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Abstract

» New knowledge about the molecular biology of fracture-healing provides opportunities for 

intervention and reduction of risk for specific phases that are affected by disease and medications.

» Modifiable and nonmodifiable risk factors can prolong healing, and the informed clinician 

should optimize each patient to provide the best chance for union.

» Techniques to monitor progression of fracture-healing have not changed substantially over time; 

new objective modalities are needed.

Background and Epidemiology

Skeletal injuries comprise an important socioeconomic burden in the United States, with 

12 to 15 million fractures annually, resulting in lost wages and functional impairment 

until healing occurs1. While many fractures will heal successfully, up to 10% proceed to 

nonunion, a clinical state that causes additional morbidity, prolonged recovery, and expenses 

to the medical system2,3. Establishing a diagnosis of nonunion is difficult because the 

essence of nonunion is an inappropriate biologic response to pathology over the time course 

of normal fracture-healing. Prolonging interventions for nonunion can result in additional 

pain, disability, and uncertainty that imparts a burden on a patient’s quality of life.
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Fracture care employs fundamental principles of stabilization to support mobilization 

and encourage immediate weight-bearing with many lower-extremity fractures. Fractures 

heal through 2 primary pathways, with the contribution of each depending on the strain 

profile and the biologic microenvironment at the fracture site. Primary bone-healing, or 

intramembranous ossification, occurs along the periosteal surface adjacent to the fracture 

and across minimal fracture gaps when absolute stability of <2% of mechanical strain is 

achieved4. The process of intramembranous ossification was originally described by Robert 

Danis as “self-welding”5 to describe haversian remodeling and migration of lamellar bone 

across these compressed stable fractures with a minimal gap6. Secondary bone-healing, or 

endochondral ossification, is the predominant form of healing in the majority of diaphyseal 

fractures. While intramembranous repair still occurs to seal off the ends of the bone 

and along the periosteal surfaces of the bone adjacent to the gap, a cartilaginous callus 

forms within the fracture gap, and the process of endochondral ossification describes 

mineralization and remodeling of the cartilage into bone. The cartilaginous callus thus aims 

to provide intermediate stability across the fracture gap during bone healing; John Charnley 

stated that “nature has thus done its own internal fixation.”7 Multiple microenvironmental 

factors drive osteochondral progenitors to a chondrogenic fate, including increased 

micromotion at the fracture site associated with larger gap size and mechanical strains 

between 2% and 10%, decreased oxygen tension, and lack of vascularization8,9. In order for 

bone to successfully heal, a series of properly timed molecular interactions must occur at 

the fracture site and in concert with systemic biology. Understanding biologic contributions 

and how they are affected by various risk factors can help guide individual treatment plans 

for patients and better predict the risk of nonunion. This review will focus on diaphyseal 

endochondral ossification and describe the phases of healing along with the perturbations 

and the opportunities for augmentation of each phase.

Phases of Bone-Healing

Inflammatory Phase

The inflammatory phase is classically considered the first phase of fracture-healing. At the 

time of fracture, intracortical, endosteal, and periosteal vessels are sheared, producing a 

fibrin-rich hematoma. Evacuation of the hematoma at 4 to 7 days after fracture or repeated 

irrigation and debridement of the fracture site can delay bone-healing, but is often necessary 

to debride devitalized tissue in order to reduce the risk of infection10,11. Chemokines 

that are released from activated platelets within the hematoma promote the migration of 

macrophages and neutrophils to the fracture12 (Fig. 1). These cells debride devitalized tissue 

and promote the recruitment of inflammatory cells through the release of proinflammatory 

cytokines that include tumor necrosis factor-alpha (TNF-α) and interleukins-1 and 6 (IL-1 

and IL-6)13–16 (Fig. 2). This proinflammatory phase is important for the recruitment of 

progenitor cells that originate from the periosteum, the bone marrow, the soft tissue, 

and the systemic circulation. Proliferation and differentiation of these progenitor cells 

is modulated by the release of growth factors that include bone morphogenetic proteins 

(BMPs), transforming growth factor-beta (TGF-β), fibroblast growth factor (FGF), platelet-

derived growth factor (PDGF), and insulin-like growth factor (IGF) from the inflammatory 

cells13–16.
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Careful cellular resolution of the inflammatory phase, through a shift from a 

proinflammatory macrophage (M1)-dominant state to the pro-reparative anti-inflammatory 

macrophage phenotype (M2), is critical to ensure proper healing17–19. This process is 

regulated through a complex positive feedback loop such that depletion of the macrophages 

or disruption of the initial proinflammatory signaling pathways will delay proper healing9. 

However, subsequent modulation of the inflammatory state to promote an M2 phenotype 

may be a potential target for augmentation of bone-healing. Stem cells are known to 

have a powerful anti-inflammatory secretome that likely plays a role in the resolution 

of inflammation. The biochemical milieu also influences macrophage polarity, and recent 

work suggests that endogenous or exogenous BMPs at the fracture site can promote M2 

differentiation20–22.

Systemic inflammatory conditions, such as diabetes mellitus and rheumatoid arthritis, 

exhibit prolonged healing responses and elevation of inflammatory cytokines at the fracture 

site, suggesting that excessive inflammation, at least partially, contributes to delayed 

repair23–25. Failure to resolve inflammation in these states may impair later healing 

processes, including angiogenesis, osteoclast recruitment, and deposition of bone; however, 

the exact mechanisms of chronic inflammation that cause delayed bone-healing are not 

completely understood26.

Debate exists regarding the effects of anti-inflammatory medication on fracture-healing. 

Prostaglandins released from inflammatory cells have a multitude of positive effects 

on subsequent phases of fracture-healing to promote bone formation27. Animal studies 

have demonstrated that cyclooxygenase-2 (COX-2) inhibition with nonsteroidal anti-

inflammatory drugs (NSAIDs) or gene knockout will impair healing. Decreased expression 

of COX-2 has been observed in the fractures of older mice, which may partially 

explain prolonged healing with aging28. Limited human data suggest that there may 

be a dose-dependent relationship with prolonged NSAID use, but data currently remain 

inconclusive29–32. Similarly, long-term corticosteroid use can delay bone-healing, but 

through more complex mechanisms than just the anti-inflammatory effects33–35. There exists 

a growing body of literature that NSAID use at clinically relevant dosing likely does not 

impair fracture-healing, and this supports the use of NSAIDs in the perioperative period 

without conferring additional nonunion risk36–40. NSAIDs should be used judiciously in 

patients with suspected risk factors for nonunion to avoid a potential compounding effect41.

Fibrovascular Phase

The next phase of healing is directed toward angiogenesis, stem cell recruitment, 

proliferation, and differentiation. The process of angiogenesis is critical during fracture 

repair as it provides a source of cells, oxygen, nutrients, and waste removal for the 

healing tissue. Angiogenesis relies on multiple signaling molecules and their receptors, most 

notably vascular endothelial growth factor (VEGF)9,42. Many animal studies have implicated 

hypoxia and poor blood flow as direct causes of delayed union, and blockade of the VEGF 

receptor with bevacizumab has directly delayed healing43–45. Diseases associated with 

delayed healing, including diabetes mellitus, demonstrate decreased levels of VEGF and 

angiogenesis, which can be reversed by treatment with TNF-α inhibitors46. Interestingly, 
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atrophic nonunion tissue has a similar content of VEGF expression and vascularity to 

normal healing tissue; thus, it is likely that an unbalanced ratio between vasculogenic and 

osteogenic factors contributes to impaired healing47,48.

The osteochondral progenitor cells that give rise to the fracture callus are recruited locally 

from the bone (the endosteum and the periosteum), the surrounding soft tissue, the bone 

marrow, and the circulation49–52. Periosteal and endosteal stem cells within the bone both 

make a contribution to the fracture callus53,54. As such, the functional consequence of 

surgical techniques that disrupt either of these populations should be considered. Aggressive 

soft-tissue handling, including periosteal stripping and muscular manipulation, impairs 

fracture-healing by altering blood supply, but it is likely that evacuation of stem cells is 

at least partially responsible as well51,55. Although intramedullary reaming has been shown 

to disrupt valuable endosteal blood supply, the Study to Prospectively Evaluate Reamed 

Intramedullary Nails with Tibial Fractures (SPRINT) trial prospectively demonstrated that 

reaming for tibial nails may instead decrease the rate of nonunion56,57. Interestingly, 

intramedullary reaming also increases marrow progenitor cells at the fracture site and 

reduces inflammatory cytokines, effectively pushing the progression of healing to the 

fibrovascular phase on postoperative day zero58. In the setting of hypertrophic nonunion, 

undifferentiated stem cells contained within the fracture callus maintain their ability to 

differentiate to osteogenic or chondrogenic cells, which may offer a target for nonunion 

intervention59.

Bone Formation

In addition to the direct differentiation of progenitor cells to bone during intramembranous 

bone repair, chondrocytes within the fracture gap give rise directly to bone through 

endochondral repair60 (Fig. 3). Conversion of cartilage to bone begins with proliferation 

and hypertrophic maturation of the chondrocytes in order to create a temporary bridge 

across the bone gap61. These hypertrophic chondrocytes are highly bioactive and secrete 

angiogenic factors, including VEGF, PDGF, and placental growth factor (PlGF), along 

with nerve growth factor (NGF), to recruit the neurovascular bundle into the avascular, 

aneural cartilage anlagen62,63. Vascular invasion causes mineralization of the cartilage 

matrix through secretion of the osteogenic promoters BMP and Wnt60,64–67. At this point, 

the unique cellular and mechanical microenvironment seems to support phenotypic plasticity 

within the chondrocytes so that they can either become osteoblasts that form the new hard 

callus, undergo apoptosis to form the marrow cavity, or potentially dedifferentiate to give 

rise to osteochondral progenitors in the bone-lining tissue through a conserved process that 

recently has been defined as palingenesis60,68,69.

Clinical opportunities to augment fracture-healing have focused on 3 critical molecular 

pathways that are known to regulate chondrogenesis and osteogenesis at various phases 

of repair: BMPs, Wnt/β-catenin, and parathyroid hormone (PTH) derivatives. BMPs 

are canonical osteogenic proteins that are required for effective fracture repair and are 

expressed by inflammatory cells, vascular endothelial cells, and muscle stem cells to 

modulate to fracture repair65,66,70–72. Interestingly, BMPs play an important role in both 

intramembranous and endochondral fracture-healing. This potent osteogenic effect has led to 
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the development of BMP-2 as a therapeutic agent. While predominantly approved for use in 

spinal fusion, BMP-2 does have U.S. Food and Drug Administration (FDA) approval for the 

narrow indication window of surgical implantation involving acute open tibial shaft fractures 

that are stabilized with an intramedullary nail and treated within 14 days of the initial injury. 

Off-label application has been used to treat other types of fractures, and clinical evidence for 

efficacy was nicely summarized by Nauth et al.73 (Fig. 4). This success is balanced by the 

high product costs and reports of severe side effects, including heterotopic ossification and 

cancer74.

Similarly, Wnt/β-catenin signaling has a well-established osteogenic role and is important 

during both the intramembranous and endochondral phases of fracture-healing75. 

Dysregulation of this pathway can contribute to impaired fracture-healing and has been 

associated with age-related delayed healing76. Binge alcohol exposure prior to fracture 

has been shown to decrease β-catenin levels in mice and may contribute to poor healing 

outcomes that are associated with alcohol abuse77. Conversely, therapeutic activation is 

being explored as a novel pathway to promote healing. Interestingly, activation of Wnt/β-

catenin by low-dose lithium administration improves callus mineralization and torsional 

strength and can attenuate the effects of alcohol exposure78,79. More recently, there has 

been clinical interest in the use of the romosozumab antibody that blocks the Wnt/β-catenin 

inhibitor sclerostin in order to indirectly increase signaling. While early evidence showed 

enhanced bone mass and strength after fracture in animal studies, follow-up studies have not 

demonstrated the same efficacy in large human trials80–85.

Teriparatide and abaloparatide are promising PTH and PTH-related protein (PTHrP) analog 

drugs that may be able to enhance fracture-healing86. PTH and PTHrP function to 

maintain calcium homeostasis via a negative feedback loop and promote normal cartilage 

maturation during endochondral ossification. Animal studies clearly show that intermittent 

PTH therapy promotes fracture-healing and suggest a strong therapeutic potential of PTH87. 

Mechanistically, PTH therapies result in proliferation of the fracture callus progenitors and 

enhanced soft callus formation that ultimately lead to accelerated union rates and increased 

mechanical strength due to improved bone mineral quality88–93. Clinical studies offer a less 

certain view of efficacy, partly due to variability in doses, fracture sites, and patient age, with 

much more limited data comparing the efficacy of teriparatide and abaloparatide86,87,94. 

Future studies will be necessary to further delineate the therapeutic potential of PTH/PTHrP 

analogs for fracture-healing in humans.

Widespread prevalence of hypovitaminosis D raises concern for delays in fracture-healing95. 

Vitamin D has been implicated in every stage of fracture-healing, but most importantly 

during the mineralization phase96. Although deficiency is associated with nonunion, 

decreased bone turnover, and increased fracture risk, there is mixed evidence as to the 

clinical importance of vitamin D as a causal factor for nonunion97,98. Supplementation in 

fracture cases can increase bone mineral density and callus area; however, no universal 

guidelines for vitamin D supplementation exist99. A recent survey among members of the 

Orthopaedic Trauma Association (OTA) and the Canadian Orthopaedic Trauma Association 

(COTA) established that the most common dosing strategies in fracture patients were 1,000 

IU daily (14.6%) and 2,000 IU daily (13.4%) among fellowship-trained traumatologists, 
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demonstrating little to no agreement99. A systematic review concluded that while vitamin D 

supplementation clearly increases 25-hydroxyvitamin D (25[OH]D) serum levels, no studies 

exist that definitively demonstrate that this impacts fracture-healing100.

Remodeling

Hard callus remodeling is the final phase of fracturere repair and can continue for several 

years. Haversian remodeling is orchestrated in part by osteoclasts to exchange woven to 

lamellar bone. Osteoporosis medications, such as bisphosphonates or the RANKL (receptor 

activator of nuclear factor-κB ligand) inhibitors denosumab and osteoprotegerin, delay 

remodeling in animal studies and cause changes in the material properties of fracture 

callus, including increased strength and decreased ultimate stress101,102. Meta-analyses of 

human studies have not demonstrated a delay in healing with bisphosphonate use; thus, 

many recommend the continuation of osteoporosis medication after a fracture because 

the risk of secondary fracture outweighs the potential consequence for fracture-healing103–

105. There is a known phenomenon with prolonged bisphosphonate use that results in 

deranged remodeling, leading to osteonecrosis of the jaw and stress fractures, most notably 

in the subtrochanteric femoral region. These occur in <5% of bisphosphonate users and 

have proven difficult to heal106. The American Society for Bone and Mineral Research 

recommends reevaluation after 3 to 5 years of use of bisphosphonates to minimize these 

complications107.

Defining Nonunion

Disruption or failure of the normal cascade of fracture-healing will result in bone nonunion. 

The FDA defines a nonunion as any fracture that is 9 months old and has not shown 

evidence of fracture-healing in 3 months108. Clinicians utilize subjective patient reports, 

serial physical examinations, and radiographic evidence of mineralization across the fracture 

site to help determine union; however, the fracture-healing timeline and definitions are not 

universally agreed upon in the orthopaedic community109,110. This variability also exists 

in the European community, with even less consensus between orthopaedic and trauma 

surgeons who both treat fracture nonunions111.

Nonunions can be classified as hypertrophic, atrophic, or oligotrophic. Hypertrophic 

nonunions form a soft callus that fails to convert to bone due to excessive micromotion 

at the fracture site from lack of proper stabilization. The fracture callus is typically 

enlarged on radiographs and is unstable to weight-bearing. Atrophic nonunions present 

because of inadequate formation of bone in the callus, and often are attributable to 

inadequate micromotion at the fracture site and/or a suboptimal local or systemic healing 

environment112. Atrophic nonunions were originally thought to be formed by poor vascular 

flow to the fracture site. Recent studies have shown that atrophic non-union tissue 

contains similar vascular density to hypertrophic nonunions and normally healing bone, 

although the role of vascular contribution is not completely understood113. Oligotrophic 

nonunions fit neither criterion and are not hypertrophic in their tissue response, nor are 

they avascular; they often occur with inappropriate alignment and proximity of the fracture 

fragments. Both atrophic and hypertrophic tissue retain the ability to differentiate into 
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osteogenic, chondrogenic, and adipogenic cells in vitro; however, atrophic tissue has much 

less osteogenic potential and greater senescence, and it can impair the differentiation of 

surrounding cells59,114.

Risk Factors for Developing Nonunion

Nonmodifiable Risk Factors

Injury severity is the strongest predictor of nonunion. In a nationwide study of 309,330 

patients, the number of fractures healing at 1 time point was most predictive for nonunion, 

with an odds ratio of 2.6540. A systematic review by Santolini et al. found that an 

open fracture and a need for open reduction were the variables with the highest level of 

evidence115. Aside from osseous involvement, soft-tissue injury produces a compromised 

local environment that impairs bone-healing116,117. Soft-tissue injury that is severe enough 

to warrant flap coverage or fasciotomy for compartment syndrome can increase the risk 

of nonunion up to 20%118,119. Additional wound complications, including infections, 

can compromise fracture-healing120, although an in-depth discussion of septic nonunion 

is outside the scope of this article. Concomitant thoracic and hemorrhagic injuries are 

common in polytrauma fracture cases. Well-controlled animal studies have demonstrated 

an enhanced inflammatory response and impaired bone and callus formation after fracture 

with hemorrhagic shock121–123. Subsequent resuscitation produces a larger callus size and a 

prolonged remodeling phase, suggesting that resuscitation may confer additional benefits for 

trauma patients in these cases124. Interestingly, traumatic brain injury is observed to enhance 

fracture-healing in patients with polytrauma, although the neuro-inflammatory mechanisms 

of this phenomenon are not completely understood125. Recent controlled animal studies 

demonstrated that healing responses and serum inflammatory profiles were more robust 

when fractures occurred contralateral to brain injury, suggesting the importance of neuronal 

crossover in modulating healing126.

The impact of age on fracture-healing is not well understood. Elderly patients have an 

elevated risk of sustaining a fracture, and healing may progress more slowly than in 

younger patients, perhaps because of osteoporosis127. Age has been demonstrated as an 

independent risk factor for clavicle nonunion in patients between the ages of 20 and 46 

years128. However, examination of >47,000 Medicare patients revealed that more elderly 

(>75-year-old) patients have a surprisingly lower rate of nonunion compared with their 

younger (<69-year-old) counterparts, suggesting that other factors such as mobility or injury 

severity may have primacy129. Although there are no remarkable differences in the relative 

expression of genes or the ratio of cartilage to bone in fracture callus of elderly mice, 

overall callus size is decreased130. These findings are likely due to inflammatory response 

derangement, decreased vascularity, and poor proliferation and differentiation of cells131–

134. Although the molecular and cellular mechanisms for delayed bone-healing in older 

patients are not fully understood, additional research has begun to address this complex 

issue135–138.
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Modifiable Risk Factors

Systemic factors impact bone-healing, and patients must optimize modifiable behaviors 

to decrease the risk of non-union (Fig. 5). Obesity alone has not been shown to be 

an independent risk factor for fracture-healing in human studies, but animal studies 

have demonstrated that obesity increases risk of delay in union and is associated 

with an exaggerated inflammatory response after fracture139–142. Diabetes is a common 

comorbidity of obesity and prolongs bone-healing through impaired vascularization, 

immune dysregulation, and poor callus mineralization143. Patients with diabetes have 

demonstrated higher rates of nonunion after ankle fractures, whether treated operatively 

or non-operatively, and this phenomenon remains uninvestigated in other injuries144,145. 

In animal studies, administration of insulin locally can help rescue this phenotype and 

return fractures to a normal healing trajectory139,140,146–148. Interestingly, obese patients can 

be malnourished, resulting in metabolic derangements that delay fracture-healing149. The 

correction of metabolic or endocrine abnormalities should be addressed in every patient as it 

can be sufficient to promote union in patients with nonunion150,151.

Smoking status is the lifestyle factor with the greatest amount of evidence that is correlated 

with risk of nonunion115. In a systematic review, Pearson et al. found that smokers have 

a 2.2-fold higher risk of developing a nonunion and display prolonged healing times after 

nonunion surgery152. Others have correlated this latter finding with greater amounts of pain 

as well as disability153. Among a variety of other perturbations in the healing cascade, 

inhibition of stem cell migration by nicotine is at least partially responsible for this delay154. 

Smoking cessation is arguably the most important intervention a patient can undergo to 

decrease the risk of nonunion after fracture. In smokers, cessation for the first 6 weeks 

after fracture surgery has been shown to significantly decrease the risk of postoperative 

complications155.

Many medications interact with fracture biology; however, few are more widely utilized 

in the fracture setting for pain management than opioids and NSAIDs. The effects of 

NSAIDs have long been investigated, but few studies have investigated the risk of nonunion 

with opioid use. The epidemic of opioid abuse has brought to light the dangers of 

overprescribing; however, opioids are still an effective pain medication156. In a retrospective 

review of 309,330 fractures, opioid use was associated with prolonged healing, even when 

controlling for age, sex, number of fractures, and smoking status, and the risk of nonunion 

was almost double for chronic opioid users157. Animal studies demonstrated that those 

that were treated with opioids had smaller callus volume and delayed maturation of callus 

after 8 weeks compared with healthy controls158. There are little human data on the causal 

relationship between opioid use and nonunion; perhaps increased cultural acceptance of 

multimodal analgesia will allow for comparative studies.

Military Extremity Trauma

Ongoing military conflicts have led to an increased incidence of combat-related traumatic 

injuries159,160. Over 75% of modern war injuries involve the extremities, with contaminated 

open fractures and bone and tissue loss from explosive devices160,161. Complications in 

fracture-healing, such as delayed union or nonunion, are estimated to occur in approximately 
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10% to 20% of normal civilian injuries. In contrast, nonunion rates as high as 50% have 

been reported at 1 year after injury for open tibial fractures that were sustained during 

combat, in part due to an increased occurrence of infection162,163. Unfortunately, a return-to-

duty rate of only 22% is reported for American soldiers with isolated type-III open tibial 

fractures, which is less than half of the return-to-work rate for similarly severe injuries in the 

civilian population164,165. These injuries also lead to emotional and psychiatric dysfunction, 

and less than half of soldiers sustaining high-energy extremity trauma ever resume civilian 

employment161.

Monitoring Fracture-Healing

The measurement of fracture-healing remains an unsolved clinical problem; there is no 

universal consensus on the best method to make this assessment in a quantitative fashion166–

176.

Clinical Assessment

Clinical assessment is commonly relied upon as a gross measurement of fracture-healing, 

despite poor reliability and subjectivity177. The most common assessment methods are 

presence of pain, tenderness with palpation, and ability to bear weight on the affected 

limb178. Patient-reported scoring systems reflect functional capabilities and restrictions but 

are unable to directly assess fracture biology. In low-resource settings, such as in low and 

middle-income countries, clinical judgment is sometimes the only available method179. New 

and simple clinical instruments, such as the squat-and-smile test, may provide outcome 

predictions with strong interrater reliability180.

Imaging

Serial radiography is the most common method to track fracture-healing over time, but 

this method is subjective and fallible. Experts blinded to other clinical information struggle 

to gauge healing status and can change their opinion in 40% of cases when unblinded181–

183. Opinion varies between radiologists and orthopaedic surgeons analyzing radiographs; 

the use of standardized scoring systems can help decrease this discrepancy109,181. The 

Radiographic Union Score for Tibial Fractures (RUST) was developed in 2010 to 

standardize qualitative radiographic scoring166. The RUST score grades callus progression 

on 4 cortices and correlates with callus strength and rigidity. In a large validation study, 

90% of orthopaedic traumatologists agreed that a score of 10 on the RUST and 13 

on the modified RUST should correlate with union167. The ability to objectively and 

qualitatively measure fracture-healing is an improvement over subjective opinion, increasing 

intraobserver reliability. Similar methodology can be used in metadiaphyseal tibial, hip, and 

distal radial fractures168,184. Evidence of cortical bridging and use of these scoring systems 

demonstrate strong interrater reliability169,185,186. The Nonunion Risk Determination tool 

is a predictive model that is based on 7 factors that are associated with tibial nonunion, 

primarily depending on a strong association of patient health and the severity of injury with 

nonunion170.

Hellwinkel et al. Page 9

JBJS Rev. Author manuscript; available in PMC 2024 June 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Radiographic scoring systems remain indirect assessments of fracture biology and are 

limited in their efficacy. Assessment is difficult during the initial phases of fracture-healing 

before mineralization, as well as when implants obscure the view of the fracture site171. 

New computerized algorithms can predict stages of healing and mechanical strength based 

on radiographs, which may help improve reliability187. Other imaging modalities can be 

helpful to determine if a fracture has failed to heal, including computed tomography (CT), 

ultrasound, and nuclear medicine; however, these modalities carry their own risks and are 

not commonly used to monitor early fracture-healing172,188. Implantable smart devices, such 

as plates and intramedullary nails, are being developed to provide telemetric information of 

strain through a fracture189,190. These devices allow for live assessment of biomechanical 

properties during the formation of soft callus and conversion to bone and are correlated with 

histologic and micro-CT data of bone-healing in preclinical models191.

Serologic Markers

A serum biomarker could allow for the quantification of fracture-healing. Identification 

of a marker with stable basal levels in circulation and perturbation specific to only 

fracture-healing has yet to be definitively established. Many have been investigated but 

are nonspecific and are involved in immunologic cascades, growth factors, markers of bone 

turnover, and cellular signaling molecules173–175. Many vary by age, sex, and metabolic or 

endocrine derangement, which is found in up to 84% of patients with nonunion, limiting 

their use as a specific biomarker150. Unsuccessful attempts have been made to correlate 

TGF-β with fracture-healing192. Proteins associated with osteoclast activity such as tartrate-

resistant acid phosphatase 5b and C-terminal cross-linking telopeptide of type-I collagen 

have shown greater promise to evaluate nonunion, but they are not useful in the early 

phases to predict a healing trajectory193. The use of many biomarkers consecutively in a 

predictive algorithm is potentially more optimal. A recent proteomic study demonstrated 

time-dependent changes in 850 proteins, which could be clustered throughout phases of 

fracture-healing to yield 50 candidate biomarkers194. At this time, it is not feasible to 

characterize the proteome of every patient with a fracture at every visit, but these data 

provide a map to further investigate combinations that can guide a predictive model of 

fracture-healing.

One promising candidate that is specific for cartilage to bone conversion has 

emerged: collagen X. This extracellular matrix protein is synthesized by hypertrophic 

chondrocytes during endochondral fracture-healing and is associated with vascularization 

and mineralization of the cartilaginous callus195. Recently, a repeatable and reliable assay 

has been validated for the measurement of a collagen X degradation fragment from serum 

(“CXM”)196. This biomarker was tested primarily in the skeletally immature in order to 

predict growth trajectories, but a small series with 3 patients showed strong correlation 

between CXM and progression of fracture-healing196. Preclinical data demonstrated that 

this collagen X biomarker correlates with normal fracture-healing in male and female 

mice and that the kinetics of the biomarker appropriately correlated with gene expression 

and histomorphometric quantification of fracture callus composition176. Clinically, this 

promising avenue remains in development.
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Overview

Current definitions and assessment of union are inconsistent and vary based on expert 

opinion. There exists a clinical need for a superior assessment method to quantify fracture-

healing and define union. The biology of fracture-healing compels us to optimize modifiable 

patient factors to provide the best opportunity for union, which is best achieved through 

local and systemic biology working in conjunction with biomechanical stability. Circulating 

biomarkers are appealing future targets for clinical development to track progress, but to 

date, none have been validated or are specific for fractures. Additional research is required to 

identify an accurate and reliable measurement of union.
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Fig. 1. 
The key steps of endochondral ossification during fracture-healing and examples of common 

perturbations that disrupt the respective phases. VEGF 5 vascular endothelial growth factor. 

(Reproduced, with modification, from: Bahney CS, Hu DP, Miclau T III, Marcucio RS. 

The multifaceted role of the vasculature in endochondral fracture repair. Front Endocrinol 

[Lausanne]. 2015;6:4, under Open Access License CC BY 4.0.)
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Fig. 2. 
The role of immune cells during fracture repair14. Bone fracture-healing can be viewed as 

a 4-stage process. Immune cells play important roles throughout this process; however, a 

majority of their activity occurs during the early stages of fracture-healing. IL = interleukin, 

TNF-α = tumor necrosis factor-alpha, PDGF = platelet-derived growth factor, TGF-β = 

transforming growth factor-beta, MCP1 = monocyte chemoattractant protein-1, MIP-1 = 

macrophage inflammatory protein-1, CXCL = C-terminal crosslinking telopeptide of type-I 

collagen, BMP2 = bone morphogenetic protein-2, VEGF = vascular endothelial growth 

factor, NK = natural killer, IFN-γ = interferon gamma, RANKL = receptor activator of 

nuclear factor-κB ligand, and OPG = osteo-protegerin. (Reproduced from: Baht GS, Vi L, 

Alman BA. The role of the immune cells in fracture healing. Curr Osteoporos Rep. 2018 

Apr;16[2]:138–45, under Creative Commons Attribution 4.0 International License.)
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Fig. 3. 
Chondrocyte to osteoblast transformation. Alpha-SMA = alpha smooth muscle actin. 

(Reproduced from: Bahney CS, Zondervan RL, Allison P, Theologis A, Ashley JW, Ahn 

J, Miclau T, Marcucio RS, Hankenson KD. Cellular biology of fracture healing. J Orthop 

Res. 2019 Jan;37[1]:35–50.)
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Fig. 4. 
Summary of grades of recommendation for BMP use in open fractures73. (Reprinted 

from: Injury 40[Suppl 3], Nauth A, Ristiniemi J, McKee MD, Schemitsch EH. Bone 

morphogenetic proteins in open fractures: past, present, and future, p S27–31, Copyright 

2009, with permission from Elsevier.)
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Fig. 5. 
Modifiable and nonmodifiable risk factors that may lead to the development of nonunion. 

WBC = white blood-cell count, ESR = erythrocyte sedimentation rate, CRP = C-reactive 

protein level, CT = computed tomography, MRI = magnetic resonance imaging, and 

NSAIDs = nonsteroidal anti-inflammatory drugs. (Reproduced, with modification, with 

permission of Thieme Publishers, from: Miclau T. Fracture delayed and nonunion. In: 

Marmor MT. Decision making in orthopaedic trauma. Thieme NY; 2017. p 154–5.)

Hellwinkel et al. Page 27

JBJS Rev. Author manuscript; available in PMC 2024 June 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Background and Epidemiology
	Phases of Bone-Healing
	Inflammatory Phase
	Fibrovascular Phase
	Bone Formation
	Remodeling

	Defining Nonunion
	Risk Factors for Developing Nonunion
	Nonmodifiable Risk Factors
	Modifiable Risk Factors

	Military Extremity Trauma
	Monitoring Fracture-Healing
	Clinical Assessment
	Imaging
	Serologic Markers

	Overview
	References
	Fig. 1
	Fig. 2
	Fig. 3
	Fig. 4
	Fig. 5

