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Abstract. Engagement of antigen receptors on lympho- play as critical a role as the effector enzymes themselves
cytes leads to a myriad of complex signal transduction in both lymphocyte development and activation. This
cascades. Recently, work from several laboratories has review describes some of the biochemical and molecular

features of several of these newly identified hematopoi-led to the identification and characterization of novel
adapter molecules, proteins with no intrinsic enzymatic etic cell-specific adapter molecules highlighting their

importance in regulating (both positively and nega-activity but which integrate signal transduction path-
ways by mediating protein-protein interactions. Inter- tively) signal transduction mediated by the T cell anti-
estingly, it appears that many of these adapter proteins gen receptor.
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Introduction

In recent years much has been learned about activation
events which follow the interaction of lymphocytes with
specific antigen. These advances related initially to the
discovery of the antigen receptors themselves. However,
although the structure of both the B cell antigen recep-
tor and T cell antigen receptor (TCR) provided insights
into how these molecular complexes bind to antigen,
little information was gleaned from the primary recep-
tor sequences to explain how these proteins transduce
their signals. Subsequently, studies from numerous lab-
oratories elucidated several signal transduction events
which follow receptor engagement. This involved the
identification of key effector enzymes (including phos-
phatases, kinases, and phospholipases) important for
initiating proximal biochemical signals, as well as tran-
scription factors which are required for translating these
events into the activation of new genes. As this work
progressed, it became increasingly clear that disparate
signaling cascades needed to be integrated for lympho-

cyte activation. The most recent major advance in un-
derstanding lymphocyte activation has come from stud-
ies attempting to explain how these signaling events are
integrated. This work has identified and characterized
numerous adapter proteins, molecules with no intrinsic
enzymatic properties but which function to mediate
protein-protein interactions and establish larger signal-
ing complexes. Numerous studies have demonstrated
that these adapter proteins work as both positive and
negative regulators of lymphocyte signal transduction
and some appear to be as essential as previously de-
scribed enzymes for both lymphocyte development and
activation. This review focuses on a number of adapter
proteins, some of which are expressed exclusively in
cells of hematopoietic origin and others which are ex-
pressed more widely, and describes what is known cur-
rently about their role in the regulation of T
lymphocyte activation.

The TCR and its proximal biochemical signals

The TCR is composed of a series of protein dimers* Corresponding author.
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expressed together on the cell surface [1–3]. The � and
� chains arise from rearranged gene segments and are
responsible for antigen recognition. The three CD3
dimers (�/�, �/�, and �/�) are non-covalently associated
with the � and � chains and are responsible for trans-
ducing the antigen recognition signal into the cell. This
is accomplished by the activation of src family protein
tyrosine kinases (PTKs), including fyn and lck, which
then phosphorylate key tyrosine residues within the
CD3 chains [4–9]. The tyrosines are found in special-
ized domains designated immunoreceptor tyrosine-
based activation motifs (ITAMs) [10]. The ITAM
tyrosines, when phosphorylated, serve as docking sites
for ZAP-70, a member of the syk family of PTKs [11,
12]. ZAP-70 is activated further by the src PTKs leading
to subsequent phosphorylation of numerous cytosolic
proteins essential for propagating the activation signal
[11, 13].
One of the TCR-stimulated PTK substrates is phospho-
lipase C� l (PLC�1), the enzyme responsible for hy-
drolyzing the membrane phospholipid, phospha-
tidylinositol 4,5 bisphosphate (PIP2) into diacylglycerol
(DAG) and inositol 1,4,5 trisphosphate (IP3) [14, 15].
The importance of prior PTK activation for PLC� l
function was made clear by the observation that ty-
rosine phosphorylation of this enzyme is critical for its
optimal activity [16–19]. Both products of PIP2 hydrol-
ysis are second messengers important for T cell activa-
tion. IP3 interacts with its receptor on endoplasmic
reticulum resulting in the release of calcium from this
intracellular store into the cytosol. The increase in cal-
cium is critical for activating the serine/threonine phos-
phatase, calcineurin, which acts on nuclear factor of
activated T cells (NFAT), a transcription factor impor-
tant for the activation of numerous genes required for T
cell activation [20]. In unstimulated cells, phosphory-
lated NFAT resides in the cytosol. Following calcineu-
rin-dependent dephosphorylation, NFAT translocates
to the nucleus to serve its transcriptional activator func-
tions. The other PIP2 hydrolysis product, DAG, is
important as a stimulator of members of the protein
kinase C family of serine/threonine kinases [21]. In-
creasing evidence suggests that multiple members of this
family play critical roles in T cell signaling [22–26].
In addition to the PLC�1-initiated signaling cascade,
TCR-stimulated PTK function is also required for acti-
vation of the ras signaling pathway [27]. Ras is a small-
molecular-weight guanine-nucleotide-binding protein
which resides at the plasma membrane due to post-
translational fatty acid modifications. In resting cells,
ras is bound to GDP; however, following TCR engage-
ment, GDP is released allowing ras to become GTP
associated and activated leading to downstream signal-
ing events [28].

In addition to these signal transduction cascades, en-
gagement of the TCR stimulates numerous other down-
stream events including modulation of lipid kinase
function, internalization of cell surface receptors, and
reorganization of the actin cytoskeleton. Optimal T cell
activation also requires stimulation of co-receptors
along with the TCR to modulate second messenger
cascades [29–31]. Thus, it is obvious that for effective
cellular activation, tightly regulated cross-talk among
these signal transduction cascades is required. The re-
cent description of adapter proteins and their potential
role as regulators and integrators of biochemical second
messenger pathways has provided considerable insight
into the complex regulation of TCR-initiated signal
transduction events.

Protein interaction motifs: a paradigm for adapter

protein function

As noted above, following TCR engagement by anti-
gen, the ZAP-70 PTK is recruited to the CD3 ITAMs
via phosphorylated tyrosine residues. This occurs
because ZAP-70 contains two specialized regions
known as src homology 2 (SH2) domains that rec-
ognize phosphorylated tyrosine residues in the context
of appropriate carboxyl-terminal amino acids [32, 33].
SH2 domains were initially described as regions found
in all src family PTKs which share sequence homol-
ogy and can interact with phosphotyrosine residues
found in the correct context [34]. This discovery led to
the search for other protein modules which would be
able to direct intermolecular interactions. Another do-
main was subsequently found in all src family PTKs:
SH3 or src homology 3 domains also mediate protein-
protein interactions, via recognition of regions within
proteins rich in proline residues [35–39]. As with SH2
domains, homology studies demonstrated that SH3
domains are found in many types of proteins and are
highly conserved through phylogeny.
Once the paradigm for modular protein domains
capable of mediating intermolecular interactions
was established, a number of other such regions were
described. In addition to SH2 domains, PTB (or
phosphotyrosine-binding) domains mediate inter-
actions based on phosphotyrosine residues [40–
43]. Interestingly, the specificity for PTB domain
binding resides in the amino acids amino terminal
to the phosphotyrosine, as opposed to SH2 dom-
ains whose binding specificity depends on the car-
boxyl-terminal amino acids [44]. WW domains [named
for the two tryptophans (W) located in the pro-
tein-binding site] are protein regions which bind to
other proteins which either contain proline-rich re-
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gions or phosphorylated serine or threonine residues
[45–47]. PDZ domains are modules which interact with
discrete domains that contain hydrophobic residues car-
boxyl-terminal of the binding site [48, 49]; and plekstrin
homology, or PH domains, direct intermolecular inter-
actions based on associations with phospholipids [50,
51]. Increasing evidence indicates that each of these
modular regions plays critical roles in localizing effector
molecules and creating multimeric signaling complexes.
Sequence analysis of many of the key enzymes responsi-
ble for mediating signal transduction events in T cells
(e.g., src and syk family PTKs and the two protein
tyrosine phosphatases SHP-1 and SHP-2) revealed that
these proteins contain adapter modules in addition to
their enzymatic domains. This is likely important both
to allow these enzymes to interact with potential sub-
strates and because these proteins play an important
role in the creation of multimeric signaling complexes.
One example of this was shown in experiments demon-
strating that the SH2 and SH3 domains of lck are
required, in addition to the kinase domain, for optimal
production of interleukin-2 in a T cell hybridoma [52].
More recently, however, other proteins have been dis-
covered which consist only of protein interaction do-
mains. These ‘pure’ adapter molecules appear to play as
important a role in regulating signal transduction events
as do the enzymes and other effector molecules they
bridge [53]. A schematic representation of the adapter
molecules discussed in this review is presented in figure
1.
The first demonstration of this critical role for
molecules with adapter function came following a
screen for proteins which associate with the phosphory-
lated tail of the epidermal growth factor (EGF) recep-
tor. Using an expression cloning technique, Schlessinger
and co-workers identified several growth-factor-recep-
tor-binding (Grb) proteins [54]. Of these, Grb2 proved
to be the most interesting. Grb2 consists of a single SH2
domain flanked by two SH3 domains. The Grb2 SH2
domain has specificity for tyrosine residues within the
EGF receptor tail which are phosphorylated following
binding with EGF. This allows Grb2 to translocate
from the cytosol to the plasma membrane following
EGF receptor stimulation and autophosphorylation.
Importantly, in addition to its inducible binding to the
EGF receptor, Grb2 is associated constitutively with
the son of sevenless (Sos) guanine nucleotide exchange
factor via proline-rich regions of Sos and the Grb2 SH3
domains [55]. Thus, following EGF receptor engage-
ment, Sos is also brought to the membrane and placed
in the vicinity to its target, ras [54, 56–60].
As would be expected, more recent studies of the EGF
receptor suggest that coupling of this PTK to ras is
more complex than merely inducing a direct association

between the activated receptor and the Grb2/Sos com-
plex. Thus, there is evidence indicating that there may
be other molecules (for example the adapter protein
Shc) which are also important in regulating EGF-recep-
tor-mediated ras activation [61, 62]. These observations
suggest that there are many levels of regulation required
for the integration of biochemical signaling cascades,
and underscore the important roles played by adapter
proteins in this process.

SH2-domain-containing leukocyte phosphoprotein of 76

kDA (SLP-76) and linker of activation of T cells

(LAT) are required for T cell development and

activation

Demonstration of a paradigm by which a receptor PTK
could couple to the ras signaling pathway led to investi-
gations into the potential role of Grb2 in T cells. A
number of proteins, newly phosphorylated on tyrosine
residues following TCR engagement, have been shown
to bind to Grb2 fusion proteins in vitro [63]. Of these,
two have now been shown to play critical roles in the
integration of TCR-mediated signaling cascades im-
portant for both T cell development and activation (fig.
2).
SLP-76 was isolated initially due to its ability to bind to
a GST Grb2 fusion protein [64]. Primary sequence
analysis of SLP-76 reveals three distinct domains, an
amino-terminal acidic region containing tyrosines which
are phosphorylated upon TCR engagement, a central
proline-rich region able to bind SH3 domains of various
molecules, and a carboxyl-terminal SH2 domain. Thus,
while SLP-76 possesses no domains with known enzy-
matic function, this protein clearly is able to act as an
adapter molecule utilizing several discrete protein inter-
action domains.
Unlike Grb2, SLP-76 expression is restricted to hemato-
poietic cells. By both protein and RNA analysis, it was
shown that SLP-76 is present in thymocytes, mature T
cells, macrophages, natural killer cells, and megakary-
ocytes, but not B cells [65]. Interestingly, it appears that
SLP-76 is regulated at the protein level, as its expression
varies during thymocyte development and in resting
versus activated T cells. Evidence suggesting that SLP-
76 may play an important role in the regulation of
TCR-mediated signaling events came from transient
transfection studies into the Jurkat T cell line where
overexpression of SLP-76 dramatically augments TCR-
induced activation of the interleukin-2 gene [66, 67].
The importance of SLP-76 in this process was corrobo-
rated further with the development of a Jurkat variant
deficient in SLP-76 expression [68]. While engagement
of the TCR on this cell still results in activation of src
and syk family PTKs, there is a complete failure for
TCR engagement to result in activation of the inter-
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leukin-2 gene. Dissection of the signal transduction
pathways downstream of PTK activation revealed that
SLP-76 is required for the TCR to couple with tyrosine
phosphorylation of phospholipase C and activation of
extracellular regulated kinase (ERK) [68].
In addition to studies examining the role of SLP-76 in
model cell lines, two groups have reported a striking
immunologic phenotype in mice made deficient in the
SLP-76 gene by targeted disruption [69, 70]. Examina-

tion of the peripheral lymphoid organs in these mice
reveals the complete absence of T lymphocytes. Studies
of thymocytes in the knockout mice indicate that the
block in T cell development occurs at the CD3−/
CD4−/CD8−/CD25+/CD44− stage, a time during
T cell development when the pre-TCR must deliver a
signal indicating that it has rearranged correctly and is
functionally coupled to the cellular signal transduction
machinery. It is particularly striking that the block in

Figure 1. Adapter proteins involved in TCR signaling discussed in this review. The domain organization for each molecule is illustrated.
Abbreviations: SH2, src homology 2 domain; SH3, src homology 3 domain; TM, transmembrane domain; P-Y sites, tyrosine
phosphorylation site; PH, plextrin homology domain; PTB, phosphotyrosine-binding domain.
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Figure 2. Model for SLP-76 and LAT function as regulators of TCR signaling. Following TCR engagement, the src PTKs, lck and
fyn, are activated, leading to CD3 and ZAP-70 phosphorylation. Activated ZAP-70 phosphorylates SLP-76 and LAT initiating
ras/MAPK and PLC�1 signaling cascades. Tyrosine-phosphorylated LAT also recruits PLC�1 to the membrane, placing it in close
proximity with its substrate, PIP2. PIP2 is hydrolyzed to IP3 and DAG which leads to increases in cytosolic free calcium and
activation of protein kinase C (PKC). Tyrosine-phosphorylated LAT binds to the Grb2 SH2 domain which recruits Sos to the
plasma membrane thus promoting ras/ERK activation. Tyrosine-phosphorylated LAT binds to the Gads SH2 domain. Since Gads
constitutively associates with SLP-76, the SLP-76/Gads complex may be recruited to LAT thus promoting ras/MAPK and PLC�1
activation. Tyrosine-phosphorylated SLP-76 also associates with Vav, promoting the formation of a SLP-76/Vav/Nck/Pak complex
which may be important for the regulation of cytoskeletal rearrangements.

denotes phosphorylated tyrosine residues.

thymocyte development is more severe in SLP-76-defi-
cient mice than in mice lacking any single src family or
syk family PTK [71].
In contrast to the severe block in T cell development,
macrophages, natural killer cells, and platelets are present
in SLP-76-deficient mice. Early studies of macrophage
and natural killer cell function revealed that these com-
ponents of the immune system are grossly intact in the
SLP-76-deficient mice [72; P. S. Myung and G. Koretzky,
unpublished data]. This is somewhat surprising since
SLP-76 is inducibly phosphorylated in bothmacrophages
and natural killer cells when receptors utilizing ITAMs
are engaged. The lack of a functional defect in these
populations suggests that other adapter proteins may
serve the function of SLP-76 in these cells or that not all
ITAM-bearing receptors share the same requirements for
activating their downstream signaling machinery.

Interestingly, however, there is another significant abnor-
mality in SLP-76-deficient mice. When heterozygous by
heterozygous matings are established, instead of finding
the expected 25%knockoutmice, only 8%of SLP-76-defi-
cient progeny survive into adulthood.This earlymortality
correlates with diffuse fetal hemorrhage in SLP-76-defi-
cient mice [70, 73]. The bleeding diathesis continues into
adulthood, as SLP-76 null mice demonstrate persistent
peritoneal hemorrhage and mild anemia. Although
platelet counts are slightly low (approximately 70% of
normal), it is unlikely that thrombocytopenia is causal for
the fetal and adult hemorrhage. Analysis of platelet
function does reveal that platelets obtained from SLP-76-
deficient mice fail to aggregate or release granule material
in response to collagen, although platelet function as
assessed by these parameters is normal following stimu-
lationwith thrombin. This correlates with the finding that
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although collagen stimulation induces activation of the
syk PTK, PLC�2 phosphorylation is not seen in the
SLP-76-deficient samples [73, 74]. These data suggest
that in platelets, as in T cells, SLP-76 plays a critical
role to couple syk family PTKs with downstream sig-
naling events. Current investigations are underway to
determine if this defect in platelet signal transduction is
causal for the increased mortality of SLP-76-deficient
mice.
Similar to SLP-76, LAT was initially identified as a
Grb2-binding substrate of the TCR-induced PTKs [75].
Molecular cloning and subsequent analysis revealed
that this relatively non-abundant protein is expressed in
the detergent-insoluble glycolipid-enriched region of the
plasma membrane (GEM) [76]. Like SLP-76, LAT is
rapidly phosphorylated on tyrosine residues following
engagement of the TCR. The LAT phosphotyrosine
residues are in the correct orientation to bind the SH2
domains of several proteins known to be important for
the propagation of T cell activation signals.
SLP-76 and LAT expression share a similar tissue dis-
tribution [65, 77]. Additionally, both molecules play
critical roles in the regulation of T cell activation and
development. Although overexpression of LAT in the
Jurkat T cell line does not appear to augment TCR-me-
diated downstream activation events, studies of a LAT-
deficient Jurkat mutant illustrate the critical role played
by this molecule [78]. In this cell, TCR engagement fails
to result in downstream activation events leading to
interleukin-2 gene transcription. The biochemical sig-
naling defect in the LAT-deficient cells is similar to that
found in the SLP-76-deficient cell line described above
in that the TCR fails to couple effectively to the phos-
phatidylinositol second messenger pathway. It was,
therefore, not surprising when mice made deficient in
LAT expression via homologous recombination were
described to have a T cell phenotype identical to that of
the SLP-76-deficient mice [79]. Similar to the SLP-76
knockouts, LAT−/− mice appear to have grossly
normal macrophage and natural killer cell function.
Interestingly, unlike SLP-76-deficient mice, mice lacking
LAT do not demonstrate fetal hemorrhage or increased
mortality.
In a more recent study, LAT was shown to form a
multimolecular complex with the Fc� receptor and the
p85 subunit of phosphatidylinositol 3-kinase (PI3 ki-
nase) following collagen treatment in platelets [80]. Ad-
ditionally, it was shown that overexpression of LAT
leads to increased antibody-dependent, cell-mediated
cytotoxicity and natural cytotoxicity in natural killer
cells [81]. Thus, both LAT and SLP-76 appear to play
important roles in integrating signals mediated via a
number of cell surface receptors on various hematopoi-
etic cell types.

However, although SLP-76 and LAT play similar criti-
cal roles coupling engagement of the pre-TCR or ma-
ture TCR to downstream signaling events, it seems
likely that these two molecules function quite differently
at the molecular and biochemical level. Thus, there are
important distinctions between these two molecules in
terms of subcellular localization (LAT is a cell surface
protein whereas SLP-76 is expressed in the cytosol)
and in terms of the proteins with which each of
these adapter molecules interact. While many of these
intermolecular interactions have now been described,
the importance of the various molecular complexes
which are generated remains an area of intense investi-
gation.
Two major tyrosine phosphorylation sites have been
identified in the SLP-76 amino-terminal region. Inter-
estingly, both of these tyrosines (Y113 and Y128) fall
within an identical motif (DYESP) [82]. Several labora-
tories have shown that upon tyrosine phosphorylation
of SLP-76, there is an inducible association with the
SH2 domain of the protooncogene Vav [83–85]. This
guanine nucleotide exchange factor for small-molecular-
weight GTP-binding proteins plays a critical role in
reorganization of the cytoskeleton following TCR en-
gagement. Evidence has been presented suggesting that
the trimolecular complex between SLP-76, Vav, and
another adapter protein (Nck, which also binds to ty-
rosine-phosphorylated SLP-76) is critical for this cy-
toskeletal reorganization [86]. Although a series of
experiments have demonstrated that SLP-76 and Vav
act synergistically to augment TCR-mediated activation
of the interleukin-2 gene, more recent evidence suggests
that SLP-76 and Vav work in overlapping, but distinct
pathways to reach this endpoint [87]. Thus, while it is
possible that the association between SLP-76 and Vav is
required for cytoskeletal changes following TCR en-
gagement, it appears that the interaction between SLP-
76 and Vav is not required for these two proteins to
function synergistically to augment TCR-induced inter-
leukin-2 production.
The central proline-rich region of SLP-76 was initially
shown to bind to the Grb2 SH3 domains in in vitro
assays. It was difficult, however, to demonstrate an
association between SLP-76 and Grb2 in intact cells.
An explanation was provided by several recent studies
demonstrating that another Grb2 family member,
Gads, otherwise known as GrpL, or Grf4O, appears to
be the physiologically relevant binder of the proline-rich
region of SLP-76 in T lymphocytes [80–90]. Interest-
ingly, an identical cDNA was independently cloned by
another group using the yeast two-hybrid screen to
identify proteins that associate with autophosphoryla-
tion sites in the macrophage/monocyte colony stimulat-
ing factor (M-CSF) receptor (named MONA for
monocyte adapter protein) [91]. Overexpression of
MONA in bone marrow cells results in a reduction in
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M-CSF-dependent macrophage production in culture,
suggesting that MONA plays an important role in the
regulation of macrophage/monocyte development. The
observation that the Gads/SLP-76 complex can be de-
tected in intact cells unlike the Grb2/SLP-76 complex is
even more intriguing, as Gads has been shown addition-
ally to inducibly associate with LAT. Collectively, these
findings suggest the possibility that a SLP-76/Gads/
LAT complex may play a role in integration of TCR-
mediated signaling pathways.
The carboxy-terminal SH2 domain of SLP-76 associates
inducibly with another substrate of the TCR-stimulated
protein tyrosine kinases, SLP-76-associated phospho-
protein of 130 kDa (SLAP-130) [92], also known as
fyn-binding protein, or Fyb [93]. SLAP-130, like SLP-
76, is phosphorylated early upon TCR engagement.
Unlike SLP-76, which appears to be a substrate of
ZAP-70, SLAP-130 is phosphorylated by src family
kinases. Controversy remains regarding the role of
SLAP-130 as a regulator of T cell activation events.
This 130-kDa molecule is an adapter protein with no
known enzymatic activity. In addition to inducibly
binding to SLP-76 via SLAP-130 phosphorylation sites
and the SLP-76 SH2 domain, SLAP-130 associates con-
stitutively with another family of adapter molecules,
SKAP55 and its homologues [94–97]. SKAP-55 con-
tains an amino-terminal PH domain which mediates its
association with fyn while the carboxyl-terminal SH3
domain directs a constitutive association with SLAP-
130. The functional significance of the multimeric com-
plex of fyn/SLAP-130/SKAP-55 remains elusive but will
likely prove to be an interesting modulator of signaling
following TCR engagement. In some model systems,
overexpression of SLAP-130 appears to interfere with
SLP-76 function [91–98] while under other conditions,
SLAP-130 appears to work synergistically with fyn
along with SLP-76 to promote interleukin-2 gene tran-
scription [99]. Further evaluation of these and other
systems will be required to elucidate more precisely the
role of SLAP-130 in the regulation of signal transduc-
tion and the relationship between SLAP-130 and SLP-
76 as integrators of signaling cascades.
In addition to binding to Grb2 family members (includ-
ing Gads), LAT associates with a number of other
important signaling molecules in T cells following TCR
engagement. These include PLC�1 and PI3 kinase [75,
80]. It is clear, also, that LAT must be targeted to the
plasma membrane, both via its transmembrane domain
and fatty acid modifications for its most efficient func-
tion [76]. Additionally, LAT has been shown to localize
within GEMs following TCR engagement. These data
suggest that this adapter protein functions as a scaffold
to bring together a number of important effector
molecules within the TCR-initiated signaling complex.
Further structure/function analyses are required on

both SLP-76 and LAT to determine the importance of
the various intermolecular interactions described thus
far. The development of SLP-76- and LAT-deficient cell
lines as well as animals which lack either of these
important adapter molecules will be critical reagents for
these studies, which can now be performed in vitro, in
intact cells, and in whole animals.

Other adapter proteins which act as positive regulators

of lymphocyte activation

Tissue distribution studies reveal that, while expressed
in T cells, natural killer cells, and macrophages, neither
SLP-76 nor LAT is found in B lymphocytes. Concor-
dant with this observation, B cell function is intact in
SLP-76- and LAT-deficient mice [69, 70, 79]. Because
there are so many similarities between antigen-receptor-
mediated signaling events in B and T cells, it was likely
that molecules similar to SLP-76 and LAT would be
found to be important in B cell function. This has
proven to be the case as demonstrated by the cloning
and initial characterization of a SLP-76 homologue
BLNK (also known as SLP-65 and BASH), a cytosolic
adapter molecule which is phosphorylated rapidly upon
engagement of the B cell antigen receptor [100, 101].
Similar to studies with SLP-76, overexpression of
BLNK in B cell lines augments signal transduction
events while the generation of a BLNK-deficient
chicken B cell line demonstrates that BLNK is critical
for the antigen receptor to couple with its downstream
machinery [102]. Protein-protein interaction studies
have demonstrated intermolecular interactions between
BLNK and key effector molecules in B cell signal trans-
duction pathways, suggesting that BLNK is a func-
tional as well as structural homologue of SLP-76 [103,
104]. It is interesting, also, that BLNK is expressed in
macrophages and may provide an explanation for nor-
mal signal transduction by SLP-76-deficient
macrophages.
In addition to LAT, SLP-76, and related proteins, other
adapter molecules also play important roles in
lymphocyte activation. Among these are Shc, a ubiqui-
tously expressed cytosolic protein which is phosphory-
lated upon engagement of antigen and cytokine
receptors [105–107]. In a number of model systems, Shc
plays an important role in coupling receptor PTKs with
ras [61, 62]. In T cells, the importance of Shc in modu-
lating this particular signaling pathway is less well
defined. While Shc has been shown to inducibly associ-
ate with the � chain of the CD3 complex, recent studies
suggest that this intermolecular interaction is not re-
quired for coupling the TCR with ras [108]. There is
more compelling evidence to suggest that interleukin-2
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receptor signaling utilizes Shc and Shc-associated
proteins as it transduces its signals leading to cellular
proliferation [107, 109–111].
Recently, a number of other adapter molecules, some
of which are expressed exclusively in hematopoietic
cells and others more ubiquitously, have been iden-
tified. These include Nck which, as noted above, may
play a role in cytoskeletal reorganization along with
SLP-76 and Vav. The Wiskott-Aldrich syndrome
protein may play a key role in this process [112]. Fur-
ther studies taking molecular, biochemical, and ge-
netic approaches will be required to elucidate the role
played by each of these molecules in the regulation of
lymphocyte activation. Another recent study using the
yeast two-hybrid screen to identify syk PTK-interact-
ing proteins in B cells identified 3BP2 [113]. 3BP2
contains an amino-terminal PH domain, a central
proline-rich motif, and a carboxyl-terminal SH2 do-
main. In addition to syk, the 3BP2 SH2 domain asso-
ciates with ZAP-70, LAT, Grb2, PLC�1, and Cbl in
activated T cells. Overexpression of 3BP2 induces
transcriptional activation of the interleukin-2 pro-
moter and its NFAT and AP-1 elements [114]. Opti-
mal activity of 3BP2 is dependent on both its SH2
and PH domains, and requires functional syk kinases,
ras, and calcineurin. These studies suggest that 3BP2
may couple activated ZAP-70 or syk to a LAT-con-
taining signaling complex important for TCR-medi-
ated gene transcription.

Adapter proteins also function as negative regulators of

lymphocyte activation

In addition to adapter proteins functioning as positive
regulators of TCR-stimulated signaling pathways, evi-
dence has been presented demonstrating that some
adapters may also interfere with these second messen-
ger cascades. One example involves Cbl [115], an
adapter protein which contains an amino-terminal
phosphotyrosine-binding domain, a proline-rich re-
gion, and several tyrosine residues which are inducibly
phosphorylated following TCR engagement [116]. In
contrast to SLP-76, which when overexpressed in T
cells results in an augmentation of TCR-induced sig-
naling events, transient overexpression of Cbl dimin-
ishes TCR-dependent AP-1 activation [117]. This is
consistent with a previous observation that the Cbl
homologue found in Caenorhabditis elegans (Sli-1) in-
terferes with receptor-tyrosine-kinase-mediated activa-
tion of ras [118]. Figure 3 depicts two models for
mechanisms by which Cbl may regulate TCR-medi-
ated signaling events. The first is based on the obser-
vation that following TCR engagement, Cbl
disassociates from Grb2 and binds instead to CrkL

(another adapter protein) and C3G, a guanine nucle-
otide exchange factor for the small-molecular-weight
GTP-binding protein, Rap-1 [119–123]. This results in
activation of Rap-1 which binds to and sequesters
Raf-1, the kinase immediately downstream of ras.
This effectively prevents ras from binding and activat-
ing Raf-1, resulting in T cell unresponsiveness instead
of activation following TCR engagement [124].
A second model for Cbl interference with activation
events comes from the observation that in addition to
binding the CrkL/C3G complex, Cbl also associates
with other proteins in the cell. These include Vav, and
the p85 subunit of PI3 kinase. Additionally, tyrosine-
phosphorylated ZAP-70 and syk bind Cbl via the Cbl
PTB domain [125–128]. The importance of this inter-
molecular interaction was revealed by studies demon-
strating that when Cbl binds to syk family PTKs, the
kinases are targeted for degradation, effectively termi-
nating signal transduction events [129].
Recently, another transmembrane adapter protein
(SHP-2-interacting transmembrane adapter protein, or
SIT) was described. SIT is a disulfide-linked homod-
imer which associates with the TCR complex [130].
Sequence analysis revealed that instead of possessing
an ITAM, SIT contains a cytoplasmic immunorecep-
tor tyrosine-based inhibition motif (ITIM). ITIMs are
tyrosine-based motifs found in the cytoplasmic do-
mains of many cell surface molecules that are also
inducibly phosphorylated following receptor engage-
ment. Instead of binding PTKs, however, ITIMs have
been shown to recruit protein tyrosine phosphatases
or lipid phosphatases, resulting in the termination of
signaling events [131]. Following its tyrosine phospho-
rylation, SIT recruits the SH2-domain-containing ty-
rosine phosphatase, SHP-2. Since SHP-2 has been
implicated as a negative regulator of lymphocyte acti-
vation, this observation suggested the possibility that
SIT could interfere with TCR-mediated signaling.
Support for this potential role came from overexpres-
sion studies where transfection of SIT into the Jurkat
T cell line downregulates TCR as well as phyto-
hemaglutinin-mediated activation of the NFAT re-
sponse element of the interleukin-2 gene. Biochemical
analysis suggests that the inhibition of TCR function
occurs upstream of activation of PLC� l. Interestingly,
however, it was shown that binding of SHP-2 to SIT
is not required for the inhibition of NFAT activation,
suggesting that the role of SIT in lymphocyte function
is more complex than merely recruitment of a phos-
phatase to the TCR complex.
In addition to adapters serving negative regulatory
roles by inducing protein-protein interactions, an in-
teresting series of experiments have recently demon-
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strated that adapters may interfere with signaling by
blocking the recruitment of important effector
molecules. Sap (for SLAM-associated protein) [132]
was recently identified as a T-cell-specific protein pos-
sessing a single SH2 domain followed by a short car-
boxyl-terminal tail. The Sap SH2 domain allows Sap
to be recruited to the plasma membrane following en-
gagement and tyrosine phosphorylation of a
transmembrane protein, Cdw-150, also known as
SLAM. Binding of Sap to SLAM prevents the associ-
ation of other SH2-domain-containing molecules with
SLAM. Interestingly, in the absence of Sap, inducible
phosphorylation of SLAM results in the recruitment
of SHP-2, the tyrosine phosphatase described above.
The biologic importance of Sap function has been un-
derscored by the demonstration that mutations in the
Sap gene, including those which interfere with the in-
ducible association of Sap to SLAM, are causal for
X-linked lymphoproliferative (XLP) syndrome [132,
133], a disorder characterized by uncontrolled expan-
sion of B cell populations which have been infected
with Epstein Barr virus [134]. It remains unclear
whether the pathogenesis of this disorder relies upon
the failure of Sap to compete with SLAM-associated
SHP-2 or whether other protein-protein interactions
are dysregulated. Further studies of the signal trans-

duction defects in lymphocytes isolated from patients
with XLP should shed light on the precise mechanism
by which Sap functions in lymphocyte activation
[135].
A more recent study investigated Sap function in nat-
ural killer cell activation [136]. Since SLAM is ho-
mologous with the mouse cell surface receptor 2B4,
the human homologue of 2B4 was identified and
shown to be tyrosine phosphorylated following per-
vanadate treatment of transfected cells leading to the
recruitment of SHP-2. SAP was shown to be recruited
to 2B4 in activated cells, and the 2B4-SAP interaction
prevented the association between 2B4 and SHP-2.
This study shows that in addition to SLAM, other
cell surface molecules utilize SAP as a signaling
adapter protein. This finding may also be important
for understanding the pathogenesis of XLP. In this
regard, another recent study provides evidence sug-
gesting that engagement of SLAM also enhances
lymphocyte apoptosis mediated via the CD95 signal-
ing pathway [137]. This report showed an association
between SLAM and SH2-domain-containing inositol
phosphatase (SHIP), although the importance of the
SLAM/SHIP interaction in the regulation of signaling
events remains unknown.

Figure 3. Schematic illustration of signals thought to inhibit TCR-induced signaling. Following TCR ligation, ZAP-70 phosphory-
lates Cbl promoting the association of Cbl with target proteins such as CrkL and syk family PTKs. Association of Cbl with the syk
family PTKs leads to the degradation of the kinases, thereby blocking further signal transduction. Formation of the Cbl/CrkL/C3G
complex promotes the activation of Rap-1.

denotes phosphorylated tyrosine residues.
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Summary

In recent years, many components of the signal trans-
duction machinery linking antigen recognition with
downstream biologic events have been identified and
characterized. These include the antigen receptors, the
enzymes responsible for initiating signaling events and,
most recently, adapter molecules which mediate impor-
tant protein-protein interactions. While additional ef-
fector and adapter molecules certainly have yet to be
identified, one of the major challenges facing investiga-
tors interested in lymphocyte signal transduction is to
examine the cell biology of the molecular scaffolds upon
which signaling complexes are built. This will involve
investigations into the spatial localization and temporal
formation of multimeric molecular complexes with pre-
cise attention to which molecules are included and
which precluded from the various signaling complexes.
These studies will continue to make use of the genetic,
molecular, and biochemical tools currently being em-
ployed to identify the components of the signal trans-
duction cascades, as well as sophisticated imaging
techniques to visualize the molecular complexes in real
time in intact cells.
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