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Participation of annexins in protein phosphorylation
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Abstract. Simultaneous discovery of members of the annexin family of calcium and phospholipid binding proteins
by several groups is intimately linked to the possibility that these proteins may be controlled by phosphorylation.
Indeed, annexin I and annexin II have been identified as major substrates for the tyrosine kinase activity associated
with epidermal growth factor receptor (EGF-R) and for the retrovirus encoded protein tyrosine kinase pp60v-src.
Both annexins are also in vitro and/or in situ substrates for platelet derived growth factor (PDGF), insulin and
hepatocyte growth factor/scatter factor (HGF/SF) receptor tyrosine kinases. In addition, to serve as substrates for
tyrosine protein kinases some annexins are cellular targets for serine/threonine protein kinases such as protein
kinase C (PKC) and cAMP-dependent protein kinase A (PKA). Although the role of annexin phosphorylation has
not been studied in detail, it is thought to influence their vesicle aggregation and phospholipid binding properties.
Some annexins are also potent inhibitors of various serine/threonine and tyrosine kinases. The physiological
functions of the annexins have still not been clearly defined. Therefore the identification of the ability of these
proteins to undergo phosphorylation may be helpful in assigning them a precise biological role.
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Introduction

Phosphorylation is a reversible post-translational cova-
lent modification used by prokaryotic and eukaryotic
cells to control the properties of a wide variety of
proteins including enzymes, receptors, ion channels and
regulatory or structural proteins. This mechanism is
controlled by the activation of intracellular protein ki-
nases, leading to the phosphorylation of intracellular
target proteins which relay the effects of various ago-
nists on cellular processes such as proliferation and
differentiation. Depending on the amino acid(s) phos-
phorylated, these proteins are classified as serine/
threonine kinases, tyrosine kinases and dual specificity
protein kinases (serine/threonine and tyrosine).
The effects of protein kinases are counterbalanced by
protein phosphatases with the following specificities:
serine/threonine phosphatases, tyrosine phosphatases
and dual specificity phosphatases (serine/threonine and
tyrosine).
Phosphoproteins can be characterized according to the
protein kinase involved, the residues phosphorylated
and the cellular and subcellular distribution.
The discovery of members of the annexin family of
proteins is closely related to studies intended to identify
cellular substrates of various protein kinases.

Physiological functions of annexins

Numerous physiological functions have been attributed
to annexins including regulation of membrane traffic

during exocytosis and endocytosis, mediation of cy-
toskeletal-membrane interactions, mitogenic signal
transduction, transmembrane ion channel activity, anti-
inflammatory properties, inhibition of blood coagula-
tion and inhibition of phospholipase A2. It is still a
matter of debate as to whether these two latter func-
tions are the result of a calcium-dependent sequestra-
tion of phospholipids or a direct effect of the annexins
acting via protein-protein interactions.
During the development of these studies, numerous
investigations attempting to unravel the physiological
role of these proteins led to the identification of post-
translational modifications such as phosphorylation.

Annexins are targets of protein tyrosine kinases

Reversible protein tyrosine phosphorylation is an essen-
tial regulatory mechanism that governs the control of
fundamental cellular signalling events involved in
growth, proliferation, differentiation and transforma-
tion. Tyrosine protein kinases are enzymes that catalyse
these reactions. The effects of various effectors such as
growth factors (EGF, PDGF) and hormones (insulin)
are transduced by a class of transmembrane receptors
with intrinsic tyrosine kinase activity (R-PTK). The
tyrosine-specific phosphorylation function of these
R-PTKs is indispensable for the activation of signalling
pathways that promote cellular responses. Products of
retrovirus-encoded oncogenes define another class of
cytosolic nonreceptor tyrosine kinases, the prototype
being pp60v-src.
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Figure 1. Sites of human annexins I, II and IV phosphorylation by protein serine/threonine kinases and tyrosine kinases. The different
protein kinases involved are shown above the sequences when the sites of phosphorylation have been identified in situ and below when
they have been obtained in vitro. Amino acids are represented by the single letter code.

Pioneering studies devoted to the identification of sub-
strates of the EGF receptor kinase and pp60v-src led to the
discovery of annexin I [1–3] and annexin II [4–6]. A
unique tyrosine residue phosphorylated by the EGF
receptor kinase was identified in the N-terminal domain
of annexin I at position Tyr-21 [7] (fig. 1). The EGF
receptor-dependent phosphorylation was shown to occur
when cells were treated with EGF [8, 9], and when the
reaction was developed in vitro using purified proteins [7,
10]. Tyr-21 was also characterized as the major site of
annexin I phosphorylation by recombinant pp60c-src,
polyoma middle T/pp60c-src and pp50v-abl [11].
More recently a role has been attributed to annexin I in
the processing of the EGF receptor. A form of annexin
I seems to be associated in a Ca2+-independent manner
with internal vesicles involved in the endocytotic degra-
dation of the receptor [12]. Only the tyrosine phospho-
rylated form is released from the membrane, showing
that it may influence the binding of annexin I to mem-
branes.
In addition to EGF, other growth factors are involved
in the phosphorylation of annexin I, including HGF/SF
[13]. This growth factor was shown in vivo to induce
phosphorylation on tyrosine of annexin I and the
translocation of annexin I to the membrane fraction
where it associated with the receptor. This interaction
was independent of the phosphorylation state of the
receptor. In this respect, a functional link between
HGF/SF-stimulated cell proliferation and the phospho-
rylation of annexin I has been suggested.
The stimulation of a seven-transmembrane G-protein
coupled receptor (which lacks an intrinsic tyrosine ki-

nase activity) provides another example of tyrosine
phosphorylation [14]. In mesangial cells, the mitogenic
agent angiotensin II induced a sustained tyrosine phos-
phorylation of annexin I. However, the tyrosine kinase
responsible for this effect has not been identified.
Tyrosine phosphorylation of annexin II was shown to
occur both in vivo [15, 16], and in vitro [17]. Sequencing
of peptides from bovine annexin II phosphorylated in
vitro with pp60v-src has shown that Tyr-23 is the major
site [18] (fig. 1). Activation of the PDGF receptor also
increased tyrosine phosphorylation of annexin II [19] at
position Tyr-23 [20]. Annexin II has been identified as a
major cellular substrate for the constitutive protein ty-
rosine kinase activity of bovine articular chondrocytes
[21]. Annexins I and II are also in vitro and in vivo sub-
strates for the insulin receptor tyrosine kinase [22].
Additional information concerning the possible role of
annexin II in insulin signal transduction has appeared
recently [23]. The authors demonstrate that insulin in-
duces the tyrosine phosphorylation of annexin II in vivo
and that this event could be part of the internalization
and sorting mechanism of the insulin receptor. Those
results could be related to the tyrosine phosphorylation
of annexin I by an active EGF receptor kinase [12],
required for the correct sorting and recycling of the
receptor [24].
Although these results show that annexins I and II are
substrates for both receptor tyrosine protein kinases
and oncogene encoded protein kinases, the precise con-
sequences of these post-translational modifications in
the transduction of mitogenic signals have still to be
determined.
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Annexins are substrates of serine/threonine kinases

Intracellular signalling pathways include systems in
which specific kinases, for example PKC and PKA, are
activated following the generation of second messen-
gers.
PKC serine/threonine kinases, a family of at least 12
isoenzymes, have been subdivided, on the basis of dif-
ferent primary structures and enzymatic properties, into
Ca2+-dependent or conventional PKCs (cPKC) and
Ca2+-independent or novel and atypical PKCs (n+
aPKC) [25]. Although PKC and annexins have some
features in common, such as binding of calcium and
phospholipids and association with cytoskeletal ele-
ments, there are no structural similarities between them.
Activation of PKC by growth factors, hormones or
phorbol esters leads to the phosphorylation of many
endogenous proteins which are involved in the control
of cell proliferation, differentiation and motility [26].
Annexin I [11, 27] and annexin II [28, 29] are among the
substrates phosphorylated by PKC. The major sites of
human annexin I phosphorylation by PKC are Ser-27,
located six residues from the tyrosine kinase phosphory-
lation site, and Thr-41 [11] (fig. 1). In addition, phos-
phorylation of Ser-27, Ser-28 and Thr-24 have also been
identified [27]. Annexin II is a target for PKC both in
vivo and in vitro. Ser-25 has been shown to represent
the major phosphorylation site [28]. Its seems that Ser-
25 and Tyr-23 phosphorylation events are mutually
exclusive since both sites have not been identified on the
same molecule. Another annexin, namely annexin IV,
has also been phosphorylated in vitro by PKC on Thr-6
[30] (fig. 1).
These PKC-dependent sites are located in a consensus
sequence motif (Ser/Thr-Val-Arg/lys). Interestingly,
other annexins which possess the putative PKC substrate
motif (Thr-Val/Ile-Arg/lys) are also potential substrates
for PKC. These include annexins III, VII, VIII and X.
Annexins V and VI, which both lack this consensus se-
quence, have not been described as PKC substrates.
To investigate which PKC isoforms were involved in the
phosphorylation of annexins in vitro studies have been
performed. Thus we recently showed that annexin I [31]
and annexin II [32] are substrates only for cPKCs (Ca2+

and phospholipid-dependent) and not for (n+a)PKCs.
In addition to PKC-dependent phosphorylation, an-
nexin I is also an in vitro substrate for PKA. The
unique site identified was Thr-216 located near the
beginning of the third repeated sequence of the con-
served domain [11]. The sequence preceding Thr-216
(Arg-Arg-Lys-Gly) is positively charged, as expected for
a protein kinase A phosphorylation site. This is, until
now, the only phosphorylation site that has been iden-
tified outside the N-terminal domain of an annexin.
However the physiological meaning of this phosphory-
lation has not yet been investigated.

Effect of phosphorylation on the properties of annexins

Previous studies suggested that tyrosine and serine
phosphorylations of annexin-like proteins could abolish
their ability to inhibit the activity of PLA2 [33]. How-
ever, it still remains to be established whether this
inhibitory activity is the result of a sequestration of
phospholipids or a direct protein-protein interaction.
The tyrosine phosphorylation of annexins I and II has
previously been shown to influence their lipid binding
characteristics. Thus phosphorylation of annexin I by
the EGFR reduced the Ca2+ requirement of phospho-
lipid vesicle binding [34, 35], whereas phosphorylation
of annexin II by p60v-src decreased binding of the
protein to phospholipid vesicles at low Ca2+ concentra-
tions [36]. Tyrosine phosphorylation has also been re-
ported to promote proteolytic degradation of annexin I
[37].
Phosphorylation of annexin I and of the annexin II
tetramer (A-II-t:two A-II subunits and two p11 sub-
units [38–40]) by PKC did not inhibit their phospho-
lipid binding properties, but in vitro it inhibited their
membrane aggregating properties as well as the associa-
tion of annexin II with p11 [41, 42]. Phosphorylation
also increased the calcium requirement of annexin I to
promote aggregation of chromaffin granules [43].
Recently, the aggregative and binding properties of the
phosphorylated and unphosphorylated forms of an-
nexin II toward chromaffin granules have been com-
pared [44]. The authors show that the phosphorylation
of annexin II decreased the affinity of the binding to
chromaffin granules without affecting the maximum
binding capacity. Phosphorylation of annexin II was
followed by dissociation of the light chains (p11 sub-
units) from the heterotetramer. Interestingly, when an-
nexin II, bound to chromaffin granules, was
phosphorylated by PKC in the presence of phorbol
ester (TPA), fusion of granules was observed. These
results suggest that PKC may play an important role in
the regulation of annexin II during Ca2+-dependent
exocytosis, since both are involved in stimulus secretion
coupling [45].
Another example is provided by the phosphorylation of
annexin XI in rat embryonic fibroblasts transformed by
Rous sarcoma virus oncogene (v-src). Compared to
nontransformed cells, phosphorylation of annexin XI
was increased on both serine and threonine residues by
an as yet unidentified kinase [46]. This phosphorylation
was shown to abolish the phosphatidylserine vesicle-
binding ability of annexin XI even in the presence of
high concentrations of calcium. It also altered the sub-
cellular distribution of the protein. These results show
that phosphorylation can affect the properties of annex-
ins in different manners but represents a critical event
that modifies their biological character.
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Annexins are inhibitors of serine/threonine and tyrosine
kinases

In addition to serving as substrates of various protein
kinases, some annexins also have the capacity to inhibit
these enzymes. Thus, annexins V [47] and VI [48] are
potent inhibitors of PKC in vitro. Although the inhibi-
tion seems specific for this kinase (EGF receptor kinase
and PKA were not affected by annexin V), there is no
consensus concerning the mechanism of action. In some
cases annexin V was shown to inhibit PKC directly [47,
48], whereas others maintain a substrate depletion
model [49]. The main difficulty in elucidating a conclu-
sive mechanism is that all these proteins bind calcium
and phospholipids. Nevertheless, among the PKC iso-
forms tested, only cPKC-dependent phosphorylation of
annexin I was affected by annexin V [31].
Another recent study also provides evidence that an-
nexin IV specifically inhibited Ca2+/calmodulin-depen-
dent protein kinase II (CaM KII) activated chloride
current [50]. However, the authors show that in vitro
annexin IV did not inhibit CaM KII activity and did
not act as a substrate for this kinase. These results
suggest that the inhibitory effect of annexin IV is not
the result of a direct interaction with CaM KII, but
rather acts by preventing CaM KII-ion channel interac-
tion and subsequent activation.
An additional example is provided by the inhibitory
effect of annexin I on the insulin receptor protein ty-
rosine kinase [51]. This inhibition was specific (annexin
V had no effect), occurred in the absence of calcium and
phospholipids and seemed to involve a direct interac-
tion between annexin I and the insulin receptor. Al-
though, this observation needs to be confirmed in vivo,
it opens new perspectives on the mechanisms of action
of the annexins.

Conclusion

During the last 15 years, a substantial amount of data
has accumulated which deals with the phosphorylation
of members of the annexin family of calcium and phos-
pholipid binding proteins. However, those results are
not always satisfactory because most studies were ob-
tained in vitro. A clear picture of the biological proper-
ties of these phosphoproteins needs an investigation in
vivo. Such experiments are usually complicated by the
presence of phosphatases that counterbalance the ef-
fects of specific kinases. One approach could be to
generate a mutated form of an annexin that could affect
a known phosphorylation site. For example a selected
tyrosine residue could be changed to a glutamic acid
residue in order to introduce a stable negative charge
that could mimic the presence of a phosphate in this
location. These mutations could provide a tool to un-
derstand better the translocation of annexins and/or

their interactions with other proteins, and to modulate
the mechanism of signal transduction.
Identification of protein kinases and protein phos-
phatases and the study of their accessibility to sub-
strates such as annexins will be of great importance to
the better understanding of the physiological role of
these proteins. No doubt these experiments are already
‘en route’.
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