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needed for the 2%-O-ribose methylation of at least oneAbstract. Many small RNA species associate with the
nucleolar structure. Some of these small nucleolar spliceosomal small nuclear RNA. Many snoRNAs,
RNAs (snoRNAs) are required for cleavage process- particularly in yeast, are generated from independent

transcription units. Most vertebrate snoRNAs areing of ribosomal RNA precursors. There are many
pseudouridine residues and methylated riboses in ma- produced by processing of introns from protein-
ture ribosomal RNA. For most, if not all, of these coding transcripts. Some snoRNAs are made by

processing of introns from non-protein-coding tran-modifications, each site is selected by base pairing
with a specific snoRNA species. Some snoRNAs are scripts.

Key words. Small nucleolar RNAs; ribosomal RNA precursor cleavage; 2%-O-ribose methylation; pseudouridine
formation; intron-encoded RNAs.

Introduction

The nucleolus is a dynamic nuclear structure that re-
assembles after each mitosis. It is the site of transcrip-
tion and processing of ribosomal RNA (rRNA) and
assembly of each ribosomal subunit [1, 2]. Many small
nucleolar RNAs (snoRNAs) have been identified. Their
association with the nucleolus has been determined by
subcellular fractionation and cell microscopy, or has
been inferred from their association with an rRNA
precursor (pre-rRNA) or known nucleolar proteins, or
the presence of known snoRNA-sequence motifs in
their sequences. The study of snoRNAs has revealed
many surprises recently, such as the very large number
of different snoRNA species per cell, their wide variety
of functions, their various RNA substrates and their
different biosynthetic pathways. This review focuses on
recent advances in our knowledge of snoRNAs, primar-
ily in progress made since the last overall reviews of this
subject [3–6].

Conserved sequence elements and secondary structures
of snoRNAs

It is anticipated that there may be about 200 different
snoRNA species per vertebrate cell [7]. Most snoRNAs
have been identified in either yeast or vertebrates; a few
have been identified in both (tables 1 and 2). Their sizes
range between �67 and 608 nucleotides [3, 8]. The
number of molecules of a snoRNA species per cell
ranges in vertebrates between �2×105 for U3 RNA
and �1–2×104 to 103 for other snoRNAs, and be-
tween �102 and 103 in yeast [3, 9, 10].
SnoRNAs can be divided into three families, based on
their conserved sequences and structures. Box C/D
snoRNAS have the conserved sequence elements named
box C (UGAUGA) and box D (CUGA) near the 5% and
3% ends, respectively, and usually have a base-paired
5%, 3% terminal stem [3, 9] (fig. 1A). Most C/D snoRNAs
have an additional, internal copy of these boxes, C% and
D%, that normally contain one or two base substitutions
[11]. Boxes C and D are needed for metabolic stability
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of the mature snoRNA [12–14]. In the second family,
box H/ACA snoRNAs have the motif ACA (which
almost always has a C residue in the second position)
located three nucleotides from their 3 ends, can fold
into a ‘hairpin-hinge-hairpin-tail’ secondary structure
and have the sequence ANANNA (box H) in the hinge
region [15, 16] (fig. 1B). The third class consists of
nuclear RNase MRP and RNase P, ribonucleoprotein
enzymes that share substantial sequence and secondary
structure [17–22]. The nucleotide modifications of al-
most all snoRNA species are unknown.

Ribonucleoprotein particles of snoRNAs

SnoRNAs are present in small nucleolar ribonucle-
oprotein particles (snoRNPs) in vivo. There has been
substantial progress in our knowledge of yeast snoRNP
proteins. Fibrillarin, a nucleolar protein (Nop1p is its
yeast ortholog), associates with all box C/D snoRNA
species; boxes C and D are required for this binding [3].
Nucleolar proteins Sof1p and Mpp10p are apparently
specific for one C/D snoRNA, U3 [3, 23, 24]. All yeast
H/ACA snoRNAs that have been tested associate with
the nucleolar proteins Gar1p, Cbf5p, Nhp2p and
Nop10p [25–28]. A putative nucleic acid helicase,
Sen1p, associates both with C/D and H/ACA snoRNAs
[29]. Yeast protein Snm1p is specific for RNase MRP.
All the yeast proteins just mentioned, plus yeast
snoRNA-associated proteins Nop5p and Nop56p, are
involved in pre-rRNA processing, but their precise
functions are unknown [3, 23, 24, 26–31]. Only two
H/ACA snoRNA species are known to be associated
with the nucleolar protein Ssb1p [32]. Most of the
snoRNP proteins remain to be identified. Yeast nuclear
RNase P is a ribonucleoprotein consisting of one RNA
and nine proteins; one of these proteins is unique to

RNase P, and the other eight are apparently shared
with RNase MRP [33].

Genes and biosynthesis of snoRNAs

The biosynthesis of snoRNAs follows different path-
ways. Most of the yeast snoRNAs and a few of the
vertebrate snoRNAs are transcribed from independent
transcription units [3]. Most of these are apparently
transcribed by RNA polymerase II, thus containing a
5%-end trimethylguanosine cap, such as U3 snoRNA
from organisms other than plants, U8 and U13
snoRNAs [3]. A few are transcribed by RNA poly-
merase III, resulting in a 5%-terminal triphosphate, such
as RNase MRP RNA in multicellular organisms, or a
5%-end g-monomethyl phosphate cap, such as plant U3
snoRNA [3, 5]. Most plant snoRNAs and many yeast
snoRNAs are processed from polycistronic snoRNA
precursors [3, 8].
Most vertebrate snoRNAs are encoded in introns of
protein genes [3, 34–40]. The majority of the snoRNA
host genes encode proteins needed for ribosome biosyn-
thesis or function, such as ribosomal or nucleolar
proteins or protein synthesis factors [3]. Some snoRNAs
are generated from introns of non-protein-coding genes
[41–44]. Transcription starts with a C residue followed
by a polypyrimidine tract in genes of the 5%-terminal
oligopyrimidine (5%TOP) family. Both the non-protein-
coding and the protein-coding snoRNA host genes have
features of the 5%TOP genes [41, 43, 44]. The 5% ends of
intron-encoded snoRNAs are not capped, but contain
an unmodified monophosphate [3].
There are 45 C/D and 20 H/ACA known snoRNAs in
Saccharomyces cere6isiae. Among the yeast C/D
snoRNAs, 22 are monocistronic, 17 are polycistronic
and 6 (U18, U24, snR38, snR39, snR54 and snR59) are

Table 1. Vertebrate small nucleolar RNAs.

FunctionsnoRNA ReferencesBox elements

CU3 72, 73C/D
12, 76CC/DU8

CU22 75C/D
71, 108C; MC/DU14

C/D M 107U25
111–114M*C/DU15, U16, U18, U20, U21, U24, U26–U63, U73–U81

MU6*mgU6–47 C/D 118
118MU6C/DmgU6–77

H/ACA C 71, 79E1/U17
79, 179C; c*H/ACAE2

H/ACA C; c* 71, 79, 179E3
179c*H/ACAU19, U23, U64–U72

– – 128Rnase MRP

C, pre-rRNA cleavage; M, pre-rRNA 2%-O-methylation; c, pre-rRNA pseudouridylation; MU6, 2%-O-methylation of U6 snRNA.
*Predicted by motif analysis.
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Figure 1. Models of snoRNA structures and of base-pairing interactions between pre-rRNA and snoRNAs that direct site-specific
modifications. (A) Box C/D snoRNA guiding pre-r-RNA 2%-O-ribose methylation [7, 47, 107]. (B) Box H/ACA snoRNA directing
pre-RNA pseudouridylation [121].

intronic [8, 45, 46]. One of the yeast H/ACA snoRNAs
is intronic (snR44), and the others are monocistronic
[8]. There are 50 C/D and 14 H/ACA known vertebrate
snoRNAs. Three of these C/D snoRNAs are encoded in
independent genes; these H/ACA snoRNAs and the rest
of the C/D snoRNAs are intronic [3, 41, 47]. The gene
organization of a snoRNA may differ in various organ-
isms. For example, U14 RNA genes are intronic in
vertebrates, independent in yeast and tandemly ar-
ranged in maize [3]. The main E1/U17 snoRNA species
of human (HeLa) cells has an extra nucleotide (U) at
position 19 that its intronic gene lacks, that is compat-
ible with the possibility of some form of RNA editing
[39].
Most of the intronic snoRNAs are processed exonucle-
olytically from excised introns [48–51]. Processing of
some vertebrate intronic snoRNAs is apparently inde-
pendent of pre-messenger RNA (mRNA) splicing [49,
50]. Processing of yeast intronic snoRNAs depends on
an RNA lariat-debranching enzyme (Dbr1p), support-
ing the conclusion that these snoRNAs are normally
produced via a pre-mRNA splicing-dependent pathway
[52, 53]. The available evidence supports the conclusion
that two frog intronic snoRNAs, U16 and U18, are
generated by endonucleolytic cleavages of the host pre-
mRNAs, alternative to mRNA splicing, followed by
exonucleolytic trimming [14, 54].
Elements sufficient for H/ACA and C/D snoRNA pro-
cessing lie within the mature snoRNA sequence [48, 55].
C/D snoRNA processing requires boxes C and D; verte-
brate U14 snoRNA processing and U14 RNA accumu-
lation in yeast also require a base-paired 5%, 3% terminal

stem [55–57]. Hypermethylation of the 5% cap requires
box D in U3 and U8 snoRNAs and a 3% base-paired
stem in U3 RNA [13]. In H/ACA snoRNAs, boxes H
and ACA are essential for snoRNA correct 5% and 3%
end formation, respectively, and for snoRNA accumu-
lation [15, 16, 58].
The proteins required for snoRNA processing are be-
ginning to be identified. Yeast pre-rRNA and intronic
and polycistronic snoRNAs require common molecules
for processing [52]. A putative nucleic acid helicase,
Sen1p, is required for processing and accumulation
of yeast C/D snoRNAs [59]. Yeast snR190 and U14
snoRNAs are cotranscribed; Rnt1p, an endoribonucle-
ase that is the yeast ortholog of RNase III, cleaves the
dimeric precursor, and trimming by 5%�3% exonucleases
Rat1p and Xrn1p generates the mature snoRNAs [4,
52, 60]. Seven yeast C/D snoRNAs (snR72–snR78) are
processed from a common polycistronic precursor by
Rnt1p and Rat1p [46]. Rnt1p depletion blocks the mat-
uration of 20 C/D and H/ACA snoRNA species out of
46 snoRNAs tested; most of them are polycistronic,
some are monocistronic, two are dicistronic and none is
intron-encoded [61]. A non-fibrillarin trans-acting fac-
tor binds the C/D box terminal motif, is essential for
C/D snoRNA processing and is common to intronic
and nonintronic C/D snoRNAs [55, 62].
The maturation of box C/D snoRNAs occurs in the
nucleoplasm [13, 57]. In contrast to 5% trimethyl-
guanosine-capped spliceosomal small nuclear RNAs
(snRNAs), the U3, U8 and U14 snoRNA precursors
are not exported to the cytoplasm during process-
ing [13]. The 5% 7-monomethylguanosine-capped U3
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snoRNA precursor remains in the nucleus where it
undergoes 5% cap trimethylation [63].

Intracellular localization elements of snoRNAs

SnoRNAs require cis-acting elements for their nucleolar
localization (i) right after their synthesis in the nucleo-
plasm, to be transported to the nucleolus, and (ii) as
mature molecules, to return to the nucleolus after mito-
sis and remain there between mitoses. Boxes C and D
are necessary for nucleolar localization of vertebrate
and yeast C/D snoRNAs [57, 64–66]. There are appar-
ently differences between the localization requirements
in vertebrates and yeast. The C/D box terminal stem is
needed for snoRNA nucleolar localization in yeast [57],
but not in vertebrates [64, 66]. There are differences
between the requirements of various C/D snoRNA spe-
cies. First, box D is necessary for the nuclear retention
of vertebrate U8 RNA, but not U3 RNA [13]. Second,
the spatial position of boxes C and D is essential for
nucleolar localization of vertebrate U14 snoRNA, but
not U8 snoRNA [64, 65]. The single-stranded segment
immediately 5% of box C is needed for U8 RNA nucle-
olar localization [65]. The hinge region, box B and box
C% of vertebrate U3 RNA affect the efficiency of its
nucleolar localization [66]. There might be requirement
differences between amphibian oocytes and mam-
malian, dividing somatic cells. When the 5% end of U3
RNA is blocked with the abnormal cap (5%)Appp(5%)G,
this snoRNA can still localize in nucleoli in frog oocytes
[66], but not in rat kidney cells [67]. Other experiments
suggest that this difference extends to U8 snoRNA [65,
67].
Nucleotides 23–62 of RNase MRP RNA, that include
the binding site for the nucleolar protein To, are needed
for the nucleolar localization of this RNA [68]. Shortly

after RNase P is injected, it localizes in the nucleolus;
nucleotides 1–88 of this RNA are necessary and suffi-
cient for this localization [69].

Functions of snoRNAs in ribosome formation

Pre-rRNA cleavage
In principle, snoRNAs might have one or more of
several possible functions in ribosome biogenesis, in-
cluding folding of pre-rRNA as chaperones, direct roles
in pre-rRNA cleavage, transport of pre-rRNAs or fac-
tors during maturation, presentation of RNases to pre-
rRNA processing sites or assembly of ribosomal
subunits. Cleavage processing of pre-rRNA requires
some box C/D snoRNAs, some box H/ACA snoRNAs,
and RNases MRP and P [12, 17, 18, 20, 70–79] (tables
1 and 2). Some snoRNA species are needed at more
than one processing site; a given processing site requires
more than one snoRNA species, these snoRNAs possi-
bly functioning as a multi-snoRNP complex or ‘proces-
some’ [17, 74, 80]. For example, U14 snoRNA is
required for processing at the 5% external transcribed
spacer (5%ETS) and near both ends of the 18S rRNA
sequence [70, 71]; U3 snoRNA is needed at the 5%ETS,
near both ends of 18S rRNA, and the 5% end of 5.8S
rRNA [72–74]; U22 snoRNA at both ends of 18S
rRNA [75]; and U8 snoRNA at both ends of the 5.8S
rRNA and of the 28S rRNA sequences [12, 76]. Pro-
gress in the study of the functions of these snoRNAs
has been hindered by the lack of snoRNA-dependent
pre-rRNA processing in vitro systems. There is no eu-
karyotic cell-free system now that returns to normal
pre-rRNA cleavage processing upon addition of an in
vitro-synthesized snoRNA to an extract that had been
depleted of that snoRNA [71].

Table 2. Yeast small nucleolar RNAs.

snoRNA ReferencesEssentialFunctionBox elements

U3 C/D C + 74
+C; M 47, 70C/DU14

8, 45–47–MC/DU8, U24, snR13, snR38-snR41, snR50–snR58, snR60–snR79
8, 45MC/DsnR39b, snR47, snR48 n.d.

C/D M*snR59, snR190 – 45, 47
8––C/DsnR4, snR45

tsC; c 77, 120H/ACAsnR10
H/ACA C +snR30 78

snR3, snR5, snR8, snR31-snR37, snR42, snR46 H/ACA c – 120, 121
snR11, snR44, snR189 H/ACA c* – 121

121n.d.c*H/ACAsnR49
snR9, snR43 H/ACA – – 8

C–RNase MRP 17, 18+
22+CRNase P –

n.d., not determined; ts, temperature-sensitive; other abbreviations as in table 1.
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Several snoRNA elements needed for pre-rRNA cleav-
age have been identified. Boxes B and C and the 5%
portion of yeast U3 snoRNA are needed for its func-
tion in pre-rRNA processing [81]. The following yeast
U3 snoRNA domains are essential for pre-rRNA pro-
cessing: (i) domain A, a conserved sequence that base-
pairs with an 18S rRNA sequence; and (ii) the Y
domain, a stem-loop structure that resides between the
two universal sequences that base-pair with 18S rRNA
sequences, is conserved in yeasts and is absent in verte-
brates [3, 82]. The sequence of the 5% terminal 15 nucle-
otides of U8 snoRNA is needed for 5.8S and 28S
rRNA processing, and shows complementarity to a
segment of 28S rRNA that interacts with 5.8S rRNA in
mature rRNA [83].
Several snoRNA:pre-rRNA interactions have been
shown to be necessary for pre-rRNA cleavage process-
ing. Compensatory mutation analysis has revealed in-
teractions between U14 snoRNA and 18S rRNA
sequences [84] and between U3 snoRNA and 5%ETS [85]
that are required for 18S rRNA processing. A base-
pairing interaction between yeast U3 snoRNA and 18S
rRNA sequences, which is needed for pre-rRNA pro-
cessing, suggests that U3 RNA may facilitate correct
folding of a conserved pseudo-knot in 18S rRNA [86,
87]. Psoralen cross-linking has revealed contacts be-
tween the yeast 35S pre-rRNA primary transcript and
three U14 snoRNA regions: (i) the Y domain, a stem-
loop structure that is required for pre-rRNA processing
[82]); (ii) domain A, which is complementary to an 18S
rRNA sequence; and (iii) the sequence between box C
and domain A [88]. Cross-links between U14 snoRNA
and other small RNA species have been shown in yeast
[88]. There are several interactions between U3 sno
RNA and 5%ETS, near and far, as well as 5% and 3%,
from the 5%ETS cleavage site [3, 87, 89, 90].
Two isolated RNases are known to cut pre-rRNA cor-
rectly. Purified RNase MRP accurately cleaves yeast
pre-rRNA at processing site A3, which is located up-
stream of the 5.8S rRNA sequence [91]. RNase III cuts
yeast pre-rRNA in vitro at a site that is U3 sno
RNP-dependent in vivo [92]. In addition, RNase P
RNA is involved in pre-rRNA cleavage processing in
yeast [22].
Many nucleolar proteins that are not known to be
integral components of snoRNPs, are necessary for
ribosome biogenesis in yeast. For example, nucleolin,
Nsr1p, Nop77p, Dim1p, Nop4p and Rrp5p affect pre-
rRNA processing [93–96]. Several putative RNA heli-
cases, such as Rok1p, Dob1p, Dbp7p, Spb4p and
Dbp4p, are required for pre-rRNA processing or ribo-
somal subunit formation in yeast [97–101]. Five essen-
tial exonucleases, in an ‘exosome’ complex, are needed
for pre-rRNA processing in yeast [102, 103].

2%-O-Ribose methylation of preribosomal and other
RNAs
There are approximately 100 2%-O-methylated riboses in
vertebrate rRNA and about 55 in yeast rRNA, limited
only to the most conserved regions of mature rRNA
[104]. These modifications occur early, apparently dur-
ing pre-rRNA transcription [104]. Most of the known
C/D snoRNAs have 10–21-nucleotide sequences com-
plementary to universal core regions of mature rRNA
[105, 106]. SnoRNA depletion experiments have shown
that many box C/D snoRNA species serve as sequence-
specific guides for pre-rRNA 2%-O-methylation by direct
base pairing of the snoRNA and rRNA [45, 47, 107,
108] (reviewed in [109–112]) (tables 1 and 2). Other
C/D snoRNA species are expected to be needed for
pre-rRNA ribose methylation, based on sequence com-
plementarity between these snoRNAs and pre-rRNA
2%-O-methylation sites [113, 114]. The snoRNA ele-
ments needed for rRNA ribose methylation are either
the downstream antisense element and terminal boxes
C and D, or the upstream antisense element and inter-
nal boxes D% and C% [115–117] (fig. 1A). Boxes D and
D% apparently function as molecular measuring devices,
since the fifth nucleotide upstream of these boxes deter-
mines the methylation site [115]. Correct spacing be-
tween boxes D% and C% is needed for efficient rRNA
methylation [115]. A short fragment of a methylation
guide snoRNA containing the complementary (anti-
sense) element and boxes D% and C% is sufficient to guide
rRNA 2%-O-methylation [115]. U3, U8 and U22 RNAs,
C/D snoRNAs that are needed for pre-rRNA cleavage
but apparently not for ribose methylation, lack an anti-
sense element immediately upstream of box D [47, 115].
The molecule(s) that catalyzes the 2%-O-methylation of
riboses in eukaryotic pre-rRNA is not known.
Some recently discovered snoRNAs are needed for the
site-specific nucleotide modification of other small
RNA species, that are nuclear but not nucleolar. Two
C/D snoRNAs, mgU6-47 and mgU6-77, have the ex-
pected sequences to guide the 2%-O-methylation of U6
spliceosomal snRNA; mgU6-77 RNA is required for
the ribose methylation of both U6 snRNA and 28S
rRNA [118]. Mature U6 and U2 spliceosomal snRNAs
are nucleoplasmic. When newly made, these snRNAs
pass through the nucleolus (P. Ganot, M.-L. Bortolin
and T. Kiss, personal communication).

Pre-rRNA pseudouridine formation
There are about 95 pseudouridine residues in vertebrate
rRNA and 44 in yeast rRNA, only in the most con-
served segments of mature rRNA [119]. It has been
shown experimentally in yeast that many H/ACA
snoRNA species function as site-specific pre-rRNA
pseudouridylation guides via snoRNA:pre-rRNA base
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pairing [120, 121] (reviewed in [7, 119]) (tables 1 and 2).
Based on sequence complementarity between other pre-
rRNA pseudouridylation sites and single-stranded se-
quences in internal loops of H/ACA snoRNAs,
additional H/ACA snoRNA species are predicted to be
necessary for pre-rRNA pseudouridine synthesis [121].
(Prokaryotic RNA pseudouridine synthases do not use
guide RNAs to recognize pseudouridylation sites). Base
pairing between the snoRNA and eukaryotic pre-rRNA
is essential for pseudouridine formation [120, 121].
Pseudouridylation guide snoRNAs have an internal
loop structure, named the ‘pseudouridylation pocket’,
that has the potential to base-pair with rRNA forming
two short (3–10 bp) helix structures separated by two
unpaired rRNA nucleotides [121] (fig. 1B). Box ACA or
H lie 14–16 nucleotides 3% of the modification site in the
pseudouridylation pocket [120, 121]. These boxes ap-
pear to be molecular measuring devices, since the dis-
tance from the ACA box determines the pseudo-
uridylation site [120]. The H and ACA boxes, and the 5%
and 3% hairpin domains, are all essential for rRNA
pseudouridylation [58]. None of the snoRNAs only
known to guide pre-rRNA pseudouridine formation or
ribose methylation appear to be essential for pre-rRNA
cleavage processing [3, 109].
Based on computer analysis, it has been proposed that
all H/ACA snoRNAs have the same secondary struc-
ture and that most H/ACA snoRNAs guide pre-rRNA
pseudouridine synthesis [119]. However, for some verte-
brate H/ACA snoRNA species, these proposals should
be tested experimentally. For example, the E1 and E3
snoRNA secondary structure models based on sequence
phylogeny [122] are substantially different from the
proposed single secondary structure of all rRNA
pseudouridylation guide snoRNAs [121]. The H
(ANANNA) box is present in, and proposed to be
essential for, all the snoRNAs that direct pseudouridine
formation [121], but this sequence is not phylogeneti-
cally conserved in E3 snoRNA [122]. The proposed role
of E2 snoRNA in the pseudouridylation of residue 3731
of human 28S rRNA is based on (i) complementarity in
7 and 8 contiguous nucleotides flanking that site in
human RNA, and (ii) the hypothesis that these two
snoRNA sequences are single-stranded, in an internal
loop [121]. However, many of these nucleotides are not
evolutionarily conserved and have not covaried, leaving
only four and three noncontiguous complementary
residues, respectively, flanking that site, and these E2
RNA sequences are base-paired in the snoRNA sec-
ondary structure model developed from sequence phy-
logeny [122, 123]. The proposal that E3 RNA directs
pre-rRNA pseudouridine synthesis is based on the hy-
pothesis that two specific E3 RNA sequences are in an
internal loop [121], but these sequences are in single-
stranded stems in the E3 RNA secondary structure

model obtained from sequence phylogeny [122]. There
are no pseudouridylation sites that could be potentially
guided by E1, E2 or E3 snoRNAs [121] in the pre-
rRNA segments known (by psoralen cross-linking) to
interact with these snoRNAs in vivo [124]. The E1
RNA nucleotide positions that may psoralen cross-link
in vivo to pre-rRNA [124] are not in sites that resemble
the internal loop structures of the pseudouridylation
pockets of pseudouridylation guide snoRNAs [121].
The molecule(s) that catalyzes the conversion to pseu-
douridine in eukaryotic pre-rRNA is unknown. Gar1p,
a protein common to all yeast H/ACA snoRNAs, is
needed for global pseudouridylation of pre-rRNA and
stable association of H/ACA snoRNAs with pre-rRNA
in yeast, but shares no conserved sequence motifs with
pseudouridine synthases [26]. Cbf5p, a putative pseudo-
uridine synthase, is present in all yeast H/ACA
snoRNA-specific snoRNPs tested [27, 125]. Yeast cells
lacking proteins Nhp2p and Nop10p are defective in
global rRNA pseudouridylation, which may be the re-
sult of the unstable H/ACA snoRNAs present in these
cells [28].

Concluding remarks

The precise functions of various snoRNA species in
different pre-rRNA processing, particularly cleavage,
steps remains to be elucidated. Little is known about
the identity and functions of the proteins that interact
with snoRNAs and how these interactions occur. Noth-
ing is known about the functional interactions between
different snoRNA species. It is not clear if even all the
functional types of snoRNAs have been identified.
Thus, many key questions remain unanswered about
the snoRNPs in the molecular machine that produces
the ribosomal subunits. The nucleolus has other func-
tions in addition to those in rRNA biosynthesis and
ribosomal subunit assembly. Several observations sug-
gest that the nucleolus participates in the processing or
nuclear export of some mRNAs; recent results indicate
that the nucleolus is involved in the maturation of U6
spliceosomal snRNA, processing and/or ribonucle-
oprotein assembly of the signal recognition particle
RNA, biosynthesis of the telomerase ribonucleoprotein
(the enzyme that synthesizes chromosome ends) and
processing of precursors of some transfer RNA (tRNA)
species (reviewed in [126]). (It is interesting that there is
an essential H/ACA snoRNA-like domain at the 3% end
of human telomerase RNA [127]). The study of these
processes may reveal novel snoRNAs and/or new func-
tions of the known snoRNAs. The recent unexpected
findings about snoRNAs, as well as the important
unanswered questions, suggest exciting years to come in
the study of snoRNAs.
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