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Abstract. Growth hormone (GH) and prolactin (PRL) GH, PRL or IGF-I in the development or progression
of certain haematological malignancies or to the antitu-qualify as lymphohaemopoietic growth and differentia-

tion factors, and so does insulin-like growth factor mour immune response has been documented. Exam-
ples discussed in this review include a rat lymphoma in(IGF)-I, which mediates many of GH activities. Al-
which the PRL receptor acts as an oncogene; the ratthough there is only limited evidence that endocrine,

paracrine or autocrine GH or PRL play a role in Nb2 lymphoma, which is dependent on PRL for
growth; and experiments showing that PRL stimulateshuman leukaemia and lymphoma, the expression of

these factors or their receptors may have diagnostic or natural killer cell activity and the development of
therapeutic implications. Indeed, the participation of lymphokine-activated killer cells.
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Introduction

Growth hormone (GH) and prolactin (PRL) promote
normal haemopoiesis, play a direct role in the growth
and function of leukocytes and participate in host de-
fence against infections and tumours through endocrine
or paracrine/autocrine mechanisms (reviewed in the
present issue and in refs 1–5). The possible contribution
of these hormones to the development and progression
of leukaemia and lymphoma should therefore also be
considered. An indirect role for GH, mediated through

insulin-like growth factor-I (IGF-I), is also plausible.
Indeed, IGF-I qualifies both as a growth and a differen-
tiation factor for haemopoietic and lymphoid cells and
as a growth factor for many types of tumour cells [1–5
and papers by van Buul-Offers and Kooijman and by
Foster et al. in this issue]. In the present review, we will
first address the possible role of GH, PRL and IGF-I in
leukaemo- and lymphomagenesis, the expression of
these factors in leukaemic tissues (by tumour or
by stromal cells) and the expression of receptors for
GH, PRL or IGF-I on leukaemic cells. We will next
summarize the evidence for effects of these factors in
the progression and regression of leukaemia and
lymphoma.* Corresponding author.
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Leukaemogenesis

Clinical context
Clinical data on a possible role for PRL, GH or IGF-I
are limited. In acromegalic patients, the incidence of
polyposis and carcinoma of the colon is increased [6].
There are occasional reports of leukaemia development
during the course of acromegaly [7], but there is no
evidence that the incidence of leukaemia is increased
in this disease. There has also been speculation that
the hormones of pregnancy play a role in cancer devel-
opment or progression. Hodgkin’s and high-grade
lymphoblastic lymphomas are among the most frequent
malignancies associated with pregnancy. For both dis-
eases, clinical relapse or status quo is common during
pregnancy. Marked aggravation of non-Hodgkin’s
lymphoma is frequent post-partum, and breast feeding
has been mentioned as a contributory factor, pointing to
a possible role for PRL [8]. A critical issue was a
suggested increase in leukaemia incidence among pa-
tients treated with GH.

GH is not leukaemogenic
GH has been widely used in children with short stature,
with or without GH deficiency. Some athletes also use it
to enhance performance. In 1992, more than 30 cases of
leukaemia had been reported during or after treatment
with GH [9]. Consistent with these findings, prior hypo-
physectomy prevented the induction of leukaemia by
murine leukaemia virus (MuLV) in mice [10], and it was
suggested that deprivation of GH was the critical fact-
or. In children receiving GH, a careful review indicated
that in half of the cases presenting with leukaemia,
preleukaemic states or other conditions favouring the
appearance of leukaemia (such as Fanconi’s anaemia or
prior radiotherapy or chemotherapy) were present [11,
12]. Today, there are no indications that GH favours the
development of leukaemia in patients who have no
predisposing factor. Numbers are too small to establish
whether GH stimulates the development of leukaemia in
predisposed children. The point here, however, is that
GH is not leukaemogenic in children (with the possible
exception of a cohort of Japanese children), although it
has been found to be clastogenic in some studies (but not
in others) in human or animal cells [13–15]. Nevertheless,
careful monitoring of patients receiving GH is recom-
mended, as GH and IGF-I can stimulate the growth of
normal and transformed leukocytes [4, 16, 17, 19 and see
below]. Lymphoma has also been reported in GH users,
but there has been no recent evaluation of incidence [18].

Constitutive activation of hormone receptors
In a single rat, MuLV insertion resulted in transcrip-
tional activation of the PRL receptor (PRL-R) and

lymphoma development in the thymus [20]. The PRL-R
can thus behave as an oncogene. The IGF-I-R often
plays a critical role in the maintenance of the transformed
phenotype in several types of tumours [13], including
some haematological malignancies. For instance, trans-
fection with the IGF-I-R relieved cells from interleukin
(IL)-3 dependency [21]. Similar results were also obtained
through transfection with the GH-R [22 and M.-C.
Postel-Vinay, personal communication].

Constitutive activation of signalling pathways
GH and PRL utilize the Janus kinase (JAK)-signal
transducers and activators of transcription (STAT) path-
way for signalling, which modulates cell growth and
differentiation (reviewed in this issue by Yu-Lee et al.; see
also refs 23–25). Neoplastic transformation can be re-
lated to constitutive activation of receptors for growth
factors but also to constitutive activation of signalling
molecules. For instance, gain-of-function mutations of
the Drosophila JAK-2 homologue encoded by the hop-
skotch gene result in neoplasia of the larval lymph glands
[26]. In man, B lineage acute lymphoblastic leukaemia
cells from patients in relapse have constitutively activated
JAK-2 (a protein kinase normally activated e.g. by the
GH- or the PRL-R), and a specific JAK-2 inhibitor was
found to block leukaemic cell growth in vitro and in vivo
[27]. A recent report identifies the protein tyrosine kinase
domain of JAK-2 as a fusion partner for Tel (the
ETS-variant gene 6) as a result of translocation, in one
acute B cell lymphoid leukaemia in a child and in one
atypical chronic myelogenous leukaemia [28, 29]. Consti-
tutively activated STAT-5 (a JAK-2 substrate normally
phosphorylated in response to e.g. GH and PRL) has
been found in freshly explanted myeloid and lymphoid
leukaemic blasts and in Bcr-Abl-expressing cell lines
[30–33].

Production of GH, PRL or IGF-I by leukaemia cells

Normal leukocytes and bone marrow stromal cells ex-
press variable levels of PRL, GH and IGF-I, depending
on the differentiation and activation stage [3]. Expres-
sion of GH or PRL has also been unequivocally demon-
strated in several transformed haemopoietic cell lines.
The clinical relevance of the latter data is questionable,
as hormone production was sometimes found in sub-
clones only and was most probably not present in vivo.
Hormone expression is often very low and only in a few
cases has an autocrine effect been observed.

Myeloid leukaemia
Scarce data exist regarding the production of PRL by
myeloid leukaemia cells. A moderate increase in serum
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PRL levels has been reported in 16 patients with acute
myeloid leukaemia (AML) (out of 28) in one series.
Only in one of these cases was the presence of PRL in
leukaemic blasts investigated and found positive [34].
In addition to the 23-kDa PRL, immunoreactive
bands at 43 kDa (dimer?) and at 16 kDa were iden-
tified by Western blotting, although no demonstration
of active synthesis or PRL gene activation was pro-
vided by those authors.

Lymphoid leukaemia
More data exist regarding the expression of PRL by
transformed lymphoid cells. Several T cell lines and
one natural killer (NK) cell line have been shown pos-
itive for both PRL messenger RNA (mRNA) and
protein (glycosylated and nonglycosylated forms) [35–
38 and L.M., unpublished data]. In contrast to the
faint expression of PRL by B cells from peripheral
blood, several B cell lines express PRL more vigor-
ously. The first to be described was IM9-P, a clone
derived from the IM9 Epstein-Barr virus-positive B
lymphoblastoid cell line [39]. The IM9 line has lost the
immunoglobulin synthetic activity and has acquired
the ability to produce PRL. The two events are not
correlated, since two clones were generated from this
cell line: both were unable to produce immunoglobulin
G, but one was a PRL producer (IM9-P3) and the
other (IM9-P6) was not [40]. Studying a panel of 20
non-Hodgkin’s lymphoma cell lines, we have found
active synthesis of the two pituitary PRL forms by the
parental cell line Ramos. With the exception of two,
all the other cell lines expressed both PRL (23.5 and
25 kDa) and its mRNA (L.M., unpublished data). So
far, only the serum-free Ramos Burkitt-derived line
has been shown to produce GH [41]. Very recently,
the presence of GH transcripts and immunoreactive
GH was also demonstrated in the HL60 and K562 cell
lines (R. Kooijman, unpublished results). The expres-
sion of IGF-I in leukaemic cells is more common than
that of GH or PRL [2–4, 16, 42]. For all three hor-
mones considered here, little is known about the con-
trol of expression. In particular, although many
leukocytes express receptors for GH-releasing hor-
mone or somatostatin, these factors do not seem to
control GH expression in leukocytes. It is also not
known to which extent IGF-I in tumour or stromal
cells is dependent on (endocrine or paracrine) GH.
Extrapituitary PRL expression is often initiated from
the ‘extrapituitary promoter’, which is under a poorly
understood control, different from the ‘pituitary pro-
moter’. Thus, PRL transcripts in leukocytes are about
150 bp longer than in the pituitary, due to an extra
5%-noncoding exon [5, 37, 43].

Leukaemic cells often express receptors for PRL, GH
or IGF-I

Most types of normal leukocytes, endothelial or stro-
mal cells express receptors for and respond to GH,
PRL and IGF-I. The presence of receptors on the cell
surface has also been demonstrated in many fresh
samples of leukaemic cells and on cell lines [2–4, 77].

PRL-R
For studies in humans, it is important to note that
primate GH also binds to the PRL-R. Most of the
studies on the PRL-R were done, not on mammary
cells – the obvious target – but on the rat Nb2
lymphoma cell line. The Nb2 PRL-R is a truncated
form of the long form of the PRL-R. There is no
evidence that the mutation contributed to the trans-
formed phenotype [44]. The Nb2 cell line originally
required lactogens (e.g. PRL, placental lactogens or
primate GH) for growth, and this provided the basis
for a sensitive bioassay. Lactogen-independent sublines
were subsequently derived [45].
Using the monoclonal antibody PrR-7A, we have de-
tected in the 35S-labelled immunoprecipitate of
CD34+ human myeloid progenitors a 47-kDa protein
which is much less than the expectyed 85 kDa. The
most likely explanation is proteolysis. (So far, a short
form of the PRL-R has been described in the rat but
not in humans.) As both cell division and transcrip-
tion of the erythropoietin-R gene are triggered by
PRL in these cells, the presence of a long form (able
to transduce signals) is postulated [46 and L.M., un-
published results]. Receptors for PRL were detected
by the same antibody on primary AML blasts of the
M4 type, and stimulation by either hPRL or recombi-
nant hPRL increased both the DNA synthetic activity
and the susceptibility of these cells to lymphokine-acti-
vated killer (LAK) activity [47]. Attempts to confirm
these data with the promyelocytic HL60 cell line were
unsuccessful (L.M., unpublished results). However,
other authors have described increased DNA synthesis
in these cells after PRL treatment [48], despite the
reported absence of PRL binding [37, 49].
A high number of high-affinity PRL-Rs have been
described on the Nb2 T lymphoma cell line by both
binding of labelled lactogens and cytofluorometric
analysis [50, 51]. Human T cell lines display a variable
expression of PRL-R. Jurkat cells are strongly posi-
tive, while Molt-4 cells are negative. The PRL high-
producer YT NK cell line does not express PRL-R
[36, 37, 49, 52]. In a recent study we evaluated the
expression of PRL-R on NHL cell lines. A wide range
of expression from strongly positive (e.g. Daudi) to
negative (the most common situation) was observed.
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Except for Daudi, no correlation was found between
PRL and PRL-R expression. In addition to the ex-
pected size, shorter forms (possibly degradation prod-
ucts) were always observed (L.M., unpublished results).

GH-R
The GH-R has been identified on fresh samples of
leukaemia or lymphoma cells, on a limited number of
leukaemia cell lines (K562, Molt4, REH) and on vari-
ous lymphoblastoid cell lines (such as the IM-9 line) [11,
17, 53, 54].

IGF-I-R
The IGF-I-R has received much attention, in particular
in multiple myeloma [2, 3, 16, 55]. For studies with
IGF, it must be remembered that insulin and IGF-II
also bind to the IGF-R type I (IGF-I-R).

Effects of GH, PRL or IGF-I on leukaemic cells

Isolated reports of leukaemic or lymphoma cells invad-
ing endocrine glands such as the pituitary suggest that
hormones affect homing, growth or escape from im-
mune surveillance [56–59]. In animal models, hypophy-
sectomy has been shown to induce regression of one
form of myeloid leukaemia [60]. In humans, isolated
case reports may suggest that GH favoured disease
progression, but this has never been unambiguously
established [61]. In vitro studies with physiological or
pharmacological concentrations have documented the
growth-promoting effect of GH in several cell lines [11,
12, 17]. GH is an autocrine growth factor for the
Ramos-sf line (derived from a Burkitt lymphoma), but
this is probably a rare occurrence [41]. Similarly, PRL is
an autocrine growth factor for the Jurkat T-cell
leukaemia [36]. The rat Nb2 T cell lymphoma cell line
requires PRL for growth, and PRL-induced gene ex-
pression has been studied in detail (ref. 62 and see L.-y.
Yu-Lee et al., this issue). Altered expression of bcl-2
and bax are each associated with PRL-stimulated cell
cycle progression in Nb2 cells [63, 64]. Some effects of
GH have been studied in the IM-9 and K562 lines [65,
66]. In fresh leukaemia cells, physiological concentra-
tions of GH increase the expression of GH-R [53]. A
proliferative response was induced only in one imma-
ture T cell leukaemia, out of 19 primary leukaemias
(AML and acute lymphoid leukaemia) tested [53]. Un-
expectedly, the GH variant GH-V stimulates the prolif-
eration of IM-9 cells better than the pituitary GH-N (O.
Thellin, personal communication). IGF-I is a growth
factor for many normal and neoplastic haemopoietic
cells [67–74 and this issue, papers by Foster et al. and

by van Buul-Offers and Kooijman]. IGF-I stimulates
the growth of freshly isolated myeloid leukaemia cells
and myeloid as well as erythroid cells and myeloma cells
[16, 72–74]. Interestingly, IGF-I has been shown to
stimulate the production of granulocyte-macrophage
colony stimulating factor (GM-CSF) by some freshly
explanted AML cells [74]. Increased growth of myeloma
cells (but not of normal B cells) was seen with IGF-I
alone or in combination with IL-6.

Effects of GH and PRL in the antitumour response

GH and PRL may not be major immunomodulatory
factors in humans, but they undoubtedly play a role in
the homeostasis of the immune system as shown by the
decrease in NK cell numbers in GH-deficient children
and in hyperprolactinaemic adults (see paper by Velke-
niers et al. in the present issue).
Effects of GH and PRL may thus be both direct – at
the level of the leukaemia cell – or indirect – at the
level of the host response to leukaemia cell growth. For
instance, GH and PRL modulate cytokine expression
[75, 76 and R.H., unpublished results], with possible
effects on leukaemia cells or on antitumour response.
An interesting situation has been reported in a subset of
patients with B cell chronic lymphocytic leukaemia:
immunoglobulin-bound PRL (found in some serum
samples) that has no lactogenic activity (in the Nb2
bioassay) was able to stimulate leukaemia cell growth
[77]. Engagement of both the PRL-R and the receptor
for the Fc portion of immunoglobulin (Fc-R) was re-
quired for this activity.
PRL has a protective effect against tumour growth,
since lysis of tumour cell lines by NK-LAK cells is
increased by near-physiological concentrations of the
hormone [78]. In addition, the same concentrations of
the hormone synergize with ineffective, low-dose IL-2
to induce LAK activity against primary leukaemia cells.
These effects are apparently mediated through secretion
of interferon-g [79]. The individual and synergistic effect
of PRL and IL-2 on NK cells may be explained by
activation of convergent signalling pathways and tran-
scription factors. One of these, IRF-I, is one of the early
genes activated by PRL in Nb2 cells and is correlated
with entry into the cell cycle. This transcription factor
seems to be involved in the activation of perforin-de-
pendent killing by NK cells, since mice lacking IRF-I
are devoid of antitumour cytotoxic function [80].

Perspectives

1) Environmental, pharmacological or pathological dis-
ruption of the endocrine network may affect the
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homoeostasis of the haemopoietic system and con-
tribute to the development, progression or regression
of haematological malignancies.

2) The expression of GH, PRL, IGF-I and the corre-
sponding receptors on leukaemia/lymphoma cells
may have diagnostic implications. For hormones
and receptors, several variants and isoforms have
been identified. Their relevance for tumour biology
is illustrated by the fact that GH has angiogenic
activity [81], and a 16-kDa PRL variant has antian-
giogenic activity [82]. Different receptor isoforms
can use different signalling pathways.

3) Whereas IGF-I plays a key role in the proliferation
of many types of tumour cells, this is less often the
case for GH or PRL. The importance of the JAK-
STAT signalling pathway, including those molecules
activated by GH-R or PRL-R, in leukaemia cells is
illustrated by several recent reports. Through this or
other signalling pathways, GH or PRL may inhibit
or reinforce signals that contribute to progression or
arrest of tumour growth. JAK-STAT, however, is
not the only pathway used by GH and PRL. GH
and PRL, as well as IGF-I, signal through insulin-re-
ceptor substrate-1 and also through Shc, Grb2-
Sos and the mitogen-activated protein (MAP)-
kinase pathway. The complexity of receptor cross-
talk is illustrated by experiments documenting inhi-
bition by PRL of epidermal growth factor signalling
[83]. It was recently suggested that dysregulation of
the newly discovered families of cytokine-inducible
signalling inhibitor molecules (CIS) and PIAS
(protein inhibitors of activated STAT) may have a
role in proliferative disorders. Indeed, these
molecules seem to act as negative regulators of cy-
tokine action. They negatively regulate cytokine-in-
duced proliferation but inhibit cytokine-mediated
differentiation and growth arrest [84, 85]. Manipula-
tion of hormone levels may have therapeutic value in
some haematological diseases. It is therefore impor-
tant to understand the relative contribution of en-
docrine and paracrine hormone production. Indeed,
most pharmacologic agents that affect hormone se-
cretion in the pituitary are not effective in extrapitu-
itary sites.

4) Many effects of GH, PRL and IGF-I on the haemo-
poietic system are stimulatory. All three factors can
thus be considered for the treatment of bone marrow
aplasia, after, for example, radio- or chemotherapy.
The place of GH and IGF-I in the management of
catabolic states is discussed elsewhere in this issue
(see paper by Velkeniers et al.).
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