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Extracellular Mg2+ regulates intracellular Mg2+ and its subcellular compartmentation
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Abstract. Effects of extracellular magnesium ions ([Mg2+]o) on intracellular free Mg2+ ([Mg2+]i) and its subcellular
distribution in single fission yeast cells, Schizosaccharomyces pombe, were studied with digital-imaging microscopy
and an Mg2+ fluorescent probe (mag-fura-2). Using 0.44 mM [Mg2+]o, [Mg2+]i in yeast cells was 0.9190.08 mM.
Elevation of [Mg2+]o to 1.97 mM induced rapid (within 5 min) increments in [Mg2+]i (2.1890.11 mM). Lowering
[Mg2+]o to 0.06 mM, however, exerted no significant effects on [Mg2+]i (0.9390.14 mM), at least for periods of up
to 30 min. Irrespective of the [Mg2+]o used, the subcellular distribution of [Mg2+]i remained heterogeneous, i.e.
where the sub-plasma membrane region\cytoplasm\nucleus. [Mg2+] in all three subcellular compartments
increased significantly, two- to threefold, concomitant with [Mg2+]i when placed in 1.97 mM [Mg2+]o. We conclude
that [Mg2+]i in fission yeast is maintained at a physiologic level when [Mg2+]o is low, but intracellular free Mg2+

rapidly rises when [Mg2+]o is elevated. Like most eukaryotic cells, yeast may have a Mg2+ transport system(s) which
functions to maintain gradients of Mg2+ from the outside to inside the cell and among its subcellular compartments.
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The fission yeasts, Schizosaccharomyces pombe (S.
pombe), are small, relatively simple unicellular eukary-
otes which share many of the same fundamental cellular
properties of larger, multicellular organisms [1, 2]. Such
unique characteristics provide a valid model system for
studying eukaryotic genetics and its physiologic proper-
ties in yeast. Understanding of the cytology, intermedi-
ary metabolism and molecular genetics of this organism
has advanced substantially over the past several years
[1–3]. Although important roles for magnesium (Mg) in
enzymatic reactions, DNA synthesis and the cell cycle
have been studied in detail [4–6], the ionic aspects of
magnesium and its regulation in fission yeast have re-
ceived little experimental attention.
Magnesium is widely distributed in nature and is the
second most abundant intracellular cation next to potas-
sium [7, 8]. While most of the internal magnesium is
bound to nucleotides, proteins or sequestered into intra-

cellular organelles, only a small fraction is present in its
free, divalent ionized form, Mg2+, which is thought to be
responsible for many of the biological actions of magne-
sium [8, 9]. Measurement of intracellular free Mg2+

concentrations ([Mg2+]i) would be desirable to under-
stand the physiologic role of Mg2+ in various intracellu-
lar processes. Here, we report for the first time the values
of [Mg2+]i and its subcellular distribution in single S.
pombe cells, using digital imaging analysis and the Mg2+-
sensitive fluorescent dye mag-fura-2. We show that the
cellular distribution of [Mg2+]i is not homogeneous and
increases as a consequence of increments in extracellular
Mg2+ concentration ([Mg2+]o).

Materials and methods

Strain and culture conditions. S. pombe used in our
studies was a wild-type strain SP66 (h90 leu 1-32 ade
6-216) which was derived from 972 h−s isolates of S.
pombe originally introduced by Leupold [10]. S. pombe
cells were grown in minimal media [3] at 30 °C with
shaking.
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Determination of [Mg2+]i. A 1-ml aliquot of cells from
mid-log phase cultures (0.5–1×107 cells/ml) was taken
into a microtube and spun for 10 s. The supernatant
was removed, and the pellet was washed twice with 1 ml
of Tris-HCl buffer solution, which contained 1.2 M
sorbitol, 135 mM NaCl and 10 mM Tris-HCl, pH 7.6.
The cells were loaded with mag-fura-2 (Molecular
Probes, Eugene, OR) by incubating them with 5 mM
mag-fura-2/Acetoxymethylester in Tris-HCl buffer solu-
tion at 30 °C for 60 min. The loading solution was then
removed, and the S. pombe cells were divided into three
microtubes and washed three times with Tris-HCl
buffer solutions which contained 0.06, 0.44 and
1.97 mM Mg2+, respectively. The ionic activities of
Mg2+ in Tris-HCl buffer solutions were monitored by
ion-selective electrodes (NOVA Biomedical Corp.,
Waltham, MA) [11] and adjusted with MgSO4. The
cells in each microtube were plated onto a microscopic
slide with a thin film of Tris-HCl buffer. The prepara-
tions were then covered with cover glasses and placed in
a chamber on a thermostatically regulated stage (30 °C)
of a Nikon fluorescence microscope. Measurement of
[Mg2+]i was performed using a TN8500 FluorPlex III
Image Analyser (Tracor Northern, Madison, WN) [12].
Images of mag-fura-2 fluorescence at 510 nm emission
were obtained with 335- and 370-nm excitation wave-
lengths
using a silicon intensified target (SIT) camera. Back-
ground fluorescence for both excitation wavelengths
was acquired from blanks for each experiment and
subtracted from each pair of images separately before
ratioing. Fluorescence ratios (R335/370) were obtained by
dividing the 335-nm image by the 370-nm image [12].
To obtain absolute values of [Mg2+]i in single cells, a
final concentration of 5 mM mag-fura-2 pentapotassium
salt containing either 10.0 mM (max) or 0 mM MgSO4

(min) was used for an in vitro calibration [12]. The
calibration solutions also contained (in mM): KCl 115,
NaCl 20 and HEPES 5, buffered with NaOH to pH 7.1
under air, at 37 °C. From these Mg-standard solutions,
the maximum and minimum intensities of fluorescence
were obtained at the 335-nm and 370-nm wavelengths,
and a ratio of (R335/370) was generated. [Mg2+]i was
calculated according to the following equation [13]:

[Mg2+]i=Kd×B× (R−Rmin)/(Rmax−R)

and a Kd of 1.5 mM [13] was used for the mag-fura-2/
Mg2+ complex. B is the ratio of fluorescence intensity of
free mag-fura-2 to Mg- bound mag-fura-2 at 370 nm.
Localization of cellular nuclei. To map and determine
intracellular compartmentation of [Mg2+]i, nuclei of S.
pombe were visualized using DAPI (4,6-diamidino-2-
phenylindole) [3]. After measurement of [Mg2+]i, the
cells were stained by adding 2 ml of DAPI onto thin-cell
films from the edge of the coverslips and then examined
using fluorescent microscopy, as above, with an ultra-

violet (UV) filter. According to images of nuclei iden-
tified with DAPI staining, each yeast cell was arbitrarily
divided into three compartments, e.g. nucleus, sub-
plasma membrane (peripheral region) and cytoplasm
(area between nucleus and sub-plasma membrane).
Where appropriate, means 9SEM were calculated and
compared for statistical significance using Student’s t-
test and analysis of variance (ANOVA).

Results and discussion

When S. pombe cells were incubated in 0.44 mM
[Mg2+]o, [Mg2+]i in these yeast cells was 0.919
0.08 mM (mean9SEM) (table 1), which was about
2.1-fold higher than [Mg2+]o. These values of [Mg2+]i
that we have observed in yeast appear to be within the
range of the resting levels found in many mammalian
cells [9, 12, 13]. In many yeast cells there was some
variations of [Mg2+]i, ranging between values of
0.47 mM and 2 mM, among the cells tested. The reason
for this observed variation in [Mg2+]i between individ-
ual cells is not known, but may be due to the fact that
the S. Pombe cells used in the present study were not
synchronized; cells at different stages of the cell cycle
are thought to contain different amounts of magnesium
[14]. Since [Mg2+]i is a known cofactor of about 300
enzymes [8], the variation of [Mg2+]i we observed could
be of significant physiological relevance. Further studies
are needed to discern whether or not such fluctuations
of [Mg2+]i and its subcellular distributions in S. pombe
cells are, indeed, related to different stages of the cell
cycle. Using 1.97 mM [Mg2+]o solutions, the mean
value of [Mg2+]i in S. Pombe rose to 2.1890.11 mM,
i.e. about 2.4-fold higher when compared with 0.44 mM
[Mg2+]o and about equivalent to the elevated [Mg2+]o
(table 1). Consistent with 0.44 mM [Mg2+]o, variation
of [Mg2+]i among 1.97 mM [Mg2+]o-treated cells was
also observed, with a range between 1.70 mM and
3.03 mM. Such [Mg2+]i levels were reached within
5 min, which is similar to findings in some mammalian
cells [12]. Since no significant dye (mag-fura-2) leakages
were noted during the experiments, changes of mem-
brane integrity or permeability could not account for
such elevation of [Mg2+]i. Our data clearly indicate that
the cell wall and the plasma membrane of S. pombe cells
are permeable to external Mg2+ ions, and transport of

Table 1. Effects of alteration of [Mg2+]o on [Mg2+]i in single
fission yeast cells, Schizosaccharomyces pombe.

[Mg2+]o (mM) na [Mg2+]i
b (mM)

0.06 13 0.9390.14
0.44 12 0.9190.08
1.97 12 2.1890.11*

a n=number of cells; b mean9SEM.
* Significantly different from other values (PB0.001).
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Table 2. Effects of [Mg2+]o on the subcellular compartmentation of [Mg2+]i in single fission yeast, Schizosaccharomyces pombe.

Cellular compartment [Mg2+]i (mM)a

0.06 mM [Mg2+]o 0.44 mM [Mg2+]o 1.97 mM [Mg2+]o
(n=13)b (n=12) (n=12)

Sub-plasma membrane 1.2990.29*,** 1.1490.08*,** 3.1190.20**
Cytoplasm 0.8490.12*,** 0.9590.14*,** 1.7890.12**
Nucleus 0.3890.04* 0.4390.03* 0.9190.05

a Values are means9SEM.
b n=number of cells.
* Significantly different from 1.97 mM [Mg2+]o (PB0.01).
** Significantly different from nucleus (PB0.01).

Mg2+ probably occurs much faster than thought here-
tofore [7, 8].
At first glance, it might appear that higher [Mg2+]i over
[Mg2+]o could result from active accumulation of Mg2+

against a transmembrane gradient across the cell mem-
brane. However, considering the cell membrane of S.
pombe, which has a voltage of about −53 mV [15],
[Mg2+]i was far away from its electrochemical equi-
librium, irrespective of the [Mg2+]o tested (either
0.44 mM or 1.98 mM). Therefore, yeast cells must pos-
sess a transporter(s) which extrudes Mg2+ from the cell
and/or sequesters Mg2+ into intracellular organelles or
physiologic binding components, such as a Mg2+/Ca2+

exchanger or a Na+/Mg2+ exchanger, as proposed for
mammalian cells [7, 9]. Studies of Mg2+ transport in
unicellular eukaryotes have been rather limited [16]. In
S. pombe, it is known that Ca uptake can be inhibited
by [Mg2+]o [17] and that mutation in the gene sep1+

shows increased sensitivity to the toxic effects of high
concentrations of [Ca2+]o and [Mg2+]o [18]. A precise
role of cation exchangers in regulation of [Mg2+]i in
yeast cells remains to be determined.
Interestingly, removal of most extracellular Mg2+

(0.06 mM) did not affect the level of [Mg2+]i (0.939
0.14 mM) (table 1), for at least 30-min observation
periods. These unexpected findings suggest that in yeast
cells [Mg2+]i may be regulated by a unique mecha-
nism(s). At present, little is known about Mg2+ trans-
port system(s) in yeast. Unlike some mammalian cells
[19], the fission yeast cells seem to be relatively resistant
to depletion of [Mg2+]i, when environmental [Mg2+] is
low. The fission yeast cells may thus maintain [Mg2+]i
either by preventing Mg2+ loss from the plasma mem-
brane and the cell wall or by releasing Mg2+ from
internal binding sites. Such characteristics may account,
in part, for why fission yeast cells can survive after
placing them into Mg2+-deficient media for prolonged
periods [14].
Divalent cations may be compartmented in yeast cells,
probably sequestered in cytoplasm granules, as sug-
gested previously by using differential extraction or
energy-dispersive X-ray microanalysis [16, 20]. But such

studies do not give any indication of the form of mag-
nesium, i.e. bound, complexed or ionized in the cells.
Using digital-imaging analysis and a Mg2+ fluorescence
probe, we found that, irrespective of the [Mg2+]o used,
the subcellular distribution of [Mg2+]i appeared hetero-
geneous in S. pombe cells. With DAPI staining, we
further defined [Mg2+] in three areas, i.e. nucleus, cyto-
plasm and sub-plasma membrane region, among each
single yeast cell. Differences in [Mg2+] gradients from
the periphery to the nuclei are clearly evident among
these regions in these cells and show a relative order
of concentration, where the sub-plasma membrane re-
gion\cytoplasm\nucleus (table 2). It is also note-
worthy that in all three subcellular compartments
[Mg2+]i increased significantly, two- to threefold, con-
comitant with [Mg2+]i when [Mg2+]o was elevated to
1.97 mM (table 2). A spatial heterogeneity of [Mg2+]i in
S. pombe demonstrated that, in addition to the plasma
membrane, the nuclear membrane and discrete localized
processes within the cell may regulate Mg2+ activity at
the subcellular level. The high [Mg2+]i in the sub-
plasma membrane area could represent Mg2+ release
from magnesium binding sites and uptake elements
there (probably the vacuoles) which limit Mg2+ diffu-
sion. Further interpretation of our data is made difficult
by our lack of knowledge of how Mg2+ is transported
and the unavailability of confocal microscopy in the
present studies. However, although specific molecular
regulatory processes are not known, the [Mg2+]i
homeostasis revealed here could be critical, since the
Michaelis constant values for Mg2+ activation and inhi-
bition of many enzymes fall within the [Mg2+]i range
found here.
Last, the demonstrated similarities to mammalian cells,
as well as the ability of yeast cells to actively transport
Mg2+ and maintain a fairly constant level of [Mg2+]i in
low [Mg2+]o, suggest that [Mg2+]i could serve as a
fundamental physiological regulator of cellular processes
involved in metabolism and growth in eukaryotic cells.
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