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Abstract. Reactive oxygen species and alterations in
membrane lipid homeostasis are thought to be impor-
tant events in aging process and aging-related degenera-
tive diseases. The peroxisome is a small cellular
organelle involved in both oxygen and lipid metabolism,
and defects in peroxisomal function are associated with
major, and often fatal, changes at the neurological level

during human development. Recent reports of aging-
related changes in peroxisomal function raised the hy-
pothesis that peroxisomes may also have a significant
role in the aging process and aging-related degenerative
diseases. This review presents the current data on
changes in peroxisomal function during aging and dis-
cusses the implications of these changes for health.
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Introduction

First characterized in 1966 [1], the peroxisome is a
ubiquitous cellular organelle surrounded by a single
membrane. Its size ranges from 0.2 to 1 um diameter
and so far, more than 50 biochemical pathways have
been characterized within peroxisomes [2]. Among the
major peroxisomal functions are peroxisomal oxidation
and respiration, fatty acid f-oxidation, cholesterol syn-
thesis, ether-lipid synthesis (plasmalogen biosynthesis),
catabolism of purines (restricted to certain species) and
D-amino acids, and metabolism of dolichol and gly-
oxylate. Peroxisomes serve either catabolic or anabolic
functions that can be either exclusively peroxisomal or
shared with other cell compartments (cytoplasm, endo-
plasmic reticulum and mitochondria). In the latter
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case, the peroxisomal contribution may be essential
(plasmalogen synthesis) or complementary (cholesterol
synthesis). While peroxisomal proteins represent only
2.5% of the total cell protein content in the liver, the
existence of peroxisomal diseases (Zellweger’s syn-
drome, adrenoleukodystrophy) which are associated
with major, often fatal, neurological impairments [3, 4]
and the relation between changes in peroxisomal
metabolism and toxicological processes [5] have both
emphasized the importance of peroxisomes in human
health.

The role peroxisomes play in aging is not yet well
understood due to a lack of data, in part because
human peroxisomal disorders mainly affect children or
young adults, and toxicological studies are usually per-
formed on young animals. However, numerous perox-
isomal metabolic pathways produce high amounts of
hydrogen peroxide (H,O,). This release of H,O, takes
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place in an organelle involved in metabolic processes of
major importance for membrane lipid composition and
function. The occurrence of reactive oxygen species
with lipid components in the same organelle is likely to
result in alterations that may modify peroxisomal func-
tion and, subsequently, the lipid composition and func-
tion of membranes. Antioxidant activities (catalase)
help the peroxisome to prevent such changes by balanc-
ing the levels in reactive oxygen species. However, a
number of age-related changes in peroxisomal H,O,-
generating activities, antioxidant activities and lipid
metabolism may alter the balance between pro- and
antioxidants and result in major changes in the function
of peroxisomes, membranes and cells. Such changes are
consistent with both free-radical and membrane theo-
ries of aging [6—10]. This review presents arguments for
a significant role of peroxisomes in the aging process by
offering an overview of the current data available in this
particular field, as well as hypotheses and future direc-
tions that can lead to a better characterization and
understanding of the role of peroxisomes in aging and
aging-related degenerative diseases.

Peroxisomes and the aging process

In a recent review, the role of peroxisomes in the aging
and age-related degenerative diseases was mainly at-
tributed to an age-related impairment in the oxidative
stress status [11]. Peroxisomes contain multiple H,O,-
producing oxidases as well as enzymes involved in the
breakdown of free radicals (see table 1). In this context,
peroxisomes are likely to participate to the aging pro-
cess through the generation of reactive oxygen species,
according to the free-radical theory of aging [6, 7].

However, recent data on peroxisomal function during

Table 1. Enzymes involved in the production and degradation of
reactive oxygen species in peroxisomes.

H,0,-generating enzymes Antioxidant enzymes

Acyl-CoA oxidase [12]
D-Amino acid oxidase [1]
Cytochrome b reductase [13]
Cytochrome P450 [14]
Glutaryl-CoA oxidase [15]
L-o-Hydroxyacid oxidase

A and B [1]
Oxalate oxidase [16]
Pipecolic acid oxidase [17, 18]
Polyamine oxidase [16, 19]
Pristanoyl-CoA oxidase [20]
Trihydroxycholestanoyl-CoA
oxidase [21]
Urate oxidase [1]
Xanthine oxidase [22]

catalase [1]
superoxide dismutase [23]
glutathione peroxidase [24]
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aging suggest a more complex role of peroxisomes in
the aging process. Peroxisomes play a unique role in
lipid metabolism, and aging-related changes in perox-
isomal fatty acid oxidation activity have been recently
characterized in rodents [25, 26]. Such changes in perox-
isomal lipid metabolism may alter membrane lipid com-
position in ways which are similar to those found in
peroxisomal diseases [27—-31]. Although the changes in
lipid composition generated by the aging-related de-
crease in peroxisomal activity are likely to be milder
than those observed in severe peroxisomal diseases, they
may be significant enough to influence membrane func-
tion and thereby contribute to age-related declines in
cell function. In this regard, the involvement of perox-
isomes in the aging process may also be related to the
membrane theory of aging [9, 32].

The impact of age-related decrease in peroxisomal lipid
metabolism would be of significance if the class of lipids
affected by such changes are critical for the organism.
For example, peroxisomal f-oxidation presents a spe-
cificity for the oxidation of very long chain fatty acids
(VLCFA) that are poorly oxidized by mitochondria [33]
(see later). VLCFA accumulate in patients with perox-
isomal disorders, and they are associated with severe
and often fatal neurological impairements [28]. Perox-
isomal ff-oxidation is also required for the synthesis of
docosahexaenoic acid (DHA or 22:6n-3) [34, 35]. DHA
is a critical fatty acid for membrane structure and
function especially in the brain and retina (see later),
and patients with peroxisomal disorders affecting the
f-oxidation system present a deficiency in DHA [31,
36].

Current data

Peroxisomal oxidases, antioxidant enzymes and aging
Peroxisomes were named after their ability to produce
H,O, by the action of several enzymes termed oxidases
[37]. A list of these oxidases can be found in table 1.
These oxidases have the ability to use molecular oxygen
directly for the transformation of their substrates,
with a concomitant release of H,0,. H,O, is toxic
for cells and can be subsequently converted to the
hydroxyl radical (*OH ~), the most potent reactive oxy-
gen species.

To prevent cell damage from the production of H,O,
and/or its reactive oxygen derivatives, peroxisomes con-
tain large amounts of the enzyme catalase [1]. Catalase,
an enzymatic marker of peroxisomes, decomposes hy-
drogen peroxide into water and oxygen. The combina-
tion of H,O, production and decomposition is termed
peroxisomal respiration. Peroxisomes are estimated to
contribute up to 20% of total liver respiration [1].
Therefore, an increase in the ratio between peroxisomal
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Table 2. Changes in peroxisomal enzyme activities and functions during aging (?, unknown; *, unpublished results).

Enzyme/Function Tissue Species Strain Gender Age-related changes
Catalase liver mouse OF1 F decreased [25, 26, 47]
CSWwW F decreased [25]
rat Wistar M decreased [46]
Wistar ? decreased [54]
Sprague-Dawley M decreased*
Urate oxidase liver mouse OF1 F decreased [26,47]
rat Wistar M increased [46]
D-Amino acid oxidase liver rat Wistar ? increased [54]
Acyl-CoA oxidase liver mouse OF1 F decreased [26, 47]
rat Wistar M decreased [46]
F344 M unchanged [55]
Sprague-Dawley M decreased*
Bi(tri)functional enzyme liver rat Wistar M increased [46
Thiolase liver rat Wistar M increased [46]
f-Oxidation liver mouse OF1 F decreased [25, 26]
CSwWv F decreased [25]
brain rat Wistar M decreased [56]

free-radical-generating and free-radical-degrading en-
zymes is likely to result in an increase in cellular dam-
age caused by an increased leakage of reactive oxygen
species.

When rodents are exposed to peroxisome proliferators
(PP), a class of structurally diverse chemicals which
trigger a pleiotropic response in specific tissues, a
tremendous alteration in lipid homoeostasis occurs, and
several organelles and lipid-related metabolic pathways
are affected. The peroxisome is the most sensitive or-
ganelle to PP, and peroxisomal metabolic pathways are
affected differently. The peroxisomal f-oxidation
system can be induced 10-fold, whereas catalase ac-
tivity and dihydroxyacetone-phosphate acyltransferase
(DHAP-AT, the key enzyme in plasmalogen synthesis)
activity undergo a 2-fold increase [38]. Additionally, the
response to PP is tissue- as well as species-specific. The
liver is the most responsive tissue, whereas the brain is
unresponsive. Rats and mice are generally highly sensi-
tive to PP, whereas guinea pigs, monkeys and humans
are not (or almost not) responsive. The induction of
peroxisomal metabolism by PP has clear implications
for oxidative stress, since the key enzyme in peroxiso-
mal f-oxidation, acyl-coenzyme A (CoA) oxidase, be-
longs to the group of H,O,-generating enzymes. The
differential induction of H,O,-generating and H,O,-
degrading enzymes by PPs eventually led to the propo-
sition that carcinogenicity associated with long-term
treatment with PPs results from an increased release of
H,O0, [5]. Additionally, treatments with PP were associ-
ated with an increase in lipoperoxidation and lipofus-
cin, an end product of free-radical alteration [39—41].
Lipofuscin accumulation is considered to be a marker
of aging [42]. Since alterations in pro- and antioxidant
peroxisomal enzyme activities influence the rate of lipo-
fuscin formation, it seems likely that age-related

changes in peroxisomal metabolism would influence the
aging process. However, the relationship between per-
oxisomal function and lipofuscin production under nor-
mal conditions (without PP treatment) and its
significance for the aging process is not yet established.
Nevertheless, the occurrence of metabolic pathways for
lipids sensitive to free radicals (polyunsaturated fatty
acids (PUFA) and plasmalogens) and H,O,-generating
metabolic processes in the same organelle is likely to
result in lipoperoxidation and lipofuscin production.
This point remains to be clarified, but it is likely that its
impact on human aging is quite different from the
PP-treated animal situation (human peroxisomes do not
respond to PP). Additionally, as described below, the
changes in peroxisomal function occurring during aging
have nothing in common with those in PP-treated ani-
mals.

Table 2 summarizes the known age-related changes
in different peroxisomal enzymes and functions re-
ported so far. Each change will be addressed, and
the significance of such changes for the aging process
discussed.

Catalase activity has been shown to decrease during
aging [43—-45]. This raises the possibility of increased
levels of free radicals in peroxisomes and, since H,O,
freely diffuses across the peroxisomal membrane, within
the whole cell as well. Such changes in catalase support
the free-radical theory of aging. However, some studies
have shown that both acyl-CoA oxidase and catalase
present a similar pattern of activity throughout life,
including the aging period, in the liver [25]. In fact, the
calculated catalase-to-acyl-CoA oxidase ratio remains
unchanged from adulthood throughout aging, suggest-
ing no impairment in the balance between these two
activities during aging and, therefore, no increased lev-
els in the peroxisomal H,O, content. A subsequent
study showed that, in addition to the age-related de-
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crease in acyl-CoA oxidase, urate oxidase activity was
found to be decreased as well [26]. The age-related
decrease in peroxisomal catalase, acyl-CoA oxidase, f-
oxidation and urate oxidase activity partly confirms a
previous study describing the enzyme contents in isolated
peroxisomes from young and old male Wistar rat liver
[46]. Quantitative SDS-polyacrylamide gel electrophore-
sis (PAGE) immunoblot analysis revealed that compared
with young animals, peroxisomes from old animals pre-
sented a decreased content of the enzyme catalase and
the three components of acyl-CoA oxidase. These results
are arguments for preservation of the balance between
peroxisomal free-radical-generating and free-radical-
scavenging enzymes in aging. The same study also found
that the protein content for both the bi(tri)functional
enzyme and the thiolase (component of the peroxisomal
p-oxidation) is decreased in isolated peroxisomes from
old animals compared with young. However, urate oxi-
dase content was found to be increased in liver perox-
isomes isolated from old rats [46]. The apparent
discrepancy between the reduction in urate oxidase activ-
ity in mouse liver homogenate [26, 47] and the increase
in urate oxidase protein in isolated peroxisomes [46]
could be explained if equal amounts of protein from the
young and old isolated peroxisome fraction were loaded
in the SDS-PAGE gel prior to immunoanalysis [46]. As
long as there is a decrease in catalase and acyl-CoA
oxidase protein content in isolated peroxisomes, then
loading equal amounts of protein in the gel will generate
an apparent increase in the protein content of other
enzymes (urate oxidase). Additionally, heterogeneity is a
characteristic of peroxisomes [48, 49], and densitometric
methods used so far to isolate peroxisomes fail to recover
the full range of peroxisomes because of contamination
by other organelles with peroxisome-like density and
sedimentation coefficients. The technique used by Beier
and co-workers in 1993 for the preparation of isolated
peroxisomes from young and old rat livers allows the
recovery of a narrow range of peroxisomes with a density
of 1.245 g/cm? [46]. Later, the same group demonstrated
the existence of two peroxisome subpopulations using a
modification of their original technique [49]. The first
subpopulation, termed ‘heavy’ peroxisomes, bands in
metrizamide gradient at a density of 1.24 g/cm?, and the
second subpopulation, termed ‘light’ peroxisomes, bands
at a density of 1.20 g/cm?. Therefore, isolated perox-
isomes obtained from young and old rat livers belong
mainly to the heavy fraction. Differences in the protein
content between heavy and light peroxisome populations
have been demonstrated, the former being more enriched
in urate oxidase. This heterogeneity is likely to influence
the results when studying peroxisomes that are isolated
using a densitometric method. New peroxisome purifica-
tion techniques such as the recently developed immuno-
magnetic isolation of peroxisomes may help to clarify the
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problem with urate oxidase, since this technique will
allow investigators to recover a broader range of perox-
isomes without contaminating organelles [50]. Finally,
species differences may explain the discrepancy observed
for urate oxidase activity as a function of aging in rat [46]
and mouse [26, 47].

The significance of changes in uric acid oxidase in the
aging process is dual, as this enzyme produces H,O, and
since its substrate (uric acid) has been characterized as an
antioxidant. The antioxidant property of uric acid is
thought to be a major factor in decreasing radical-
induced aging and cancer [51]. An age-related decrease
in urate oxidase activity should lead to an increase in uric
acid levels and a lower production of H,O,. As a result,
less damage related to urate oxidase mediated-H,O,
generation would be expected, with a concomitant in-
creased antioxidant status. On the other hand, an in-
crease in urate oxidase activity would lead to an increase
in damage caused by H,O, with a concomitant lower
antioxidant status. One report described an increase in
uric acid levels in striatal synaptosomes in aged rats
compared with young [52], suggesting a lower urate
oxidase activity. However, the same study demonstrated
that total striatal uric acid levels are decreased in these
same aged rats. The way urate oxidase activity is affected
by aging remains to be clarified, as contradictory data
exist on this point. However, whether urate oxidase is
decreased or increased during aging represents a minor
point in the field of human aging, since urate oxidase is
not expressed in humans [53].

D-Amino acid oxidase activity was reported to be in-
creased in the liver of 26-month-old Wistar rats as
compared with 14-month-old animals [54]. This supports
the hypothesis of an aging-related increase in the levels
of free radicals generated within the peroxisome. It also
emphasizes that additional studies on all the peroxisomal
H,O0,-producing enzymes are required, to clearly deter-
mine if there is any change in the peroxisomal free-rad-
ical status, and to give arguments to the oxidative stress
hypothesis proposed by Masters and Crane [11].
Based on available data, it is difficult to provide a
definitive assessment of whether the aging process affects
the peroxisomal free-radical status, since many peroxiso-
mal oxidases remain to be studied as a function of aging.
It is recommended that future work on the peroxisomal
free-radical status during aging include data on both the
free-radical generating and degrading pathways [25].

Peroxisomal f-oxidation, fatty acids, membrane
composition and aging

In addition to oxidases and free-radical scavenging en-
zymes, peroxisomes have unique biochemical pathways
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involved in various lipid metabolic processes. An
aging-related decrease in peroxisomal lipid metabolism
is likely to affect the peroxisomal f-oxidation pathway
[38], specific for VLCFA that are poorly oxidized by
mitochondria [33], DHA synthesis [35] and plasmalogen
biosynthesis [57]. The following paragraphs describe
these metabolic pathways, the importance of these
lipids in health, the current data on aging-related
changes in these peroxisomal metabolic pathways and
their relevance for the aging process.

Peroxisomal f-oxidation. One of the main physiologi-
cal roles of peroxisomal f-oxidation is to prevent the
accumulation of VLCFA within the organism. These
fatty acids are toxic for the cell and for the organism.
VLCFA accumulation is the hallmark of all peroxiso-
mal disorders affecting the f-oxidation pathway and is
associated with severe neurological disorders [27, 28, 64,
65].

The oxidation of fatty acids takes place in both mito-
chondria and peroxisomes. Though each organelle oxi-
dizes fatty acids through a similar f-oxidation system,
the peroxisomal f-oxidation pathway (fig. 1) differs at
many points [58]. Peroxisomal f-oxidation shows a
specificity for the VLCFA (chain length of 20 and more
carbon atoms). These fatty acids are preferentially,
if not exclusively, oxidized within the peroxisomes. Sev-
eral factors explain this difference, the main one being
a lack of acyl-CoA synthetase specific for VLCFA
in mitochondria [59]. Unable to activate the VLCFA
(see fig. 1), the mitochondria are unable to metabolize
them.

The unsaturation index influences the rate of fatty acid
oxidation by peroxisomes, polyunsaturated fatty acids
being oxidized faster than the corresponding saturated
fatty acids [25, 26, 60, 61]. Additionally, the position of
the first carbon-carbon double bond from the car-
boxylic function of the fatty acid influences the oxida-
tion rate [61]. The combination of these two properties
(chain length and unsaturation specificity) gives perox-
isomes a wider range of action regarding fatty acid
oxidation than mitochondria.

Peroxisomal f-oxidation, however, is not as efficient as
its mitochondrial counterpart for fatty acid oxidation
and is usually referred to as not going to completion.
Whereas the mitochondrial f-oxidation is a complete
oxidative pathway, degrading a given fatty acid into its
corresponding amount of acetyl-CoA units, the perox-
isomal f-oxidation is usually considered a chain-short-
ening pathway, permitting only a few cycles of
f-oxidation for a given fatty acid. The exact number of
cycles completed by the peroxisomal f-oxidation still
remains to be clarified [62, 63]. It is likely that many
factors such as chain length, unsaturation index, current
metabolic state of the cell and competition between
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different fatty acids all influence the number of f-oxi-
dation cycles in vivo.

The chain-shortening property of peroxisomal f-oxida-
tion unexpectedly results in an anabolic process: the
terminal step in DHA biosynthesis [35]. This fatty acid
is of major importance for the structure and function of
the retina and brain membranes. Data from studies of
developing rats given a diet restricted in n-3 fatty acids
show DHA-deficient membranes as well as alterations
in biochemical, toxicological and neurological parame-
ters [66]. Retinal response to light has been reported to
be 10 times lower in n-3 deficient rats [66] and fish [67].
Sensitivity to neurotoxins was also increased, scores in
learning task tests were dramatically decreased, and
Na*, K*-adenosine triphosphatase (ATPase) activity
was also altered in n-3 deficient rats [68].

The exact biosynthetic pathway of DHA was until
recently a question of debate. The biosynthesis of all
PUFA occurs mainly in the endoplasmic reticulum,
where two different sets of enzymes, desaturases and
elongases, metabolize PUFA precursors, linoleic acid
and «-linolenic acid, to eventually produce PUFA with
longer chain lengths such as arachidonic (ARA or
20:4n-6) acid and eicosapentaenoic acid (EPA or 20:5n-
3). Desaturases add a carbon-carbon double bond to
the fatty acid carbon backbone, resulting in an increase
in the unsaturation index, whereas elongases add an
acetyl residue to the fatty acid carbon backbone, result-
ing in an increase in the fatty acid chain length. Al-
though it was initially believed that DHA synthesis
occurs from EPA by elongation and A4-desaturation, it
has recently been shown that the final step is peroxiso-
mal and proceeds through retroconversion of 24:6n-3.
This latter fatty acid results from the elongation of EPA
to 24:5n-3 followed by A6-desaturation [34]. This find-
ing explains why a severe deficiency in DHA occurs in
patients suffering from some peroxisomal disorders [31].
These recent data on DHA synthesis [35] have led to a
complete reevaluation of the pathway for PUFA syn-
thesis [69], and they have established the existence of a
close collaboration between the endoplasmic reticulum
and peroxisomes in the determination and maintenance
of membrane lipid composition [70].

In humans, all fatty acids can be synthesized de novo
except fatty acids from the n-6 and n-3 series. These n-6
and n-3 unsaturated fatty acids are called essential fatty
acids because they are absolutely required for the
biosynthesis of longer n-6 and n-3 fatty acids. Both
18:2n-6 and 18:3n-3 must be provided by the diet in
order to avoid any deficiencies in ARA, EPA or DHA.
As in rodents and fish, in humans a deficiency in n-3
fatty acids precursors results in retinal and neurological
impairments [66—68, 71, 72]. Interestingly, each fatty
acid family is metabolically independent, so that n-6
fatty acids cannot be used to generate n-3 fatty acids.
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The key enzyme in n-6 and n-3 fatty acid synthesis is
the A6-desaturase. There is evidence of an age-related
decrease in A6-desaturase activity in rodent liver [73,
74]. This finding led to the proposal that a decrease in
A6-desaturase activity might produce an impairment in
PUFA synthesis and subsequently modify cell mem-
brane PUFA composition.

Another report that examined A6-desaturase activity in
mouse liver throughout the entire life span [75] showed
that A6-desaturase displays distinct patterns of activity
during development, adulthood and aging. Adult ani-
mals showed no change in activity until they were 300
days old. Thereafter, A6-desaturase activity declined,
suggesting that the aging-related decrease in A6-desat-
urase activity starts later but proceeds faster than previ-
ously expected [73, 74].

This detailed report of changes in A6-desaturase activity
as a function of age [75] was followed by a similar study
of catalase and peroxisomal f-oxidation activity for
various 18-carbon fatty acids in mouse liver [25]. This
showed that liver peroxisomal activities present a pat-
tern of activity similar to that of A6-desaturase activity.
This reinforced the proposition of a tight collaboration
between peroxisomes and endoplasmic reticulum in
lipid metabolism [70]. Morphological data which always
show colocalization of peroxisomes and endoplasmic
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reticulum support this concept [76]. The spatial associa-
tion of peroxisomes with the endoplasmic reticulum led
to the proposition that peroxisomes are of microsomal
origin [77], but later studies ruled out this hypothesis
[78-80].

Peroxisomal f-oxidation, membrane composition and ag-
ing. Since both peroxisomal f-oxidation [25, 47] and
endoplasmic reticulum A6-desaturase [73—75] activity
decline as a function of aging, the resultant balance
between PUFA synthesis and degradation was hypothe-
sized to be qualitatively but not quantitatively preserved
during aging [25]. However, supporting data for this
hypothesis come from separate experiments carried out
either in rats [73, 74] or mice [25, 26, 47, 75]; a study
measuring both parameters as a function of age in
the same animal model may help to confirm this hy-
pothesis.

Currently available data have led to the proposition
that aging affects endoplasmic reticulum PUFA synthe-
sis and peroxisomal f-oxidation in quantitative rather
than qualitative terms. The earlier hypothesis that the
age-related decrease in A6-desaturase activity causes
unbalanced PUFA homeostasis [74] is less likely since
there are now data showing a similar aging-related
decrease in peroxisomal activity [25, 47]. On the other
hand, since both endoplasmic reticulum and peroxisome
metabolism are less able to metabolize a given amount
of fatty acid, dietary fat intake may overwhelm or
bypass the endoplasmic reticulum and peroxisome sys-
tem more easily and lead to changes in membrane lipid
composition. This suggests that dietary intake of fat
should be adjusted so as to remain within the metabolic
capacity of the endoplasmic reticulum-peroxisomal sys-
tem metabolic capability [25]. Some of the beneficial
effects of dietary restriction may be explained by such a
mechanism [81-85]. It has been demonstrated that di-
etary restriction helps prevent age-related membrane
peroxidative deterioration as well as age-related changes
in membrane fatty acid composition [81-83]. Figure 2
illustrates the effects of an age-related decline in perox-
isomal activity on membrane lipid composition and
function. In young animals peroxisomal function is
optimum and results in an efficient degradation of toxic
VLCFA (large gray arrow) and the biosynthesis of
sufficient amounts of DHA and plasmalogens (large
white arrow). This permits cells to create and maintain
optimum membrane lipid composition. Subsequently,
membrane-associated functions, like membrane recep-
tor signal transduction activity, ion-channel function
and enzymatic activities are optimum. An aging-related
decrease in peroxisomal activity (fig. 2, ®) will affect
the ability of the cell to eliminate VLCFA and will
allow these VLCFA to accumulate in membranes. This,
in addition to the decrease in endoplasmic reticulum
function, will lead to insufficient synthesis of DHA and
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Figure 2. Effect of aging on peroxisomal activity and its impact on membrane lipid composition and function.

plasmalogens in old animals (fig. 2, @). This is likely to
be detrimental for both membrane lipid composition
and function (fig. 2, ®). It was previously proposed that
changes in membrane lipid composition may be respon-
sible for the changes in membrane-associated receptor
activity occurring in aging and in aging-related degener-
ative diseases such as Alzheimer’s disease [86]. Benefi-
cial effects may result by adjusting the diet with respect
to the capacity of the endoplasmic reticulum-perox-
isome system, which means lower VLCFA intake and
increased DHA and plasmalogen intake. In this regard,
dietary restriction would help prevent the accumulation
of VLCFA (as well as the increase in membrane choles-
terol). It is also possible that dietary restriction may
help to maintain peroxisomal function. This point re-
mains to be addressed, since there are currently no data
available on the effect of dietary restriction on peroxiso-
mal activities.

The following paragraphs describe the importance of
VLCFA, DHA and plasmalogens for membrane lipid
composition and function and thus emphasize the criti-
cal role of peroxisomes in cell function and the impact
of an aging-related decrease in peroxisomal function on
health.

VLCFA, membrane composition and function. One
unique role of peroxisomes is to oxidize toxic saturated
and monounsaturated VLCFA. These fatty acids are
provided to the organism by diet and endogenous syn-
thesis in the endoplasmic reticulum. As previously em-
phasized, mitochondria are unable to activate VLCFA
due to a lack of acyl-CoA synthetase specific for VL-
CFA. In contrast, both endoplasmic reticulum and per-
oxisomes possess such an enzyme [87].

The decrease in peroxisomal acyl-CoA oxidase activity
and by extension in peroxisomal f-oxidation activity
[26, 46, 47] is expected to lead to a decrease in VLCFA
breakdown and consequently an accumulation of these
fatty acids in the body. This is important, since hexa-
cosanoic acid (the typical VLCFA) has been shown to
increase membrane disorders [88] and to remain tightly
associated with membranes: its rate of release from
model membranes has been calculated to be 10°-10°
times slower than that of palmitic acid [88, 89]. Accu-
mulation of hexacosanoic acid has also been associated
with increased membrane microviscosity [90] and a de-
crease in basal and adrenocorticotropic hormone
(ACTH)-stimulated cortisol-release in human adreno-
cortical cells [91].

There are reports of age-related increases in membrane
cholesterol content and changes in membrane unsatura-
tion [32, 92]. The aging-related decrease in peroxisomal
activity may alter the unsaturation index of membranes.
Since in peroxisomal diseases VLCFA have been shown
to accumulate in the cholesterol-ester fraction [27], an
aging-related accumulation of VLCFA resulting from
the aging-related decrease in peroxisomal f-oxidation is
also likely to occur in the cholesterol-ester fraction.
Accumulation of VLCFA in peroxisomal diseases leads
to an increase in the cholesterol content [27], and it has
been shown that there is an increase in the cholesterol-
to-phospholipid ratio during aging [32]. However, to
the extent of our knowledge, there are no available data
on brain lipid composition for the cholesterol-ester frac-
tion or VLCFA as a function of aging. If such a process
does occur in the aging brain, alterations in myelin
structure and/or a demyelination process might also
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occur. Alterations in myelin structure [93] along with
myelin degeneration [94] have been observed in the
brain of old monkeys. The relevance of these changes in
age-related degenerative diseases is speculative, but
Svennerholm and Gottfries studied membrane lipids in
the brain of Alzheimer’s disease patients and their data
suggest a significant loss of myelin lipids is a primary
event in the late-onset form [95].

PUFA, membrane composition and function. The aging-
related decrease in acyl-CoA oxidase activity has been
correlated with a decrease in peroxisomal degradation
of both ARA and DHA, a finding which reinforces the
key role of acyl-CoA oxidase in the peroxisomal f-oxi-
dation pathway [26]. It has been hypothesized that the
aging-related decrease in membrane unsaturation is due
to the different effects of aging on acyl-CoA oxidase
(decreased) and trifunctional enzyme (increased) [46].
Since the latter enzyme possesses an isomerase activity
(A3,A2-enoyl-CoA isomerase) required for the degrada-
tion of some unsaturated fatty acids, the age-related
increase in this enzyme would suggest that there might
be an increase in degradation of unsaturated fatty acids
[46]. However, the extent of the aging-related decrease
in the f-oxidation of various 18-carbon fatty acids
(stearic, oleic, linoleic and «-linolenic) appears to be
similar in mice [25]. The technique used to measure the
f-oxidation activity in this study was designed to esti-
mate the rate of [1-'*Cl-acetate release by peroxisomal
p-oxidation using specific [1-*C]-fatty acids as sub-
strate. It did not permit the estimation of the rate of
f-oxidation after removal of the first acetyl group.
Therefore, the estimated degradation rate obtained by
this technique provided no information on the A3,A2-
enoyl-CoA isomerase function of the trifunctional en-
zyme. This leaves open the possibility that the
age-related increase in trifunctional enzyme leads to an
increase in PUFA breakdown [46]. However, peroxiso-
mal f-oxidation of ARA and DHA was also studied as
a function of aging [26], and whereas ARA does not
require the isomerase activity for the removal of its first
double bond, DHA does. The release of the first acetyl-
CoA residue from this fatty acid involves acyl-CoA
oxidase and yields 2,4-docososahexadienoyl-CoA. This
is metabolized by a 2,4-dienoyl-CoA reductase to give
3-docosahexaenoyl-CoA, which is further metabolized
to 2-docosahexaenoyl-CoA by A3,A2-enoyl-CoA iso-
merase activity. 2-Docosahexaenoyl-CoA then under-
goes a complete cycle of peroxisomal f-oxidation,
resulting in the release of one [1-'*C]-acetyl-CoA
residue. Despite this difference between ARA and
DHA, p-oxidation of these two fatty acids shows a
similar decrease during aging. This suggests that acyl-
CoA oxidase activity is the limiting step in the degrada-
tion of unsaturated fatty acids and that the relative
increase in trifunctional enzyme in peroxisomes from
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old rat liver [46] has no or little effect on the rate of
PUFA oxidation.

Since the production of 22:6n-3 has been demonstrated
to be dependent on peroxisomal f-oxidation [26], the
observed decrease in both peroxisomal fatty acid degra-
dation and acyl-CoA oxidase activity may contribute to
an aging-related decrease in 22:6n-3 synthesis and con-
sequently to an aging-related decrease in membrane
DHA content. A major component of retina and brain
membranes [96, 97], DHA is of major importance for
retina function [98, 66]. It has been hypothesized that
DHA-containing phospholipids create a specific mi-
croenvironment required for rhodopsin function [99]. In
the developing animal, 22:6n-3 is supplied to the retina
by the liver [100]. However, synthesis of n-3 fatty acids
like 24:5n-3, an intermediate in DHA synthesis, has also
been demonstrated in retina [101]. There is a decrease in
DHA content in retinal membranes during aging [102],
and this decrease is not due to an impairment in phos-
pholipid turnover or a decrease in the rate of incorpora-
tion of DHA into membranes. This parameter, in fact,
has been shown to be increased during aging [102].
Taken together, these results suggest that the age-related
decrease in retinal n-3 PUFA content may be due to a
decrease in DHA synthesis. An aging-related defect in
A4-desaturase activity [102] was first hypothesized. Be-
cause it is now well established that the production of
DHA requires peroxisomes [35], retinal tissue is likely to
exhibit aging-related changes generated by a defective
peroxisomal f-oxidation.

DHA has been shown to be involved in cholinergic
signal transduction at the synaptic level [103]. Therefore,
any change in DHA content in the synaptic membrane
would be likely to influence the efficiency of cholinergic
neurotransmission, which is involved in learning and in
particular in memory processes [104]. As noted previ-
ously, evidence for this essential role of DHA comes
from studies of dietary n-3 fatty acid deficiencies in
animals [66] and humans [71, 72] as well as in peroxiso-
mal diseases [31]. Moreover, DHA supplementation has
been found to reverse some of the symptoms associated
with Zellweger syndrome [36]. The primary improve-
ment resulting from the DHA therapy was in visual
function. Some of the DHA-treated patients have also
shown improved muscular tone and reduced hep-
atomegaly. The aging-related decrease in peroxisomal
activity is likely to result in a decrease in the DHA
content in excitable membranes, such as in retina [102],
and therefore a decrease in membrane-receptor signal
transduction activity. This supports the hypothesis of
membrane alterations as causes of impaired signal trans-
duction in aging and in aging-related diseases [86], but it
also supports the idea that aging-related decreases in
peroxisomal lipid metabolism are likely to alter mem-
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brane lipid composition and function, and have a sig-
nificant impact on the aging process [25].

At the biochemical level, the strict monitoring of
PUFA intake in these patients leads to a decrease in
plasma VLCFA and an increase in plasma DHA con-
tent. DHA therapy of Zellweger patients also led to
an increase in erythrocyte plasmalogen levels in these
patients. This highlights the interrelationship between
the different products of peroxisomal function. Indeed,
some plasmalogens are particularly enriched in DHA
[105], and it has been shown that ether phospholipids
are selectively acylated with DHA [106].

Plasmalogen synthesis, membrane composition and ag-
ing. Plasmalogens are ether phospholipids. The ether-
lipid synthesis pathway involves both the endoplasmic
reticulum and peroxisomes, but plasmalogen synthesis
is dependent on peroxisomal function [57]. The finding
of plasmalogen deficiency in different peroxisomal dis-
eases argues for the essential role of peroxisomes in
plasmalogen synthesis [4, 29]. The exclusive localiza-
tion of some enzymes involved in plasmalogen synthe-
sis (including the key enzyme DHAP-AT) within the
peroxisome provides definitive evidence [107]. How-
ever, the exact function of plasmalogens is still un-
known. It appears that they are important for
excitable membranes, since they are present in large
amounts in both synapses and myelin. It has been
proposed that plasmalogens may have an antioxidant
role, since they have been shown to protect lipo-
proteins from free radicals [108]. Another report has
suggested that plasmalogens facilitate membrane fu-
sion [109]. This later point is of particular interest,
since plasmalogens are a major constituent of synaptic
membranes. Plasmalogens also interact closely with
DHA, as demonstrated by both the beneficial effect of
DHA therapy on plasmalogen levels in Zellweger pa-
tients [36] and the preferential acylation of ether lipids
by DHA [106]. As mentionned previously, DHA is
involved in cholinergic signal transduction [103], and
the relationship of plasmalogens with DHA is likely to
reflect an involvement of plasmalogens in signal trans-
duction as well. This is not surprising, since it has
been shown that hydrolysis of plasmalogens is in-
volved in the synthesis of platelet-activating factor
[110]. The role of plasmalogens in signal transduction
was recently reviewed by Farooqui and co-workers.
[111]. An aging-related decrease in peroxisomal func-
tion would be expected to impair the homeostasis of
both DHA and plasmalogens and signal transduction
pathways associated with these lipids, particularly
muscarinic cholinergic signal transduction. It is inter-
esting to note that a specific decrease in plasmalogens
was characterized in patients with Alzheimer’s disease
[112]. However, no biochemical data exist on plas-
malogen biosynthesis activity during aging to support
the decrease in plasmalogen content reported in
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Alzheimer’s patients. These crucial data are still re-
quired.

Conclusions and perspectives

A growing body of evidence from animal and human
studies suggests that an aging-related decrease in per-
oxisomal function may play a role in mammalian ag-
ing processes. It is likely that the role of peroxisomes
in aging is a result of complex interactions between
changes in lipid metabolism and oxidative stress. One
can speculate that aging-related changes in peroxiso-
mal activity could influence the organism in a way
similar to peroxisomal diseases, though with milder
functional consequences.

The conceptual similarity between the impact of per-
oxisomal changes on aging and peroxisomal diseases
can be demonstrated by morphological observations.
It has been shown that in patients with pseudo-neona-
tal adrenoleukodystrophy (ps-NALD), a peroxisomal
disease characterized by a specific defect for acyl-CoA
oxidase, peroxisomes are larger than from healthy in-
dividuals [113]. In peroxisomes from old rats, Fahimi
and co-workers made the double observation of a de-
crease in acyl-CoA oxidase and an increase in the size
of peroxisomes [46].

Additional points support a significant role of perox-
isomes in the aging process. The membrane cholesterol
content has been shown to be increased with age [32],
and peroxisomes are involved in cholesterol synthesis
[114]. Unfortunately, no data are available on perox-
isomal 3-hydroxy-3-methylglutaryl-coenzyme A reduc-
tase activity during aging, but one study using a
Chinese hamster ovary (CHO) cell line deficient in
peroxisomes revealed increased rates of cholesterol
synthesis [115]. Thus, aging-related changes in the per-
oxisomal function may contribute to increased choles-
terol content in membranes. In this regard results
obtained by Theda and co-workers have shown that
the incorporation of VLCFA in the cholesterol-ester
fraction occurring in peroxisomal disease may repre-
sent a protective process for the cell [116]. As a result,
membrane cholesterol content is increased, and it has
been shown that an increase in membrane cholesterol
affects muscarinic cholinergic signal transduction in
rat brain synaptosomes [117].

In conclusion, the impact of peroxisomes in the aging
process requires further study. Taken together, the
data presented in this review suggest that peroxisomal
function may have a significant role in aging and ag-
ing-related degenerative diseases. It is our opinion that
the impact of peroxisomes on aging involves a com-
plex interaction between changes in oxidative stress
and lipid metabolism.
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