].
SAPK therefore lies downstream of a number of sig-
nalling pathways involved in T cell activation, and
inhibition of SAPK and p38 inhibits T cell function.
In B cells, signalling via the B cell receptor (BCR)
complex (distinct from Bcr-abl) activates the ras/Raf/
MEK/ERK pathway, and cross-linking BCR induces
apoptosis [283, 284]. The CD40 cell surface receptor is
involved in B cell proliferation, survival, memory and
immunoglobulin class switching. Signalling via the
CD40 receptor activates SAPK [283–285] and p38
[284]. CD40 cross-linking can rescue B cells from apop-
tosis secondary to BCR cross-linking, and this rescue is
associated with activation of SAPK, ERK [283, 284,
286] and p38 [284]. Stress-responsive kinases, in this
case, provide the survival signal and appear to be in-
volved in proliferation. In fact, the Epstein-Barr virus
latent membrane protein 1 (LMP-1) mimics CD40/
CD40 ligand interactions and activates SAPK [287], but
in a ligand-independent manner, leading to sustained B
cell proliferation and possibly then to transformation.
In Drosophila, DJNK is activated by lipopolysaccharide
and participates in an insect immune response [250],
and homologues of p38 and its upstream kinases affect
insect immunity to pathogens [288]. The roles of the
stress kinases in immune function may therefore be
conserved through evolution.

Inflammation

Acute inflammation is a multifaceted response to micro-
bial invasion or loss of tissue integrity. Changes in
vascular permeability, recruitment of inflammatory and
immune cells and their activation, generation of reactive
oxygen intermediates, and the digestion of the intercel-
lular matrix and its repair are all aspects that require
initiation, progression and resolution. The stress-acti-
vated protein kinase cascades, in conjunction with other
signalling pathways such as the ERK pathway and
NF�B, play prominent roles in the initiation and prop-
agation of inflammation.
Bacterial products such as lipopolysaccharides trigger
the acute inflammatory response in part by activating
tissue macrophages to induce the production of inflam-
matory cytokines. Lipopolysaccharide (LPS)-binding
protein conjugates activate the SAPK pathway via the
cell surface receptor CD14 [289]. In macrophages,
ERK, SAPK and p38 are all activated by LPS [290].
SAPK activation is necessary for efficient translation of
TNF� mRNA stimulated by LPS [291], an effect that
can be inhibited by glucocorticoids [291], contributing
to their antiinflammatory effect. Translational regula-
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tion of TNF� production is also inhibited by the cy-
tokine suppressive antiinflammatory agents, CSAIDS,
which specifically inhibit p38� and � [36].
Salmonella typhimurium induces a profound inflamma-
tory response in intestinal epithelium. Secretion of bac-
terial proteins into the host cell cytoplasm stimulates
SAPK in a Cdc42-dependent manner. In fact, one of
the Salmonella proteins, SopE, is an exchange factor
for Rac1 and Cdc42, leading to cytoskeletal rearrange-
ment and SAPK activation [292]. Blockade of Cdc42
with a dominant negative kinase-dead mutant inhibits
both SAPK activation and micropinocytosis and inter-
nalization of the bacterium, while a constitutively ac-
tive Cdc42 caused cells to internalize even
nonpathogenic bacteria [293]. The bacterial protein
SopE, therefore, directly subverts the SAPK pathway
to enhance bacterial internalization and pathogenicity.
Salmonella typhimurium infection stimulates p38, ERK
and SAPK pathways in intestinal epithelial cells, induc-
ing the activity of NF�B and AP-1, and the production
of the inflammatory cytokine IL-8. Inhibition of p38
with the specific inhibitor SB203580 prevented IL-8
production [294], demonstrating the contribution of the
p38 pathway to the inflammatory response to this in-
fection.
In a completely opposite approach, the enteropatho-
genic bacterium Yersinia enterocolitica modifies the
host macrophage intracellular signalling cascades. After
initial rapid activation of p38, ERK and SAPK, Y.
enterocolitica carrying the virulence plasmid inhibits the
activity of these kinases, and decreases Elk-1, ATF-2
and cJun phosphorylation [295]. The result of this inhi-
bition is decreased TNF� release and dampening of the
inflammatory response against the bacterium. A similar
strategy is used by Y. pseudotuberculosis, where the
bacterial protein YopJ encoded on the virulence plas-
mid downregulates p38 and SAPK and decreases
TNF� production in infected macrophages [296]. Bac-
teria, therefore, have developed strategies to induce
stress-responsive kinases when it is to their advantage,
in host cell invasion, but to dampen them to inhibit the
TNF� proinflammatory response.
Opsonized bacteria bound to immunoglobulin G also
activate three kinase pathways via the Fc� receptor on
macrophages, and this activation leads to TNF� pro-
duction [297]. Macrophages, in turn, respond to TNF�

by activating SAPK (especially the p46 isoform) [298]
and p38 [299], initiating a positive feedback loop.
SAPK and p38 are also activated by certain chemokine
receptors such as CCR5, the receptor for macrophage
inflammatory protein 1b (MIP1b) [300], and may play
a role in chemotaxis of macrophages.
In mast cells, aggregation of Fc� receptors for im-
munoglobulin E (IgE) leads to SAPK activation and
subsequent cytokine expression, including expression of

IL-2 [301] and TNF� [302]. Transfection of active
MEKK1 into mast cells strongly stimulates SAPK and
induces transcription from the TNF� promotor, which
is unaffected by inhibition of ERK, p38 or NF�B
[303]. The SAPK pathway, then, is important in ampli-
fying IgE-mediated inflammatory responses.
In neutrophils, whereas ERK, SAPK and p38 are all
activated in response to formyl peptides, the respiratory
burst is mediated by p38 alone [304, 305]. Reactive
oxygen species generated by the respiratory burst stim-
ulate the stress-responsive kinases [306], and either
arachidonic acid itself [307] or its lipoxygenase metabo-
lites [306, 308] mediate these effects, perpetuating the
inflammatory response.
Viruses activate the stress-responsive kinases in a myr-
iad of ways. Adenovirus activates SAPK and cJun
transcription via its 19K E1B protein [309], which may
have implications for adenovirus-mediated gene ther-
apy. Epstein-Barr virus LMP1 activates SAPK [310,
311], and this may contribute to the transforming po-
tential of LMP1. Hepatitis B HBx protein activates
ERK and SAPK, which may play a role in hepatitis B
pathogenesis [312].
In the case of HIV, the secreted HIV Tat protein
functions as a cytokine and activates SAPK [313], as
well as other signal transduction systems. Since HIV
requires T cells to be actively cycling in order to infect
them, Tat activates ERK and SAPK in uninfected T
cells, stimulating them to enter the cell cycle and mak-
ing them permissive for HIV infection [314]. Tat acti-
vates SAPK, as well as other kinases, downstream of
the VEGF receptor 2 (FLK1/KDR) in Kaposi’s sar-
coma cells, and may influence cell growth and migra-
tion [315]. In addition, the HIV1 promotor is activated
by cytokines and UV, and this activation is mediated
by p38 [316].
Certain parasites also activate SAPK. The intracellular
parasite Theileria par�a constitutively activates SAPK
and induces the expression of both IL-2 and its recep-
tor in infected T cells, leading to transformation [317,
318].
The stress-activated protein kinase pathways, with or
without concomitant activation of ERK and other ki-
nases, are thus stimulated by diverse categories of mi-
crobial infection. The role of these kinases appears to
be augmentation of the inflammatory response by in-
creasing the expression not only of proinflammatory
cytokines, as already discussed, but also other media-
tors of inflammation such as nitric oxide synthase [319],
matrix metalloproteinases [320–323], urokinase plasmi-
nogen activator [324, 325] and its receptor [326]. Cy-
clooxygenase 2 expression is also modulated by SAPK
activity [327–331], linking the SAPK pathway to the
generation of inflammatory prostaglandin production.
In addition to the effects on macrophages, neutrophils
and mast cells, SAPK activation in endothelial cells
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upregulates cell adhesion molecules such as E-selectin
[332, 333], possibly leading to increased recruitment of
inflammatory cells to the site of acute inflammation.

Cardiovascular responses

The potent vasoconstrictor angiotensin II stimulates
SAPK in vascular smooth muscle cells [334], cardiac
myocytes [335] and renal mesangial cells [336]. This
SAPK activation can be inhibited by AT-1 receptor
blockers [335, 336], and stimulated by constitutively
active G-proteins like G�16 [141]. In these instances,
SAPK activation is dependent upon an increase in
intracellular calcium [335, 337], and may be mediated by
the calcium-dependent protein tyrosine kinase pyk2/
CADTK/RAFTK [151]. Prolonged exposure to an-
giotensin II leads to vascular smooth muscle cell
hypertrophy and induction of smooth muscle �-actin.
Dominant negative SEK can inhibit the expression of
SM �-actin induced by angiotensin II or constitutively
active G�16, suggesting a role for the SAPK pathway in
mediating this adaptive effect [141].
Mechanical stresses affect vascular cells. After ballon
injury to vessels in cardiac or carotid angioplasty,
restenosis of the vessel wall is a major concern. Balloon
injury activates SAPK and ERK [338, 339] via an AT-1
receptor-mediated process [339], and the changes in gene
expression may lead to neointima formation. Shear
stress also activates SAPK and ERK in endothelial cells
[340, 341], and these signals may induce changes in gene
expression leading to atherosclerosis.
The stress-responsive kinases have additional roles
within the vasculature. VEGF stimulates p38 in en-
dothelial cells, and this activity is required for actin
reorganization and endothelial cell migration [342].
VEGF, the VEGF-related protein VRP, oncostatin and
basic fibroblast growth factor all stimulate SAPK in
endothelial cells [343]. Thus, stimuli implicated in angio-
genesis are mediated in part by p38 and SAPK.
Phenylephrine, an agonist of �-adrenergic receptors, is a
potent vasoconstrictor which induces cardiac hypertro-
phy. Phenylephrine activates SAPK in cardiac myocytes
and induces expression of atrial natriuretic factor
(ANF), one of the markers of cardiac hypertrophy [344].
To determine whether cardiac hypertrophy is mediated
by the stress-responsive kinases, myocytes were trans-
fected with MEKK1, which led to induction of ANF
expression [344–346]. Infection of myocytes with
MKK7 produces all three features of hypertrophy—in-
creases in cell size, sarcomere organization and ANF
expression [347]. Transfection of myocytes with MKK6
to activate p38 exclusively also induces all three mark-
ers, and phenylephrine-induced changes can be blocked
by SB203580, the p38 inhibitor [348]. Independently,

then, SAPK or p38 can induce features of hypertrophy,
but when overexpressed together they induce cytopathic
effects [347].
Mechanical strain [349, 350], pacing [351], hemody-
namic load [352], osmotic stress or anisomycin [353, 354]
all activate SAPK in cardiac myocytes. In isolated per-
fused hearts, ischemia activates p38, and reperfusion
activates SAPK [346]. The stress-responsive kinases,
therefore, may mediate cardiac remodelling stimulated
by multiple agonists. When this response is maladaptive,
p38 or SAPK may make good therapeutic targets.
Maturation and differentiation of multiple types of he-
matopoietic cells are mediated by cytokines and growth
factors. SAPK transduces signals from granulocyte
macrophage-colony stimulating factor (GM-CSF) [109,
355, 356], granulocyte-colony stimulating factor (G-
CSF) [108], IL-3 [108, 355] and IL-5 [357], possibly via
the common � c chain that receptors for these cytokines
share. High levels of GTP-bound ras are required for
SAPK stimulation by these cytokine receptors, and
dominant negative ras can block this SAPK activation
[109]. Ras activation alone, though, is insufficient to
activate SAPK [108, 109]. Erythropoietin and thrombo-
poietin also signal via SAPK [358] and erythropoietin
and IL-3 activate p38 [359].
In the cardiovascular system, remodelling of both the
vascular smooth muscle and the heart, pathogenic pro-
cesses induced by hypertension, may be modulated at
least in part by activation of the stress-responsive ki-
nases. Differentiation in the hematopoietic system also
requires stress-responsive kinases to transduce cytokine
signals and alter gene expression.

Hepatic functions of stress-responsive kinases

Several lines of evidence point to the SAPK pathway as
an important growth regulator in the liver. It is activated
in hepatocytes by hepatocyte growth factor, as well as
hyperosmotic glucose and TNF�, where it stimulates
DNA synthesis [360]. Another agonist of SAPK activity
is thrombin, which functions as a mitogen for hepato-
cytes and may play a role in liver regeneration [361]
Lack of SEK1 during embryonic growth leads to defects
in hepatogenesis [45], but whether this effect is due to an
inability to respond to hepatic growth factors is not
known.
In addition to signalling for growth, stress-responsive
kinases are involved in the induction of enzymes which
detoxify chemicals and metabolites. p38 mediates the
induction of heme-oxygenase 1, an enzyme which re-
duces oxidative stress injury [362]. SAPK is implicated
in the induction of glutathione-S-transferase after met-
hylcholanthrene treatment [363]. Finally, ischemia/re-
perfusion injury in liver stimulates SAPK [364–366],
which may have important ramifications in liver
transplantation.
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Figure 4. Downstream effects of the stress-responsive protein kinases. The stress-responsive protein kinases affect many cellular
processes in various cell types. See text for details.

Renal functions of the stress responsive kinases

In the kidney medulla, tubular cells are regularly ex-
posed to hyperosmolar stress. While osmotic stress in-
duces apoptosis in some nonrenal cells, kidney cells
respond with growth arrest and changes in expression
of osmolyte transporters, to offset the osmotic stress.
Exposure to hypertonic medium induces the activation
of ERK, SAPK and p38, but the specific osmolyte is
critical, since SAPK and p38 respond in a dose-depen-
dent manner to increases in NaCl up to 800 mosmol/kg,
but equimolar urea causes no stress-responsive kinase
activation [367]. Inhibition of ERK signalling with the
specific inhibitor PD098059 does not affect the cell’s
ability to adapt by increasing inositol uptake, suggest-
ing SAPK or p38 might mediate transcription of or-
ganic osmolyte transporter genes [368]. Inhibition of
p38 does interfere with the transcription of the osmolyte
transporter betaine [369], and p38 is also responsible for
the growth arrest mediated by upregulation of
GADD45 and GADD 153 proteins [370]. The SAPK
pathway is important in long-term hyperosmolar stress,
though, since expression of a dominant negative iso-
form of SAPK leads to increased cell death in this
circumstance [371].
Ischemia/reperfusion injury causing acute renal failure
activates SAPK [372]. The antioxidant N-acetylcysteine
inhibits SAPK activation, improves renal function and
the histological appearance of the kidney 7 days post-is-
chemia, but does not reduce the extent of necrosis at

day 1 [373]. These results show that SAPK activation
can be dissociated from cell death, but that downstream
effects of SAPK activation may be deleterious to kidney
function and recovery.

Summary

The stress-responsive kinase pathways transduce signals
from an incredible variety of agonists—toxic chemicals,
physical agents such as irradiation, changes in the extra-
cellular and intracellular environments, and cytokines
and growth factors. They transmit signals through a
complex array of intracellular proteins, many of which
we do not yet know, and which can amplify or modify
the signal at any point. Their responses are not digital
black or white ‘stress’ responses, but graded adaptive
responses which may include apoptosis, repair, differen-
tiation, development, transformation, or other physio-
logical or pathological changes in cellular behavior (see
fig. 4). Clearly, this organization of intermediates allows
a high degree of flexibility of response and likely ac-
counts for the tremendous variation in ultimate re-
sponses between cell types. Perhaps the most
controversial or confusing aspect is their role in apopto-
sis, with many examples of SAPK activation being
either protective or promoting cell death. Some of this
confusion likely stems from technical problems with the
approaches used to assess the effects. For example,
transdominantly acting mutants may have non-SAPK-
-
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dependent effects. What appears to be the case is that
the signals via this pathway modulate decisions which
are perhaps ultimately determined by a combination of
factors. In this model, the pathway does not have a
determining role unless the other factors have been
suppressed but instead pushes the cell to commit to one
fate or another. This can be exemplified by considering
the effects of damage. At low levels of a mutagen, the
cells repair machinery must be sensitive to the incidence
of the damage and initiate control. In this scenario, the
pathway could be protective. However, as the damage
mounts, a decision to eliminate the cell becomes impor-
tant, to prevent mutagenic transformation. At this stage
(i.e. chronic stress) the signal will be associated with
induction of apoptosis.
Within specific tissues or cells, the stress-induced ki-
nases are responsible for inducing genes with specialized
functions. In the immune system, they promote T cell
activation and B cell proliferation. Stress responsive
kinases function in many cells and tissues in a
proinflammatory manner by upregulating cytokines and
mediators of inflammation like the respiratory burst in
neutrophils, and increased cell adhesion in endothelial
cells. In many tissues they induce genes which enable
the cells to adapt to the specific stress—hypertrophy in
vascular smooth muscle and cardiac myoctyes to cope
with increased pressure; detoxifying enzymes in liver to
deal with xenobiotics; inositol transporters in kidney to
adapt to physiological hyperosmolar stress. Stress re-
sponsive kinases also transduce signals for differentia-
tion in the hematopoietic system, and possibly in
embryonic development. Of course it important to re-
member that unlike in culture dishes, these multifunc-
tional kinases do not function in isolation in an intact
tissue; often stimuli will activate the ERK pathways in
conjunction with SAPK and/or p38 and other transduc-
tory systems (e.g. phosphatidylinositol 3� kinase), and
the integration of the activity from these and other
signalling pathways determines the final outcome.
Clearly, there is much to be learned in understanding
the physiological functions of these pathways. Many
questions will likely be resolved by studies of knockout
animals and from the development of specific inhibitors.
The sooner the better, as considerable effort has been
expended in programs to evaluate the pharmaceutical
value of modulating these enzymes. Given their
pleiotropic nature, any bets on the utility of such drug
molecules are hedged!
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