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Regulation of heat shock gene induction and expression during Drosophila development
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Abstract. Some heat shock genes are expressed in the absence of stress during embryogenesis and metamorphosis
in the fruit fly Drosophila melanogaster. Their functions in these processes are unknown. During development, each
of the four members of the small heat shock protein family (Hsp27, Hsp26, Hsp23 and Hsp22), which are
coordinately induced in response to a heat stress, shows a specific pattern of expression in diverse tissues and cells.
This expression is driven through cell-specific enhancers in the promoter regions of their genes. In addition, some
of the Hsps show cell-specific induction by heat shock. Hsp23, for example, is only inducible in a single cell type
(cone cells) of the eye ommatidium, while the other small Hsps are inducible in all cells of the eye unit. In germ
line tissues such as testes, Hsp23 and 27 are both readily expressed in the absence of stress (albeit in distinct cell
lineages) and cannot be further induced by heat shock. Hsp27 is expressed throughout oogenesis, but its
intracellular localization is stage-specific, being nuclear from germarium to stage 6 and cytoplasmic from stage 8
onwards. Finally the small Hsps show tissue-specific post-translational modifications. Thus the function(s) of the
small Hsps may be modulated by different cell and developmental stage-specific mechanisms operating either on
their expression, their cellular localization or their structure by post-translational modifications.
Key words. Small heat shock proteins; Hsp27; Hsp23; gene regulation; development; heat shock response;
oogenesis; spermatogenesis; Drosophila melanogaster.

Introduction

The heat shock response was first observed in the
fruitfly Drosophila as the induction of new puffs on the
polytene chromosomes of salivary glands [1, 2]. A simi-
lar response is induced upon exposure to various chem-
ical or environmental insults. A subset of specific
proteins, thereafter called heat shock proteins (Hsps),
was shown to be preferentially expressed after heat
shock. In D. melanogaster, these proteins have molecu-
lar weights of 22, 23, 26, 27, 70 and 83 kDa [3, 4]. They
have been divided into three different groups on the
basis of their relative molecular masses: the small heat
shock proteins (sHsps), the Hsp/Hsc70 family and
Hsp83.
While D. melanogaster is a model of choice for develop-
mental studies, there is still little known about the
significance of the developmental features of the heat
shock response in this organism. The expression of the
Hsp genes during development and metamorphosis in
Drosophila has been the subject of a number of reviews
[5–9]. Here we present an update on (1) the develop-
mental, tissue- and cell-specific induction and expres-
sion of Hsps by heat shock, (2) the pattern of
expression of the Hsp genes in the absence of stress,
with particular emphasis on the members of the sHsp
family, and (3) the developmental and tissue-specific
localization and post-translational modifications of
sHsps. Finally, we discuss the developmental pattern of

expression of one of the largest puffs activated by heat
shock (93D), which has not yet been shown to produce
any defined polypeptide.

The heat shock genes in Drosophila melanogaster

The sHsp genes of D. melanogaster are clustered within
a 12-kb section of the 67B region on the left arm of the
third chromosome [10–15]. Each one of these genes
consists of a single open-reading frame (ORF). Se-
quence analysis reveals three major domains of homol-
ogy between the sHsps (fig. 1). The prominent one is
located in the carboxy-terminal section of all four sHsps
and consists of an 80-amino acid domain homologous
to a domain in mammalian a-crystallin [16]. Attached
directly downstream of this region is a 25-amino acid
stretch also conserved in all sHsps [13]. No particular
property or function has yet been defined for this re-
gion. Finally, a very hydrophobic amino-terminal do-
main of 15 amino acids is found in all sHsps with the
exception of Hsp22. This domain has been suggested to
play a role in protein-membrane interactions [17].
The Hsp/Hsc70 family contains two major classes of
proteins sharing a high degree of homology: the Hscs
(heat shock cognates), Hsp68 and Hsp70. These
proteins are encoded at multiple loci in the genome of
D. melanogaster : two Hsp70 genes are found at region
87A7 [18–20], and region 87C1 contains three to five
supplementary copies of hsp70, depending on the fly
strain [20–22]. Multiple Hscs, which are proteins ex-* Corresponding author.
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Figure 1. Structure and protein domains of the small Hsp genes
of D. melanogaster.

ing, which does not affect sHsp or Hsc/Hsp70 expres-
sion. However, expression of Hsp83, the only Hsp gene
containing an intron, is optimum at 33–35 °C and has
been shown to be inhibited at higher temperature as a
consequence of this inhibition of splicing [32]. The opti-
mal induction temperature for the sHsp genes (35 °C) is
lower than the one for the optimal induction of Hsp70
(37 °C) [33], even though none of these genes possesses
introns. The reasons for such differential response to
heat shock by the Hsp genes remain to be identified.
Heat shock induction of Hsps relies on a particular
transcription factor: the heat shock factor (HSF) (re-
viewed in [34]). In D. melanogaster, the HSF is encoded
by a single gene located in region 55A. This factor is
synthesized constitutively and exists as a monomer
which is distributed in a diffuse manner all over chro-
matin [35]. As a result of heat stress, the HSF trimerizes
in an activated form with a high DNA-binding affinity
[36–38]. It then binds to distinct loci (:100, including
the nine major HSP loci) [34]. Its binding to the pro-
moter of Hsp genes is mediated through a conserved
element, the heat shock element (HSE). The HSE was
first identified as a sequence required for heat inducibil-
ity in the Drosophila hsp70 gene [39, 40]. HSF/HSE
binding activates the transcription of the different Hsp
genes and allows their overexpression. Further analysis
and sequence comparison of functional HSEs in
Drosophila Hsp genes led to the definition of an HSE as
a repeating array of 5-bp sequences 5%-nGAAn-3% where
each repeat is inverted relative to the immediate adjacent
repeat [41–43]. Different numbers of HSEs are found in
front of the different Hsp genes, and a certain number of
these HSEs need to be bound by the HSF to confer heat
shock-induced expression to each Hsp gene.

pressed at normal temperature and not further induced
by stress, have also been described [23]. The genes
coding for Hsc1, Hsc2 and Hsc4 have been localized to
regions 70C, 87D and 85E, respectively [24, 25]. Finally,
the Hsp83 protein is encoded by a single gene located at
region 63BC on polytene chromosomes. Hsp83 is the
only Hsp gene which contains an intron [26, 27].

Heat shock gene induction and transcription

The heat shock response, which results in the prominent
expression of Hsps over normal proteins, is regulated at
two molecular levels. First, heat shock rapidly activates
or increases the transcription of Hsp genes. Second,
heat shock mRNAs show a preferential translation over
normal mRNA [28]. Heat shock gene induction relies
on de novo transcription, which may explain why no
induction of Hsps is observed in differentiated gametes
or in preblastoderm embryos [29–31]. The preferential
translation of Hsp mRNA is the result of two main
events. Hsps mRNA contain untranslated sequences
which promote preferential translation over normal
mRNA [28]. Also, heat shock induces a block in splic-

Figure 2. Schematic representation of the promoter regions of the sHsp genes in D. melanogaster. The structure of hsp83 is shown for
comparison.
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All promoter regions of the sHsp genes contain HSEs as
well as other sequences which are specifically necessary
for heat-induced expression (fig. 2). Important regions
for heat activation of hsp27 are found up to 2.1–1.1 kb
upstream of the gene itself; sequences allowing milder
heat shock induction can also be found in the −986/
−227 region [44]. These secondary sequences were fur-
ther refined to the −455/−227 interval [45].
The hsp26 gene possesses seven different HSEs, only
three of which are necessary for full heat shock induction
of the protein: HSE1 and 2 (located at −60) and HSE6
(located at −350) [46–48]. Other sequences beside the
HSEs have been identified as important to ensure the
capacity of heat shock inducibility of this gene. Thus two
sequences containing (CT)n*(GA)n repeats are critical
to maintain chromatin structure and ensure accessibility
of the HSE to the HSF. Deletion of one of these
sequences (located at −135/−85) is correlated with a
decrease in transcriptional activity, even when the TATA
box and the HSEs are present [49, 50]. Hsp23 requires
both a sequence located between −145/−132 [51] and
an element upstream of −186 [52] for heat-related
expression. In the case of the hsp22 gene, two control
elements with different functions have been character-
ized in the untranslated leader region of its mRNA. One
of these is responsible for the transcriptional activation
of hsp22 after heat shock, while the other is responsible
for allowing translation of this mRNA under heat shock
conditions [28]. Three HSEs are also found at 26, 46 and
147 bp upstream of the hsp22 TATA box [53].
As shown in figure 2, hsp83 with a single HSE from
position −88 to −49 may have a simpler heat shock
regulation [54] compared with other Hsps such as
hsp26, which possesses in its promoter region seven
HSEs, three of which are necessary for heat induction.

Heat shock induction of Hsps shows cell and tissue
specificity

In Drosophila, as well as in many other biological sys-
tems, all cells of an organism are capable of mounting a
heat shock response at most stages of development. A
notable exception is early embryogenesis, when pre-
blastoderm embryos do not respond to heat shock [30,
55]. In the case of the small Hsp genes of D.
melanogaster, it has been generally accepted that the
four main sHsps are induced coordinately in response
to heat shock. Recently, however, some sHsps have
been shown to be induced in a cell-specific manner by
heat shock.
A first example of cell-specific response to heat shock is
that of the eye of Drosophila, which consists of a large
number of ommatidia, each one including different spe-
cialized cell types such as photoreceptor, cone and pig-
ment cells. After heat shock, Hsp23 is expressed
exclusively in a single cell type, the cone cells, while

Hsp27 is expressed in all cell types of the ommatidium
[56]. Hsp26 shows a response similar to Hsp27 and
responds in all cells of the ommatidium (fig. 3). The
ubiquitous expression of Hsp27 and Hsp26 in response
to heat shock eliminates the possibility that the heat
shock per se may be inefficient in certain cell types of
the ommatidia. The absence of Hsp23 induction in
photoreceptor and pigment cells cannot be explained by
the absence of the transcriptional factor, as the DmHSF
is equally present in all cells of the eye unit [56]. The
lack of induction may be due to the presence of other
factors repressing this Hsp at the transcriptional or
post-transcriptional levels. Whether Hsp23 is repressed
by factors operating at the level of chromatin, such as
the absence of binding of the GAGA factor on the
hsp23 promoter, or through other interfering factors is
presently unknown.
Another case of cell-specific response is the testes, where
Hsp23 and Hsp27 are not induced by heat shock, while
Hsp22 and Hsp70 are strongly induced in the same
organ (R. Marin, S. Michaud, J. T. Westwood et al.,
unpublished). Figure 4 shows an immunoblot of Hsp23
and Hsp27 expression in different organism of adult
flies before or after heat shock. Hsp23 and Hsp27 show
a cell-specific pattern of expression in the absence of
stress and after heat stimulation (see below). Their
expression is not upregulated by heat shock, in contrast
to the situation in other tissues such as the head (fig. 4).
While very little HSF is detectable in testes, this does
not seem to explain the absence of response of Hsp23
and Hsp27, as other hsp genes do respond rapidly to
heat induction. There is at present no evidene for other
HSFs in D. melanogaster. One possibility is that these
small Hsps exert an autoregulatory control over their
own synthesis.
In ovaries, the response of Hsp27 to heat shock is cell-
and stage-specific. In nurse cells, Hsp27 expression and
localization (see below) do not seem to be altered by
heat treatment. However, Hsp27 is strongly induced in
follicle cells [57]. One interesting observation in this
specific subset of ovarian cells is that the induced Hsp27
shows the same stage-specific localization pattern seen
in the nurse cells (see below). The mechanism(s) under-
lying this peculiar cell- and stage-specific regulation of
Hsp27 in ovaries are still unknown.

Hsps show a stage- and cell-specific pattern of
expression in the absence of stress

Early studies suggested that Hsps were expressed not
only under stress conditions but could also be found at
lower levels at normal temperatures [31, 58]. Three
members of the sHsp family, Hsp27, Hsp26 and Hsp23,
have been reported to be expressed under normal condi-
tions. However, in contrast to their coordinated synthe-
sis following heat shock, each sHsp displays a distinct
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Figure 3. Localization of Hsp23 and Hsp26 in the eye of Drosophila by immunofluorescence microscopy using specific monoclonal
antibodies. The confocal microscopy images show sections of the eye of a fly heat-shocked at 35 °C (B and D being of higher
magnification than A and C). Hsp26 is seen in all photoreceptor cells and in other accessory cells of the ommatidial unit (A and B).
In contrast, Hsp23 is only expressed in cone cells of the eye (C and D). Individual ommatidia exhibiting clear expression of Hsp23 in
each of their four cone cells are surrounded by a white box (D).

pattern of expression at specific stages of development
in Drosophila [58, 59]. The only Hsp not expressed in
early development, Hsp22, sees its mRNA increase in
thoraxes of old flies [60]. Whether or not this expression
is driven by internal damages that accumulate during
aging remains to be determined.
The expression of the sHsps has been determined either
by immunological methods involving the use of anti-

bodies recognizing specific members of the sHsp family
[57, 61–63] or by promoter-driven reporter gene expres-
sion in transgenic flies [47, 64]. Hsp23 is expressed
during embryogenesis in specific glial cells, tentatively
identified as midline glial cells [6, 61, 65]. Immuno-
fluorescence studies on salivary glands of D.
melanogaster suggested that Hsp23 may be present at
normal temperatures in the cytoplasm of cells from this
organ [66]. Cheney and Shearn [59] confirmed the pres-
ence of Hsp23 during development by demonstrating
that it was synthesized in late third instar larvae, at a
time when an increase in the endogenous level of b-
ecdysone hormone is observed. A hint suggesting the
importance of b-ecdysone in the induction of sHsps was
the observation of the strong synthesis of these proteins
in tissue-culture cells or imaginal discs treated with this
hormone [67–70]. It was shown that this hormonal
induction is regulated by the binding of a specific tran-
scription factor, the ecdysone receptor, to specific se-
quences found upstream of some of the sHsp genes (see
fig. 2) [52, 71, 72]. Two such sequences found at regions

Figure 4. Immunoblot showing the expression of Hsp23 and
Hsp27 prior to or after a heat shock in different tissues. Hsp27 is
present under control conditions in ovaries and testes and is not
further induced by heat shock. Hsp23 is induced by heat shock in
ovaries but not in testes, where its level of expression remains the
same. A clear induction of these two Hsps is seen in heat-shocked
fly heads and S2 culture cells.
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−242/−218 and −200/−181 have been identified in
the promoter region of the hsp23 gene [52]. Hsp23
continues to accumulate in pupae, where it peaks at
120 h, several days after the maximal accumulation of
its mRNA [73], but is almost totally absent from 1-
week-old flies [74]. In addition to sequences allowing
hormonal regulation, the sHsps appear to be under the
control of other cis-regulatory elements found upstream
of these genes [46, 47, 53, 64, 75].
In young adults, Hsp23 is still present in gonads, neuro-
cytes and glial cells of the central nervous system (CNS)
[62]. In male gonads, Hsp23 is expressed constitutively
in specific cells of the somatic lineage such as the cyst
cells, terminal epithelial cells and epithelial cells of the
seminal vesicle. However, Hsp23 also seems to be asso-
ciated with filamentous structures probably related to
spermatid bundles (R. Marin, S. Michaud, J. T. West-
wood et al., unpublished).
Hsp26, just as Hsp23, seems to have clearly defined
domains of expression during fly development. Using
germline transformation with an hsp26-lacz fusion gene,
Glaser et al. [47] identified the sites of expression of the
Hsp26 fusion protein in numerous tissues (spermato-
cytes, nurse cells and epithelium) of larvae, pupae and
adults. In situ hybridization confirmed these sites of
expression of hsp26. Since spermatocytes consistently
expressed hsp26 during all of development, Glaser and
Lis [64] further examined the promoter and identified
three regions involved in spermatocyte-specific expres-
sion (−251 to −135, −135 to −85 and +11 to +632).
hsp26 mRNA was also found in nurse cells and devel-
oping oocytes of females gonads [31]. Sequences from
−500 to −350 of the hsp26 promoter were found to
contain the element(s) important for female germline
expression [46]. Other tissues expressing Hsp26 during
development are the epithelium, proventriculus, larval
brain and ventral ganglion. Hsp26 level is low in brain,
but is abundant in gonads throughout larval and pupal
development [62].
Throughout the larval stages, Hsp27 expression is mainly
restricted to the CNS and gonads. Like Hsp23, Hsp27
can also be found in the imaginal discs of third instar
larvae, correlating with a peak in ecdysone production.
The minimal promoter region of hsp27 necessary for
correct spatiotemporal expression during development
includes region −58/+87. Sequences upstream of this
region are also necessary to increase transcription three-
to fivefold. One particular element necessary for this
increase in transcription has been further defined to be
in the −553/−327 region [72]. In late pupae, Hsp27 is
present at the top of the eye ommatidial unit but has
disappeared from the eye of the newborn fly. Once again,
in the adult, the protein becomes not only tissue-specific
but also cell-specific within some tissues. Hsp27 is limited
to a few clusters of cells in the brain and thoracic
ganglion, where it must be very stable since no mRNA
for Hsp27 is detected in the CNS of the adult [76].

Hsp27 is also abundant in nurse cells of ovaries of
unstressed flies. Interestingly, Hsp27 is also expressed
during stages 8 to 10 in central follicle cells in the
posterior of the egg chamber. Subsequent to stage 10, no
Hsp27 is visible in follicle cells [57]. Important regions of
the hsp27 gene directing ovarian expression were shown
by Hoffman et al. [75] to be located between −986/−227
and +87/+148. In testes, Hsp27 shows prominent ex-
pression in spermatocytes but is also present in somatic
cyst cells and in cells of the accessory glands (R. Marin,
S. Michaud, J. T. Westwood et al., unpublished).

Tissue and developmental stage-specific intracellular
localization and modifications of sHsps

A nuclear accumulation of Hsps after heat shock has
been reported for many of the Hsps in different cellular
systems [5]. In D. melanogaster, each of the small Hsps
shows a distinct intracellular localization in the absence
of heat stress. Hsp22 is localized in mitochondria (Tan-
guay et al., unpublished), while Hsp23 and Hsp26 are
mainly found in the cytoplasm although in different
structures (R. M. Tanguay, unpublished). Hsp27 is the
only sHsp showing a nuclear localization in cultured
cells both after heat shock or after induction by ecdys-
terone in the absence of heat stress [67, 77]. This nuclear
localization can also be seen after heat shock during
development [8, 17]. In contrast with its intracellular
localization in cultured cells, Hsp27 is mainly cytoplas-
mic during development. Recently, this small Hsp was
shown to have a stage-dependent localization during
normal oogenesis [57]. From germarium to stage 6 of
ovarian development, Hsp27 is localized in the nuclei of
all cells of the germline cyst. From stage 8 and onward,
Hsp27 changes its localization, becoming perinuclear
and cytoplasmic. This stage-dependent intracellular lo-
calization is also observed after heat shock both in
nurse cells as well as in follicle cells.
The stage-specific nuclear accumulation of Hsp27 dur-
ing oogenesis is particularly intriguing. The determi-
nants of protein shuttling betweeen the nuclear and
cytoplasmic compartments are not fully clear. As no
nuclear localization signals (NLS) have been defined for
this Hsp, one possibility is that Hsp27 may be bound to
certain nuclear proteins at these stages. A second possi-
bility is that stage-specific post-translational modifica-
tions of this Hsp may influence its cellular localization.
Phosphorylation is known to determine the karyophilic
behaviour of certain proteins such as the transcription
factor NFkB [78]. Hsp27 is a phosphoprotein, and its
phosphorylation can be affected by the steroid hormone
ecdysterone [79], by heat shock and during development
[17, 62]. However, the possibility that the change in
localization of Hsp27 is related to its phosphorylation
state seems unlikely, as the same isoforms of this Hsp
are found in early- and late-stage egg chambers [57].
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The differential localization of Hsp27 during biological
processes such as oogenesis suggests functional signifi-
cance of the localization. We are currently examining
this issue by looking at protein partners with which
Hsp27 interacts at different stages of development.
Finally, the Hsps of D. melanogaster have also been
shown to have tissue-specific post-translational modifi-
cations in the absence of heat shock [80]. Four isoforms
of Hsp27 were found to be expressed in the head and
testes, while only two forms were seen in ovaries. In the
case of Hsp23, two isoforms were expressed in head and
testes and only one in ovaries. While the nature of the
post-translational modification of Hsp23 is still un-
known, the distinct isoforms of Hsp27 probably result
from phosphorylation as shown by their susceptibility
to phosphatase and by phosphorylation of recombinant
DmHsp27 by a mammalian Hsp27 kinase, MAPKAP-
K2 [80]. The Drosophila homologue for this kinase has
recently been cloned [81], but it is still unknown if this
homologue is the kinase interacting with Hsp27 in vivo.
Heat shock also affects the sHsp isoform distribution
within the tissues. These data suggest that tissue- and
Hsp-specific post-translational modifications may mod-
ulate the functions of these proteins in various cell
types.

Developmental expression of the other Hsp genes

Specific members of the hsp70 family, the Hscs, are
expressed in the absence of stress at normal tempera-
tures and show a high level of expression throughout
development. Studies on hsc4 revealed that this gene is
constantly transcribed at high level in the embryo, in
larvae and in adults [82, 83]. Using in situ hybridization,
Perkins et al. [84] showed that hsc4 transcripts were
particularly enriched in cells undergoing rapid growth
as well as in cells of tissues active in endocytosis, like
the garland gland.
Contrary to the high level of Hscs under normal condi-
tions, the hsp70 mRNA level in noninduced state is
approximately one-thousandth of the level after heat
shock induction [85]. Such a low level of expression may
indicate that Hsp70 does not play a crucial role in the
development of the fly. The only situation where Hsp70
is detected at high level without heat shock is in the
indirect flight and leg muscles of old flies [60].
Like the sHsps and the Hscs, Hsp83 has been shown to
be expressed in the absence of stress both in cell culture
[4, 27, 86] and in animals [87]. Hsp83 was first shown to
be expressed during normal embryogenesis [55]. During
metamorphosis, this expression was shown to corrobo-
rate with peaks in ecdysone titer [88]. Hsp83 was also
found in pupae and young adults, but was reduced in old
males [6]. The presence of hsp83 transcripts in mature
females is due to its expression in the nurse cells of the
developing ovaries [31]. Elements necessary for the devel-

opmental expression of hsp83 are found in the promoter
region spanning the −880/−170 interval [54].
A recent interesting study also characterized the local-
ization of hsp83 mRNA during oogenesis and embryo-
genesis [89]. During oogenesis, hsp83 mRNA is first
detected in regions 2 and 3 of the germarium in nuclei
of all 16 cells of the germline cyst. This expression
continues until the end of stage 5, when hsp83 mRNA is
degraded. Stages 6 to 8 are totally devoid of mRNA for
Hsp83, but a high level of transcription for this gene is
seen in nuclei of nurse cells from stages 9 to 11. Stage
10B marks the beginning of transfer of maternal
mRNA from nurse cells to the oocyte, where hsp83
mRNA is stabilized. This maternal mRNA is then dis-
tributed throughout the early embryo from nuclear divi-
sions 1 to 5. During cleavage divisions 6 to 8, maternal
hsp83 mRNA is concentrated at the posterior pole via a
combination of generalized degradation associated with
a localized protection at the posterior pole. Hsp83
mRNA is then taken up by the pole cells. High levels of
hsp83 mRNA are present in pole cells during their
migration and in the gonads of embryos, larvae and
adults [31, 54]. Hsp83 is also transcribed zygotically in
the anterior third of the embryo commencing at the
syncytial blastoderm stage. This expression is missing in
bicoid− mutants, indicating that this polarity determi-
nant may play a direct role in promoting hsp83 develop-
mental expression. It will be of interest to see whether
the temporal pattern of expression of the Hsp83 protein
is similar to its mRNA. Studies which should help
understand the function(s) of this Hsp are in progress.

Developmental expression of the product of the 93D
locus: Hsr v

Locus 93D, among those activated by heat shock,
stands apart due to its unique and intriguing features. It
is located at 93D6-7 on chromosome 3R. The gene
spans over 10 kb and includes two exons and one intron
followed by a long series of tandem arrays of repeat
units [90]. Hsr v (heat shock RNA omega) encodes for
three major mRNAs, among which two seem to be
untranslated [91–93]. One of the transcripts (v1) is
nuclear, whereas the two others (v2 and v3) are found
in the cytoplasm. Although sequence data indicate the
presence of a small ORF, no protein product of the 93D
locus has yet been found. Like other Hsp genes, the
93D locus exhibits a developmental regulation as well as
a heat shock regulation [94, 95]. This locus can further
be induced by several different agents, such as benza-
mide [96] and colchicine [98]. These specific agents can
induce hsr v transcription without inducing Hsps; it
was also shown that specific situations can induce a
general heat shock response without the induction of
hsr v (reviewed in [98]). These properties of induction
clearly demonstrate that the regulation of this locus is
also under elaborate mechanisms.
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The levels of hsr v transcripts are specifically regulated
at different embryonic and larval stages [99]. Embryonic
stages show fluctuating hsr v mRNA levels, while sec-
ond-stage larvae exhibit low transcript levels. Third
instar larvae and pupae show much higher levels of the
three transcripts, suggesting a role for ecdysone in the
regulation of this locus as seen for other Hsps [98].
Sequences with close homology to the known EcRE
(ecdysone response element) are found at −710 and
−483 in the promoter region of this gene [100], while
three HSEs are present at −466, −250 and −57 of the
promoter region. Furthermore, two GAGA sequences
usually responsible for maintaining chromatin confor-
mation through GAGA factor binding are found at
−496 and −68 [101]. Hsr v mRNA is also present in
restricted regions or cell types in the gonads of adult flies.
In the ovaries, nurse cells exhibit a strong expression,
while follicle cells and the oocyte do not seem to express
hsr v. In testes, hsr v is mainly in the middle section of
this organ. The promoter region responsible for this
protein expression in ovarioles was identified in −346/0;
expression in the rest of the body necessitates the pres-
ence of the −844/−346 promoter interval [100].
The exact role of the hsr v locus in development and
under heat shock conditions is still unknown. It was
reported that the 93D locus affected synthesis and/or
turnover of Hsp70 [102]; furthermore, it was suggested
that the role of the cytoplasmic transcript was to moni-
tor the transcriptional machinery, while the nuclear
trnscripts may be involved in synthesis and turnover/
transport of other transcripts [90]. These potential roles
must be crucial, because even though this locus is dis-
pensable for Hsps induction, it is necessary for fly
survival after heat shock [92]. In addition, the fact that
homologues of this gene have been found in all
Drosophila species observed so far points toward an
important function for this gene.

Multiple functions(s) for the Hsps during development
or under stress?

Do Hsps perform identical function(s) in unstressed and
stressed cells? The chaperone functions of the Hsp70,
Hsp60 and Hsp90 members are now well documented in
yeast and in mammalian systems. The major role of
Hsp/Hsc70 is defined by their chaperoning activity both
under normal conditions as well as during stress (re-
viewed in refs 103, 104). Importance of Hsp70 in ther-
motolerance was also demonstrated in living flies [104].
However, the expression of Hsp70 can be detrimental to
growth and/or cellular division [105]. Sequestration of
Hsp70 (to allow growth to continue) is made by aggre-
gation of Hsp70 into large granules. The efficiency of
this process varies at different stages of development
[104].

The roles played by the members of the sHsp family are
less clear. Mammalian Hsp27 has been shown to protect
cells during stress [106, 107]. The protection mecha-
nisms have been suggested to operate either in protec-
tion of signal transduction pathways or alternatively
through the chaperone activity of these Hsps (reviewed
in ref. 5). In Drosophila, the selective induction of the
sHsps by ecdysterone in a hormone-sensitive cell line
was found to bring about the thermotolerant phenotype
in the absence of heat shock [108]. Thermotolerance
was also acquired in the Chinese hamster cell line O23
transfected with Drosophila Hsp27 [109]. Furthermore,
protection against oxidative stress was observed in COS
and L929 cells expressing Drosophila Hsp27 [110, 111].
This protection was shown in stably transfected L929 or
in NIH-3T3 cells transiently transfected with Drosophila
Hsp27 to be mediated by an intracellular increase in
glutathione levels [112].
Whether the sHsps expressed in the absence of stress
perform identical functions during stress is uncertain.
Although the tissue, cell and developmental specificity
of expression of the small Hsps argues for cell-specific
functions, it cannot be excluded that they perform more
general function(s) related to either the cell cycling
activity or the state of differentiation. The tissue-specific
post-translational modifications of some of the sHsps
and their different intracellular localization will also
have to be taken into account in trying to evaluate their
functions.
Finally, many questions on the induction of heat shock
genes in the absence of stress remain unsolved. Whether
unique or multiple control elements operate in different
tissues or at different developmental stages remains
largely unknown. Additional interacting proteins may
be involved in activation or repression of heat shock
genes in certain cell types. Factors favouring the inter-
action of HSF with the HSE elements may be present in
a tissue or developmental stage-specific manner, altering
the response of the various sHsp genes. Elucidation of
these mechanisms will certainly be helpful in finding the
exact function(s) of these proteins during development.
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