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Abstract. Argininosuccinate lyase (ASL) catalyzes the
reversible hydrolysis of argininosuccinate to arginine
and fumarate, a reaction important for the detoxifica-
tion of ammonia via the urea cycle and for arginine
biosynthesis. ASL belongs to a superfamily of struc-
turally related enzymes, all of which function as te-
tramers and catalyze similar reactions in which
fumarate is one of the products. Genetic defects in the
ASL gene result in the autosomal recessive disorder
argininosuccinic aciduria. This disorder has consider-
able clinical and genetic heterogeneity and also ex-

hibits extensive intragenic complementation. Intragenic
complementation is a phenomenon that occurs when a
multimeric protein is formed from subunits produced
by different mutant alleles of a gene. The resulting
hybrid protein exhibits greater enzymatic activity than
is found in either of the homomeric mutant proteins.
This review describes the structure and function of
ASL and its homologue ¢ crystallin, the genetic de-
fects associated with argininosuccinic aciduria and
current theories regarding complementation in this
protein.
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Introduction

The catabolism of amino acids and proteins produces
large amounts of nitrogen in the form of ammonia.
Ammonia is a highly toxic metabolite that is excreted
by organisms in three different ways. Their water envi-
ronment allows aquatic organisms to excrete ammonia
directly in low enough concentrations to dilute its toxic-
ity, while terrestrial organisms must convert their waste
nitrogen to the nontoxic components, uric acid or urea
[1]. Mammals are ureotelic animals and release their
excess nitrogen as urea, which is easily excreted in the
urine.

* Corresponding author.

The cyclic process of urea biosynthesis was first eluci-
dated in 1932, when Hans Krebs and Kurt Henseleit
implicated ornithine, citrulline, and arginine as partici-
pants in the synthesis of urea from aspartate and car-
bon dioxide [2]. Five enzymes are involved in the
complete urea cycle, and the individual reaction cata-
lyzed by each enzyme is shown in figure 1.

The first two enzymes of the cycle, carbamoyl phos-
phate synthetase I (CPS, EC 6.3.4.16) and ornithine
transcarbamylase (OCT, EC 2.1.3.3), are mitochondrial
matrix enzymes expressed almost exclusively in the liver
[3-5]. This tissue-dependent expression localizes urea
synthesis to this organ. Carbamoyl phosphate syn-
thetase I is the only enzyme in the urea cycle with a
regulatory cofactor and it catalyzes the formation of
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one carbamoyl phosphate molecule from ammonium
and bicarbonate at the expense of two ATP molecules
[6]. The enzyme is catalytically active as a monomer
with a molecular weight of 165 kDa [7-9], but in the
absence of its allosteric activator, N-acetyl glutamate,
the enzyme exists in a monomer—dimer equilibrium
[10]. The second enzyme, ornithine transcarbamylase, is
a trimer of identical 38-kDa subunits [11, 12]. Citrulline,
the product of the OCT reaction, is exported out of the
mitochondria to the cytosol [13—15] by facilitated diffu-
sion through an ornithine/citrulline antiporter. Enzyme
localization experiments and experiments with labeled
substrates and intermediates indicate that the urea cycle
operates as a metabolon spanning the two compart-
ments with considerable channeling of intermediates
from one enzyme to the next [16—18]. The three remain-

Argininosuccinate lyase

ing enzymes, argininosuccinate synthetase (ASS, EC
6.3.4.5), argininosuccinate lyase (ASL, EC 4.3.2.1), and
arginase (EC 3.5.3.1), are cytosolic. ASS and ASL func-
tion as homotetramers with monomer molecular
weights of 46 and 50 kDa, respectively [19-21]. Human
liver arginase is a trimer of identical 35-kDa subunits
[22, 23]. Unlike the CPS and OTC enzymes, ASS, ASL,
and arginase are expressed in a wider range of tissues.

The enzymes of the urea cycle are not limited to ure-
otelic animals but are ubiquitous in all organisms [24].
In mammalian tissues where urea synthesis does not
occur, and in nonureotelic organisms, the primary role
of these enzymes is the biosynthesis of arginine from
citrulline and aspartate. Indeed, the urea cycle is sug-
gested to have evolved from the addition of arginase to
this preexisting arginine biosynthetic pathway [24].
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Figure 1. The enzymes of the urea cycle and their reactions. Carbamoyl phosphate synthetase I (1) and ornithine transcarbamylase (2)
are mitochondrial matrix enzymes, while argininosuccinate synthetase (3), argininosuccinate lyase (4), and arginase (5) are cytosolic.
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Figure 2. Multiple sequence alignment of ASL species. The alignment shading corresponds to 100% (black), 80% or higher (dark gray),
and 60% or higher (light gray) amino acid sequence identity. ASL, argininosuccinate lyase; DC, ¢ crystallin; DIC and D2C, two
different isoforms of duck and chicken J crystallin: 1 and 02 crystallin, respectively. The alignment was performed using the program

ClustalW [128].

Arginine production in nonhepatic tissues is important
not only for protein synthesis but also for nitric oxide
(NO) production. NO is a key cell-signaling molecule
that has been found to elicit tumoricidal [25, 26], anti-
viral [27], bactericidal, and fungistatic [28] effects in the
host defense system. NO is also a potent vasodilator,
and overproduction of NO is therefore not entirely
advantageous. Excess NO production is responsible for
the hypotension associated with septic and cytokine-in-
duced circulatory shock [29, 30]. NO is produced by the
conversion of arginine to citrulline by nitric oxide syn-
thetase (NOS) [31]. The rate-limiting factor for NO
synthesis is the availability of arginine [32] and while
possible sources of cellular arginine include uptake from
plasma and intracellular protein degradation, the pre-
ferred source is its de novo biosynthesis from citrulline.
The two urea cycle enzymes, ASS and ASL, in conjunc-
tion with NOS form the citrulline-NO or arginine-cit-
rulline cycle, and hence provide the cell with a
continuous source of cellular arginine for NO
production.

This review focuses on the structure and function of
ASL and the genetic defects in the ASL gene that result
in the disease, argininosuccinic aciduria.

Argininosuccinate lyase

ASL was first described by Ratner and colleagues [33—
35] as the second enzyme involved in the conversion of
citrulline to arginine. The gene for ASL has now been
identified from a variety of species including Escherichia
coli [36], Saccharomyces [37-39], algae [40], amphibia
[41], human [42], and rat [43, 44]. Overall, the amino
acid sequences share approximately 42.9% identity (fig.
2). In all cases where the protein has been expressed and
purified, the enzyme has been found to be active as a
tetramer of identical subunits, with each monomer a
single polypetide between 49-52 kDa [20, 45-49]. In
humans, although the protein is expressed predomi-
nantly in the liver where it participates in urea synthesis,
it is also found in skin fibroblasts [20], erythrocytes [50],
kidney [51], pancreas and muscle [52], heart [53], and
the brain [54, 55].

Bioautography in human-mouse somatic cell hybrids
has located the gene for ASL to the pter — q22 region of
human chromosome 7 [56]. The gene contains 16 exons
and is approximately 35 kb in length. A clone for the
human enzyme was identified by screening a cDNA
library with antibodies specific for ASL [42]. The 1565-
base pair clone had an open reading frame of 463
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amino acids with a predicted molecular weight of 51.6
kDa.

Kinetic properties

Human liver ASL was purified to near homogeneity in
1981 by O’Brien and Barr [20]. The enzyme exhibits
normal Michaelis-Menten kinetics with specific activi-
ties of 10.3 pmol/min per milligram and 8.0 pmol/min
per milligram for the forward and reverse reactions,
with K values of 0.20 mM, 5.3 mM, and 3.0 mM
for argininosuccinate, fumarate, and arginine, respec-
tively.

Studying the positional isotope exchange of the ASL-
catalyzed cleavage of '"N-labeled argininosuccinate es-
tablished that although the dissociation of products
from the tertiary enzyme complex in the forward reac-
tion is random and not rate limiting, fumarate is re-
leased approximately ten times faster than arginine [57].

Table 1. Members of the ASL superfamily and their substrates.

Argininosuccinate lyase

In the reverse reaction, citrulline and succinate were
found to be noncompetitive inhibitors of fumarate and
arginine, respectively [58]. The order of addition of
fumarate and arginine to the enzyme must therefore be
random and the reaction catalyzed by ASL has a ran-
dom, Uni-Bi mechanism.

The human and bovine enzymes purified from liver
tissue have similar kinetic properties and also exhibit
negative cooperativity [59]. This negative cooperativity,
however, only occurs in phosphate and not in Tris
buffer [60] and for the human enzyme also disappears
with overnight storage of the enzyme in dilute solutions.
The reasons for the dependence of negative cooperativ-
ity on the buffer type and the age of the enzyme sample
are not known, and whether the observed negative
cooperativity is actually due to additional activation
sites remains undetermined. The larger K,, for higher
concentrations of substrate have been hypothesized as
due to a rate-dependent recycling of free enzyme
through a series of conformational states [61]. A similar

Enzyme Substrate

Argininosuccinate Lyase argininosuccinate
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Fumarase malate
Aspartase aspartic acid

Adenylosuccinate Lyase adenylosuccinate
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a Argininosuccinate lyase and § crystallin catalyze the same reaction.

b The reaction catalyzed by 3-carboxy-cis,cis-muconate lactonizing enzyme is a ring opening reaction.

The bond shown in bold is cleaved. Fumarate is not released.
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Figure 3. Consensus sequences of the ASL superfamily. The alignment shading corresponds to 100% (black), 80% (dark gray), and 60%
(light gray) amino acid sequence identity. ASL, argininosuccinate lyase; DC, ¢ crystallin; ADL, adenylosuccinate lyase; CMLE,
3-carboxy-cis,cis-muconate lactonizing enzyme; FUM, fumarase; ASP, ammonia-aspartate lyase. See legend of figure 2 for definition of
DIC and D2C. The alignment was performed using the program ClustalW [128]. The ‘*’ represents the putative catalytic residues.

hypothesis has been suggested for fumarase, another
member of the ASL superfamily. Fumarase also ex-
hibits an increase in K, with increasing substrate con-
centration [61]. Further study of this phenomenon is
complicated by the fact that expressed recombinant
ASL protein does not exhibit negative cooperativity
[62-66].

ASL superfamily

ASL belongs to a superfamily of enzymes, which for
the most part catalyze the cleavage of a C—-N or C-O
bond with the release of fumarate as one of the prod-
ucts (table 1). Other members of the family include
class II fumarase [67], adenylosuccinate lyase [68], L-
aspartase [67, 69], 3-carboxy-cis,cis-muconate lactoniz-
ing enzyme (CMLE) [70] and J crystallin [42, 71, 72].
The overall amino acid sequence similarity between
these enzymes is low, with a percent identity of approx-
imately 15%. However, three regions of highly con-
served residues across the superfamily have been
identified as consensus sequences (fig. 3). These consen-
sus sequences were suggested to be involved in the
catalytic mechanism of these enzymes [73], a hypothesis
that has now been confirmed with the structure determi-
nation of a number of members of the superfamily [64,
73-77].

Structure

The crystal structures of five members of the ASL
superfamily [64, 73-78] reveal that all its members
share a common protein fold (fig. 4). Each protein has
a D, symmetric arrangement of monomers, with each
monomer composed of three structural domains. Each
domain is predominately o helical. In ASL and ¢ crys-
tallin (fig. 4a, c, respectively) domains 1 and 3 have
similar topologies consisting of two helix-turn-helix mo-
tifs stacked perpendicularly to each other. The central
domain is composed of one small § sheet and nine «
helices, five of which form a helical bundle arranged
coaxially in an up-down-up-down-up topology. Three
of these five helices from two monomers interact to
form a closely associated dimer held together by mainly
hydrophobic interactions. Two such dimers associate to
form the tetramer with one helix of each monomer
interacting at the core to form a four-helix bundle (fig.
4b). The less extensive interactions observed between
the dimers agree with the experimental observations
that tetrameric ASL undergoes cold dissociation via a
dimer intermediate [79].

Active site cleft

The three superfamily consensus sequences are spatially
removed from one another in the monomer (fig. 4a,



1642 B. Yu and P. L. Howell

c—f) but come together at each of the four ‘corners’ of
the tetramer to form four active site clefts (fig. 4b). Three
different monomers contribute a different consensus
sequence to each active site. This cleft was first identified
as the putative active site in the structure of turkey oJ1
crystallin [73] and was later confirmed when inhibitor-
and substrate analogue-bound complexes of fumarase C
[76, 77] and 62 crystallin [80] were determined.

0 crystallins

Among all of the enzymes in the superfamily, ASL is the
most closely related to ¢ crystallin with an amino acid
sequence identity of 64—71% between human ASL and
the various ¢ crystallins [72, 81]. Crystallins are a diverse
family of water-soluble proteins found as structural

Argininosuccinate lyase

components in the ocular lens of vertebrates. They are
classified as either ubiquitous («, f, ) or taxon specific
(&, 7, 0, etc.). The taxon-specific crystallins are believed
to have evolved from the recruitment to the lens of
preexisting metabolic enzymes by a process called ‘gene
sharing’ [72, 82—-84]. This is a phenomenon whereby the
same gene product functions as both a lens crystallin and
as an enzyme in nonlens tissues. Hybridization studies
provide strong evidence that this evolutionary relation-
ship exists between the ¢ crystallins of avian and reptilian
eye lenses and ASL [72]. After the recruitment of ASL to
the lens, subsequent gene duplication and specialization
resulted in two nonallelic, tandemly arranged ¢ crystallin
genes (5'-01-02-3') that code for two different isomers
[85-87]. o1 crystallin is catalytically inactive whereas J2
crystallin has retained endogenous ASL activity [72,

Figure 4. Schematic representation of the ASL monomer (a), ASL tetramer (b), and the turkey J1 crystallin (¢), fumarase (d), aspartase
(e), and adenylosuccinate lyase (f) monomers. The highly conserved consensus sequences shown in figure 3 are colored black in each
panel. In (b) the active tetrameric form of the ASL protein is depicted. The circles represent the location of the four active sites,
numbered 1-4. This figure was prepared using the program Molscript [129].
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Figure 6. Stereoview of the argininosuccinate-binding site formed by monomers A, B, and D. Residues depicted in the figure from the
conserved consensus sequences defined in figure 3 are colored red (residues 106—124), green (residues 155-169), and yellow (residues
278-296). The argininosuccinate substrate (SUB) and the water molecules (W) are colored purple. The amino acid residues are labeled
with their one letter code, residue number, and the monomer (A, B or D), on which they are found.

88-92]. Despite the lack of activity in J1 crystallin, the
01 and 62 isomers have an amino acid sequence iden-
tity of 91% in chicken [85, 86] and 94% in duck [87].
The loss of enzymatic activity in ¢ 1 has to be the result
of these variations in amino acid sequence. While these
variations could affect a residue involved in the cataly-
sis and/or the structure of the protein, the current
hypothesis is that the loss of activity results from a
structural perturbation that prevents substrate binding.
This hypothesis is supported by structural comparisons
of the inactive and active forms of the protein [64, 80]
and by the fact that all the residues implicated in
catalysis (see below) are conserved in the J1 isomer.
Comparative studies of the J crystallins have been in-
valuable for understanding the enzymatic mechanism of
the ASL reaction.

Catalytic mechanism

The formation of fumarate and arginine from argini-
nosuccinic acid proceeds via a general acid-base mecha-
nism. Evidence of a carbanion intermediate in the
reaction pathway was first suggested when a nitro ana-
logue of argininosuccinate, N?3-(L-1-carboxy-2-ni-
troethyl)-L-arginine, bound to the enzyme tighter than
the actual substrate [58]. Nitro analogue inhibitors have
been synthesized and tested for other members of the
superfamily and also proven to be strong competitive
inhibitors [93, 94], reinforcing the hypothesis that the
overall catalytic mechanism for the superfamily is very
similar. The reaction is initiated by the abstraction of a
proton from the C, position of argininosuccinic acid to
form a carbanion intermediate (fig. 5). Redistribution of
the negative charge onto the carboxyl group generates
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an aci-carboxylate intermediate. Subsequent cleavage of
the C,—N bond requires the donation of a proton to the
guanidinium nitrogen. Two separate acid-base groups are
required for proton abstraction and donation due to the
trans-stereochemistry of the reaction [95] and character-
istic shape of the pH-rate profiles [90, 96]. The rate-lim-
iting step of the reaction appears from kinetic isotope
effect studies to be the cleavage of the C—N bond and not
the abstraction of the proton [96—98]. While chemical
modification [99] and pH-rate profile studies [100] can
provide valuable clues to the identity of the catalytic
residues, more definitive identification requires knowl-
edge of the three-dimensional structure of the protein
both in the presence and absence of bound inhibitors or
substrate analogues.

Substrate-binding residues

In 1999, Vallée et al. [80] determined the X-ray structure
of the enzymatically inactive H162N (His-160 in ASL)
mutant of duck 02 crystallin with bound argininosucci-
nate. (Note that the numbering used throughout this text,
even for 02 crystallin, is that of ASL. 62 crystallin has
a two-amino acid insert at residue 4; fig. 1.) In the crystal
structure, the substrate was found to interact with
residues from each of the three monomers that form the
active site (fig. 6). In an active site comprised of residues
from monomers A, B, and D, the amino and carboxyl
groups of the arginine moiety were found to be oriented
toward residues in either domain 1 or domain 2 of
monomer D. Asn-114, GIn-326, and Tyr-321 from this
monomer form hydrogen bonds with the arginine moiety
directly whereas Asp-31, His-89, Arg-236, Leu-325, and
Asp-328 interact with the arginine moiety via two water
molecules (69W and 147W in fig. 6). Ser-27 and Lys-329
interact with the substrate both directly and indirectly via
water molecules. The fumarate moiety is oriented toward
residues located in the second and third conserved super-
family consensus sequences (fig. 3) and forms hydrogen
bonds with Asn-289 of monomer A and Thr-159 of
monomer B.

Mutational analysis of 02 crystallin by Chakraborty et
al. [65] confirmed the role played by various residues in
substrate binding and catalysis. Point mutations of Arg-
113, Asn-114, Thr-159, Ser-281, Glu-294, or Tyr-321 all
abolished the catalytic activity. Thermodynamic charac-
terization of these mutant proteins revealed that their
stability is not significantly altered, and that the loss of
catalytic activity is almost certainly due to the inability
of the enzyme to bind or catalyze the substrate. Arg-113,
Asn-114, Thr-159, and Tyr-321 were all shown in the
crystal structure to interact with the argininosuccinate
substrate. Arg-113 makes van der Waals contacts with the
aliphatic part of the arginine moiety of argininosuccinate,

Argininosuccinate lyase

while Asn-114, Thr-159, and Tyr-321 participate in hy-
drogen-bonding interactions with the substrate as men-
tioned above (fig. 6). Mutation of the Glu-294 residue
affects catalysis by abolishing the His-160—Glu-294 inter-
action believed to be essential for initiating the reaction
(see below). Although the exact role of Ser-281 is un-
known, the conformation of the loop (residues 282-296)
on which this residue is located appears to be important
for substrate binding and catalysis. Mutation of two other
residues on this loop also affects catalytic activity. In E.
coli L-asparatase, mutation of the residue equivalent to
Lys-287 results in a protein with only 0.3% of wild-type
activity [101], while mutation of GIn-286 has been iden-
tified as causing the disease argininosuccinic aciduria
[102]. Lys 287 is thought to be critical for stabilizing the
carbanion intermediate.

Catalytic residues

In addition to defining residues involved in substrate
binding, the H162N (His 160 in ASL) 62 crystallin
structure with bound substrate has enabled the identifica-
tion of a number of residues involved in catalysis. Kinetic
studies of the bovine liver ASL [100] and duck 62
crystallin [99] had previously implicated a carboxyl group
and a histidine residue as the acid and base, respectively.
Mutagenesis studies had implicated His-160 as the cata-
lytic base [103]. When histidines at residues 89, 108, 160,
and 176 of duck 6 2 crystallin were mutated to asparagine
residues (H89N, H108N, H160N, and H176N) by site-di-
rected mutagenesis, only HI60N resulted in a complete
loss of enzymatic activity [103]. Similarly, catalytic activ-
ity was abolished when the equivalent histidine, His-141,
of Bacillus subtilis adenylosuccinate lyase was mutated
separately to alanine, leucine, glutamate, and glutamine
[104]. Crystal structures of ASL/J2 crystallin reveal that
a hydrogen bond exists between the N, of His-160 and
the O,, of Glu-294 making this histidine more nucleophilic
and therefore more capable of abstracting a proton to
initiate the reaction [64, 75]. In the crystal structure of the
inactive H162N (His-160 in ASL) mutant duck 02
crystallin [80], the orientation of the side chain of the
mutated residue is altered and the O, of Asn-160 forms
a hydrogen bond with the backbone nitrogen of Lys-323
rather than interacting with Glu-294. This change in
conformation prevents Asn-160 from mimicking the
His-160—-Glu-294 interaction and provides additional
evidence for the importance of this interaction.

The equivalent histidine residues in E. coli fumarase C[76,
77] and Thermotaga maritima adenylosuccinate lyase [78]
have similarly been proposed to have a role in a ‘charge
relay system.” In the case of E. coli fumarase C, the
histidine is proposed to abstract a proton from a water
molecule which subsequently acts as the catalytic base [76,
77]. There is no structural evidence of an analogous water
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molecule in the structure of either ASL or 2 crystallin
suggesting, in this case, that the histidine acts directly on
the substrate rather than exerting its effect via a water
molecule. Although the working hypothesis is that all
members of the superfamily would share a common
reaction mechanism, the identification of this charge-re-
lay pair presents a dilemma, as in CMLE, the equivalent
histidine and glutamate residues have been replaced by
tryptophan and alanine, respectively, while in all species
of L-aspartase except that of B. subtilis, the equivalent
histidine has been replaced by glutamine (see fig. 3).
To date, the catalytic acid has yet to be identified. In the
substrate-bound H162N (His-160 in ASL) mutant duck
02 crystallin structure, the fumarate moiety of the sub-
strate is only partially defined due to the poor quality of
the electron density in this region [80]. The uncertainty
regarding the position of the substrate and its possible
perturbation due to the H162N mutation prevents any
definitive conclusions about the identity of the catalytic
acid. There is stronger evidence for adenylosuccinate
lyase that His-68 in this protein is the catalytic acid [104,
105]. However, in the structural superposition of ASL/
02 crystallin with adenylosuccinate lyase, Arg-113 is
closest in space to His-68 [78]. Although Arg-113 has
been shown to be essential for catalytic activity [65], the
extremely high pK, of the guanidinium group, together
with a lack of precedence for acid catalysis by arginine,
makes Arg-113 an unlikely candidate for the catalytic
acid. Similarly for fumarase C, Thr-100 is closest in space
to His-68, again a residue unlikely to act as a catalytic
acid. These observations have lead Toth and Yeates [78]
to the counter-intuitive suggestion that the catalytic acid
is not spatially conserved across the superfamily and that
the substrate fumarate moiety binds in a different con-
formation in each enzyme. This suggestion coupled with
the lack of sequence conservation of the catalytic base
(His-160) across the superfamily would appear to suggest
that while members of this superfamily may share a
common reaction mechanism (i.e., f-elimination with
cleavage of a C-N or C-O bond), how the fumarate
moiety of the substrate binds and the location of the
residues involved in catalysis in the active site may be
different.

Argininosuccinic aciduria

Mutations in ASL result in the clinical condition argini-
nosuccinic aciduria. This autosomal recessive disorder
was first diagnosed by Allan et al. in 1958 [106] and has
subsequently been found to be the second most common
urea cycle disorder with an incidence of approximately
1 in 70,000 live births [107].

There is considerable clinical and genetic heterogeneity
associated with the deficiency. The clinical heterogeneity

Review Article 1645

is manifested by variations in the age of onset and the
severity of the symptoms, with three distinct clinical
phenotypes: neonatal, subacute, and late onset. In all
cases, there is a full-term, normal pregnancy with an
uneventful labor and delivery. Neonatal onset occurs
within a few days of birth, with patients becoming
lethargic, requiring stimulation for feeding, and exhibit-
ing vomiting, hypothermia, and hyperventilation. In-
sufficient ammonia detoxification leads to hyperammo-
nemia, which can cause the infant to become comatose
and even die. The subacute- and late-onset phenotypes
are less severe. Symptoms manifest themselves later in
infancy and include vomiting, lethargy, disorientation,
irritability, intermittent ataxia, seizures, and physical
and mental retardation. Trichorrexia nodosa, a hair
abnormality thought to be due to arginine deficiency, is
a distinguishing feature of the late-onset form of argini-
nosuccinic aciduria. There have also been reports of
normal development, with asymptomatic individuals be-
ing diagnosed from the results of routine urine tests
[108].

This clinical heterogeneity is common in all urea cycle
disorders. Diagnosis of an inborn error of metabolism is
suggested when an increased level of ammonium is
detected in the plasma of patients. Elevated levels of
argininosuccinic acid and its anhydrides, which are not
usually found in the plasma of healthy individuals, easily
distinguish patients with argininosuccinic aciduria from
those suffering from other urea cycle disorders. Levels of
argininosuccinic acid increase from undetectable to ap-
proximately 3 mg per 100 ml of plasma and up to 10 mg
per 100 ml of cerebrospinal fluid [109]. Plasma citrulline
levels will also increase to concentrations of 100—-300
uM. Prevention of death or permanent neurological
damage is dependent on an early diagnosis followed by
appropriate therapy. Therapy is usually aimed at reduc-
ing both the requirement for ureagenesis by providing
alternate routes for the excretion of nitrogen, and the
levels of urea precursors by lowering the intake of
protein in the diet. The symptoms, diagnosis, and treat-
ment of argininosuccinic aciduria, as well as other urea
cycle disorders, are reviewed in detail elsewhere [110—
113].

Intragenic complementation

Extensive genetic heterogeneity was identified from the
complementation analysis of 28 unrelated patients with
argininosuccinic aciduria [114]. Incorporation of #C
from L-[ureido-'*C]citrulline into acid-precipitable mate-
rial was measured as an indirect assay of ASL activity in
the heterokaryons of patient fibroblasts fused in all
pairwise combinations. All the mutants mapped to a
single complementation group (i.e., affected a single
locus). Twelve distinct complementation subgroups were
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defined, suggesting extensive interallelic complementa-
tion. Evidence that this complementation occurred at
the ASL locus was provided by immunoblot analysis
[115]. ASL cross-reactive material was detected in vary-
ing amounts and sizes in the mutant fibroblasts, sug-
gesting that ASL deficiency is caused by mutations in
the structural gene coding for the ASL monomer rather
than in any regulatory gene. This was later confirmed
when one of the mutant strains was identified to be
homozygous for a single amino acid substitution. The
arginine at codon 95 of the ASL monomer was found to
be mutated to cysteine (R95C) [116].

In addition to the R95C mutation, seven other muta-
tions in the ASL gene have now been identified (table 2)
[63, 102, 116]. Of these, five are missense mutations, one
is a small deletion, and the other is a splice defect. The
residual enzyme activity in these mutants varies due to
the heterogeneous effects that mutations can have on
the protein. Mapping the mutations onto the three-di-
mensional structure of ASL provides insight into the
potential effect of each mutation on the tetramer. Either
the active site or the stability of the enzyme can be
affected. A homotetramer with the glutamine at posi-
tion 286 mutated to arginine (Q286R) has less than
0.05% of wild-type ASL activity despite its relative
stability, implying that this mutation affected the active
site of the enzyme [102]. The R95C mutation, on the
other hand, produced substantially lower levels of
protein, indicating that this mutation affected enzyme
stability [116].

Complementation is a phenomenon that occurs in mul-
timeric enzymes due to protein subunit interactions.
Two distinct subunits are said to complement if they
can interact to give a partially functional heteromer
despite, individually, having no appreciable enzymatic

Table 2. Mutations in argininosuccinic aciduria.

Argininosuccinate lyase

activity as homomeric proteins. Intragenic complemen-
tation has been shown to occur in argininosuccinic
aciduria [114], propionic acidemia [117, 118], and
methylmalonic aciduria [119], but is a phenomenon
believed to exist in all genetic diseases involving multi-
meric proteins. In 1964, Crick and Orgel [120] suggested
that complementation in a dimeric protein between two
monomers Ab and aB with different inactive regions
(denoted by lowercase a and b) aggregate to form an
inactive site ab and an active site AB, which results in a
partial restoration of ~ 50% activity. While this sce-
nario is observed in some complementation events, as
seen below, Crick and Orgel dismissed this scenario
from their general theory of complementation, assum-
ing that because a residual amount of activity remained,
such a protein would not be detected as bearing a
mutation. Instead, they suggested that complementation
occurs between mutant subunits because a misfolding in
one subunit is compensated by an unaltered portion of
the adjacent subunit, a theory that may, in time, prove
to be correct for mutations that are located outside the
active site region.

In complementation studies of ASL, Walker et al. [102]
found that the Q286R and D87G mutations participate
in the complementation event with the highest recovery
of activity [102]. Homomeric proteins for either muta-
tion result in little or no enzymatic activity in vivo [102]
or in vitro [121]. However, hybrid proteins of the two
mutants exhibit approximately 30% of wild-type protein
activity [102, 121]. To understand the structural basis of
the intragenic complementation event exhibited between
the Q286R and D87G mutants, the mutated residues
were mapped onto the tetrameric structure of ASL [75]
(fig. 7). Although neither GIn-286 nor Asp-87 have been
implicated in the catalytic mechanism, both are in close

Mutation Percent wild-type activity* Percent buried Location in protein Potential effect Reference
surface area

D87G 5 92 helix 5, domain 1 conformation [102]

R95C <1 87 helix 5, domain 1 stability [116]

RI111W <3 93 conserved region 1 conformation [63]
loop, domain 1

R193Q <3 92 helix 8, domain 2, stability [63]
dimer interface

Q286R <3 51 conserved region 3, catalysis [63, 102]
loop, domain 2

A398D <1 98 helix 18, domain 3 stability [102]

A 13 bp not tested; expression would produce [63, 102]

truncated protein
A exon 2 not tested; expression would produce [63]

truncated protein

* Measured in COS cell experiments.
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Figure 7. Stereoview of the active site of ASL comprised of monomers A, B, and D showing the relative location of GIn-286 and
Asp-87. The active site is shown in the same orientation as in figure 6. Residues depicted in the figure from the conserved consensus
sequences defined in figure 3 are colored red (residues 106—124), green (residues 155-169), and yellow (residues 278-296). All other
residues are colored in orange. The amino acid residues are labeled with their one-letter code, residue number, and the monomer (A,

B, or D) on which they are found.

proximity to residues that may be enzymatically im-
portant. In any one active site, D87 and Q286 are
contributed by different monomers. Due to the sym-
metry of the enzyme, a heterotetramer of Q286R and
D87G monomers could therefore contain active sites
with one or both mutations, or active sites that are
devoid of either mutation (fig. 8). The recovery of
activity exhibited by complementation of the two mu-
tant subunits is therefore believed to be due to the
reconstruction of wild-type active sites [122]. This is
supported by the observed catalytic activity of the
heterotetrameric enzyme. Combination of the two mu-
tants should theoretically yield a mixture of tetramers
with Q286R to D87G ratios of 0:4, 1:3, 2:2, 3:1, and
4:0 in a 1:4:6:4:1 distribution and with an activity of
25% compared to the wild-type ASL. The greater ac-
tivity seen experimentally can be attributed to the ~
5% of ASL activity exhibited by the DS87G
homotetramer. This type of complementation, the re-
construction of wild-type active sites, has also been
observed in another member of the superfamily,
adenylosuccinate lyase [104], as well as in the ho-
motrimeric enzyme aspartate transcarbamoylase [123],
and homodimeric proteins glutathione reductase [124],
thymidylate synthase [125], mercuric reductase [126],

and ribulose bisphosphate carboxylase/oxygenase
[127].

The reconstruction of active sites clearly explains the
complementation event observed between the Q286R
and D87G mutations of ASL. This theory, however,
cannot be used to explain all of the complementation
events observed at the ASL locus because it does not
take into account the mutations that occur outside the
active site region (table 2). How mutations, such as
A398D, which might affect the stability and/or folding
of the protein, affect the catalytic activity and exhibit
complementation with other mutants is under investi-
gation. Clearly changes in monomer stability and/or
subunit association would decrease the amount of ac-
tive tetramer and also the level of recovered activity
in the heterotetramer. Present hypotheses explaining
the complementation events between these mutants
need to be further investigated and proven for a full
understanding of the phenomenon of intragenic com-
plementation. Only then can attempts be made to un-
derstand the extensive heterogeneity observed in
patients suffering from argininosuccinic aciduria and
other genetic diseases associated with multimeric

proteins.
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Argininosuccinate lyase

4D87G/0Q286R 3 D87G/1Q286R 2D87G/2Q286R 1D87G/3Q286R 0D87G/4 Q286R

e

0 Active sites 1 Active sites 2 Active sites 1 Active sites 0 Active sites

2 Active sites

0 Active sites

Figure 8. Pictorial representation of the actives sites of the statistically available combinations of mutants in the D87G/Q286R
complementation event. For clarity, the diagram has been drawn to show the interaction of only D87 (<) and Q286 (O). The shading
of these symbols represents the presence of the point mutations D87G and Q286R, respectively. Each large circle represents one of the
four active sites found in the protein (see fig. 4b). Light-gray shading of the active site indicates that it contains at least one or more
mutations and is therefore considered inactive. In each active site, residues 286 and 87 are always contributed from a different
monomer. Due to the molecular symmetry of the tetramer, in the case of the 2D87G:2Q286R tetramer, there are three distinctly
different ways of combining the monomers which will give rise to either two or zero native active sites.
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