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competent cells. The clinical manifestations of the sideAbstract. The discovery and cloning of the cytokine
effects were similar to those observed during a severetumor necrosis factor a (TNF) gave rise to new hopes
infection and inflammation. Very recently, lessons fromfor a significant victory in the war against cancer.

Preclinical in vitro studies in cell cultures and in vivo these clinical studies yielded refined approaches whereby
the toxicity of TNF is limited through local administra-studies in animal models demonstrated the antitumor
tion, a combination with other therapeutic regimens andcapacities of TNF. Although clinical studies were largely
targeted gene therapy. These new approaches are slatedmade possible by the availability of recombinant TNF,

phase I and II clinical trials showed very quickly that the for larger clinical trials and in the near future might
demonstrate the limited but powerful usefulness of TNFsystemic administration of TNF induced severe side

effects mainly due to its pleiotropic action on immuno- as an antineoplastic agent for different types of cancer.
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The biology of tumor necrosis factor a

Tumor necrosis factor a (TNF) or cachectin is a
pleiotropic cytokine initially identified as a protein re-
leased by endotoxin-stimulated macrophages [1], al-
though several other types of cells are able to synthesize
small amounts [2, 3] as well. The term tumor necrosis
factor originates from the observation that this protein
plays a crucial role in the killing of tumor cells by
activated macrophages and cytotoxic T-lymphocyte
subsets involved in the early stages of anticancer
surveillance. Besides its effect on cancer cells, TNF
exerts a wide range of biological activities related to
such diverse functions as inflammation, mitogenesis and
differentiation [4]. TNF can induce both necrotic and
apoptotic (programmed) forms of cell death [5]. Necro-

sis is characterized by cell swelling, destruction of cell
organelles and lysis. In contrast, the cells shrink as a
consequence of apoptosis, where in most cases specific
DNA fragmentation occurs in the nucleus. Apoptotic
bodies are formed without lysis and therefore without
immune reaction by the organism. Although TNF was
originally described as a necrosis factor, in many cases
the initiation of apoptosis seems to play a more impor-
tant role in the death of cancer cells.

The molecular facts

The membrane-bound precursor form of TNF is com-
posed of 233 amino acids resulting in a molecular
weight of 26 kDa [6]. Processing of this precursor by
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metalloproteinases releases a soluble 17,350-Da cyto-
kine consisting of 157 amino acids [7–9]. The monomer
forms an elongated, antiparallel b-pleated sheet
sandwich. Three monomers associate closely around a
threefold axis of symmetry to form a compact bell-
shaped trimer [10]. Its homotrimer with a molecular mass
of 52 kDa is the biologically active form that can bind
to surface receptors with high affinity [11]. These specific
receptor molecules are expressed on the cell surface of
virtually all somatic cell types except erythrocytes,
highlighting the multipotent nature of TNF. The number
of TNF receptors per cell can vary from 100 to more than
10,000 [12, 13].
All members of the large TNF/nerve growth factor
receptor family act through a common set of signaling
molecules and contain a characteristic repeating
extracellular cystein-rich motif [14, 15]. TNF
homotrimers are capable of binding specifically to two
members of this family, the 55- and 75-kDa TNF
receptors [16–23]. The two molecules differ in
glycosylation and their affinity constants for TNF.
Calculation of the dissociation constant (Kd) from the
association and dissociation rate constants determined at
37 °C revealed that the 75-kDa myeolid cell type receptor
has an affinity constant of 0.42 nM, whereas the 55-kDa
receptor of epithelial origin has a higher affinity of 0.019
nM [24]. The high affinity determined for the p55 TNF
receptor is mainly due to the marked stability of
ligand-receptor complexes in contrast to the transient
interaction of soluble TNF with the p75 TNF receptor.
These data may in part explain why the p55 TNF receptor
is predominant in the induction of cellular responses by
soluble TNF; they suggest the stability of the TNF-TNF
receptor complexes as a rationale for the differential
signaling [25, 26]. When TNF binds to the TNF
receptors, phospholipase C is activated and
diacylglycerol is produced from membrane phospho-
lipids, leading to the activation of protein kinase C. Upon
binding of the ligand the TNF receptors also employ the
sphingomyelin pathway, initiating the hydrolysis of
plasma membrane sphingomyelin by sphingomyelinase
[27]. Ceramide serves as a second messenger stimulating
a cascade of protein kinases including mitogen-activated
protein (MAP) kinase and, via Raf, the nuclear
translocation of nuclear factor kappa B (NFkB) [28].
Some other protein kinases such as b casein kinase and
hsp27 kinase are also activated, but their roles in
mediating TNF-dependent cell responses are not yet
entirely clear. The TNF-TNF receptor complex is rapidly
internalized and degraded in lysosomes [29, 30]. This
process seems to be mediated by protein kinase C
[31–33]. Thus, the TNF receptors are not recycled to the
cell surface, but new synthesis is required to maintain
receptor density on the plasma membrane [34]. However,
some reports indicate that in some cells the TNF receptor

may be recycled to the cell surface [35, 36]. On the other
hand, an internalization or shedding of both the p55 and
the p75 TNF receptors was shown to occur, indicating
differential receptor inactivation upon ligand binding
[37–39]. In most cells, inactivation of the p55 receptors
seems to occur mainly by internalization, whereas the p75
receptor is removed from the cell surface by shedding.
The soluble receptor forms may act as inhibitors for
TNF-mediated cellular responses by binding and, hence,
neutralizing circulating TNF [40, 41].
The p55 receptor mediates the cytotoxic and cytostatic
effects of TNF in malignant cells [42–48]. The p75
receptor does not seem to be essential for the cytotoxic
activity of TNF, but may have its own biological
properties. It has been suggested that the p75 receptor
might have a helper function for enhanced cytotoxicity
triggered by the p55 receptor. Human HeLa cells
containing mainly the p55 receptor are not killed by TNF
alone, but overexpression of the p75 receptor induces
cell death [49, 50]. In addition, NIH3T3 mouse
fibroblasts overexpressing human p75 receptors became
sensitive to human TNF, which causes cell death. This
series of experiments demonstrates that the p75 receptor
can induce cytotoxicity. However, it is not clear yet
whether the cytotoxicity is directly induced by the p75
receptor or via an interaction with the p55 receptor.
Recent findings indicate that a cooperation of both TNF
receptors via TNF-receptor-associated factors 1 and 2
(TRAF1/TRAF2) binding domains may induce
apoptosis in rat and mouse T-cell hybridoma PC60 cells
[51–53].

The antitumoral activity of TNF: a brief history

The story of TNF as an antitumor agent begins some
centuries ago with the accidental observation that ad-
vanced cancer patients suffering concomitant bacterial
infections showed tumor regression and, in a few cases,
a complete cure. In 1891, a New York surgeon, W. E.
Coley, discovered that a filtered medium from bacterial
cultures showed anticancer activity in terminally ill pa-
tients. He went on to treat over 1200 cancer patients
with ‘Coley’s mixed toxin’, a crude filtrate of Erysipelas
and Serratia marcescens, having but ‘mixed success’.
Repeated inoculation of the toxin caused severe side
effects such as high fever and chills – side effects remi-
niscent of infection and inflammation. Despite an initial
success rate of 22% this treatment was discontinued
mainly because standard bacterial preparations could
not be obtained and the causes of the severe side effects
were not yet understood. Half a century later, namely in
1943, Shear and colleagues isolated endotoxin from S.
marcescens culture filtrates, a fraction of which was able
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to induce necrosis in tumors [54]. Although the clinical
use of endotoxin is very limited because of toxic side
effects, over the last decades a number of attempts to
revive Coley’s toxin in different forms were made. Highly
purified endotoxin was intravenously administered by a
bolus injection in phase I and II trials [55–58]. In
virtually all trials using tolerated doses of either endo-
toxin or the lipid-A portion of the molecule no direct or
only marginal objective antitumor activity or necrosis
were observed. Only a few case histories of colorectal
cancer patients show partial remission, and in a single
case a complete remission occurred [58].
In 1975 it was discovered that the tumor necrosis effect
is not directly caused by endotoxin but is due to an
endotoxin-induced serum factor, concomitantly called
tumor necrosis factor (TNF) [1]. It has been clear for
some time that all the bacterial extracts and endotoxins
used to treat patients trigger the release of endogenous
cytokines such as TNF, interleukin-6, interleukin-8 and
granulocyte-macrophage colony-stimulating factor by
activated macrophages. TNF has been shown to be
cytotoxic for some, but not all, tumor cells. Some cells
need to be activated by a second or third cytokine in
order to become sensitive to TNF. The mechanism
leading to this sensitization is not clear, although it seems
certain that the number of surface TNF receptors is not
enhanced by the sensitizing cytokine. For other tumor
cells TNF is not cytotoxic but only cytostatic, inhibiting
growth while not affecting maintenance of cells. Lastly,
a number of tumor cell lines do not respond at all to
TNF. In fact, the majority of tumor cell lines are not
growth-inhibited by TNF in vitro. The cytotoxic effect
on some tumor cells is largely mediated by a complex
machinery leading to apoptosis of the target cells. Of
interest for a therapeutic approach is the observation that
induction by TNF of cell death can occur in cells whose
protein synthesis has been completely blocked. This
implies that death-triggering TNF receptors can activate
this latent machinery through a preexisting signaling
cascade. The mechanism initiated by the binding of TNF
to its receptors can also be activated by the binding of
a ligand to CD95/Fas/Apo-1, resulting in the highly
controlled activation of killer proteases, the caspases or
ICE (interleukin-1b converting enzyme). The activation
of the same suicide machinery in tumor cells is also
induced by drugs such as chemotherapeutics, which
either damage the DNA irreparably or interfere with the
cell cycle or the cellular metabolism.
Although the cellular pathways to death were character-
ized in detail during the last few years, it is still not clear
why some tumor cells are resistant to TNF action. One
explanation has been offered by recent observations that
mutations in proteins with central functions in the apop-
totic mechanisms might protect cells from dying. In
particular, cells with mutations in the p53 tumor suppres-

sor can survive hypoxic conditions, although the lack of
oxygen induces cell death via apoptosis in cells contain-
ing wild-type p53. Thus, the obvious approach is to
concentrate on developing a new generation of drugs
which manipulate the apoptotic machinery selectively in
target cells either by inducing apoptosis or by overcom-
ing drug resistance in combination with conventional
chemotherapeutics.
The pluripotent effect of TNF is also reflected in its
action on vascular endothelial cells affecting vasculariza-
tion of growing tumors. Neovascularization is an early
requirement for both tumor growth and dissemination.
This angiogenesis is a result of a balance between angio-
genic and antiangiogenic factors, with TNF exhibiting
both pro- and antiangiogenic activities [59–64]. On the
one hand, some reports indicate that TNF exerts an
antiangiogenic effect in part by modulating the vascular
endothelial growth factor (VEGF)-specific angiogenic
pathway through downregulation of vascular endothelial
growth factor receptors (KDR) in cultured human vascu-
lar endothelial cells [65] or through its local tissue
concentration [66]. On the other hand, the stimulation of
endothelial cell growth by TNF seems to depend on other
cells, in particular TNF-activated monocytes and
macrophages [60, 67, 68]. Thus TNF, a potent inhibitor
of endothelial cell growth in vitro, under certain circum-
stances is indirectly angiogenic in vivo. Whether thera-
peutically administered TNF will have an angiogenic or
antiangiogenic effect in vivo is therefore not entirly
predictable, since the complex mechanisms mediating the
effects on angiogenesis are poorly understood. However,
if TNF is able to eradicate cancer cells in situ, the
proangiogenic effect of this cytokine might not play a
role at all in the efficacy of tumor therapy.
Another potential pitfall for the use of TNF as an
antineoplastic agent is the observation that this cytokine
can stimulate proliferation of certain tumor cells in vitro
[69–72]. The growth-promoting effect can be mediated
via enhanced expression of growth factors [73] and direct
or indiret MAP kinase activation [74, 75] and might
require the c-jun/AP-1 function [76]. These experimental
data led to the conclusion that TNF needs to be blocked,
rather than stimulated or administered, in cancer treat-
ment [77]. In view of the numerous reports demonstrat-
ing the antiproliferative potency of TNF, the in vitro
proliferatory effects of TNF on certain types of cancer
cells will need to be further defined and extended to in
vivo studies.

Clinical studies

The failures
The cloning of TNF in 1985 and its expression in
Escherichia coli allowed study of its effects on tumor
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cells and cancer in more detail [78–82]. Initially, the
discovery of ‘the magic bullet’ was celebrated, and an
important victory in the war against cancer was declared.
During the following years a huge interest by the
scientific community and the pharmaceutical industry led
to numerous animal studies, demonstrating the efficacy
of recombinant TNF against various types of cancer.
Mouse tumor models and human tumor xenografts in
nude mice have shown that intratumoral applied TNF
can be very effective in inducing regression of tumors in
recipient mice. However, only systemic administration
was able to kill tumor cells metastasized to remote areas
of the organism or to help eradicate subclinical
metastases. Unfortunately, systemically administered
TNF was barely effective in mice. This might be due to
the pluripotent effects of TNF and, hence, its rapid
clearance from the bloodstream by binding to sites other
than the targeted tumors.
Once data from the animal studies were available, phase
I clinical trials with patients exhibiting advanced
malignancies were initiated. The primary objectives of a
phase I trial are (i) to determine the maximum tolerance
and recommended phase II doses, (ii) to describe all
drug-related toxicities in terms of severity and duration
and (iii) to determine the clinical pharmacology of the
drug. These trials indicated that the maximum tolerated
dose of TNF is about 150–300 mg/m2 per day for bolus
administration [55, 83, 84] and up to 500 mg/m2 per day
for continuous infusion. For example, in one phase I
study TNF was administered intravenously for 5
consecutive days every 2 weeks for a total duration of 8
weeks. Twelve of 34 patients had no change in their
evaluable disease for a median duration of 18 weeks
(range, 8–30 weeks), and 22 patients showed progressive
disease [85]. Although phase I studies are not designed
to show efficacy of the drug, these results clearly
demonstrated that continuous administration of TNF
seems to be as ineffective in humans as in mice. TNF was
therefore administered in other trials either intravenously
or intramuscularly as a single bolus or as a bolus several
times weekly. Dose-limiting toxicity was manifested in
hypotension, fatigue and nausea. The most common
clinical toxicities of TNF consisted of rigors, fever, chills,
anorexia, vomiting, headache and fatigue – side effects
similar to those observed during a severe infection and
inflammation. Pharmacokinetic studies indicated a rapid
plasma clearance and a short plasma half-life, generally
less than 0.5 h [86, 87]. In fact, the clearance in the serum
of the recombinant TNF had a calculated half-life of
14–18 min [88]. Peak concentrations were observed
within 2 h after bolus intravenous administration and
TNF concentrations were virtually undetectable 24 h
post injection.
The biological effects of intravenous or intramuscular
TNF were shown to enhance serum b2-microglobulin,

serum neopterin and serum interleukin-2 receptor (Tac
antigen) levels [89]. TNF enhanced granulocyte
bactericidal activity [55] in some studies but not in others
[89]. Neither did the administration of TNF significantly
increase the expression of cell surface proteins on
monocytes, including HLA (human lymphocyte anti-
gen)-DR, HLA-DQ, b2-microglobulin, the Fc receptor
and serum interleukin-1 activity. Thus, in humans TNF
caused biological response modulation with evidence of
HLA class I (b2-microglobulin) increase and T-cell (Tac
antigen) and monocyte (neopterin) activation [89].
Furthermore, serum C-reactive protein as an indicator
for inflammation increased significantly [90]. Other phase
I trials combined TNF with other cytokines such as
interferon-g [91] or interferon-a and interleukin-2 [92].
The addition of interferon-g to TNF resulted in a greater
than threefold increase in toxicity compared with TNF
administered as a single agent, supporting the hypothesis
that the combination of these cytokines may induce in
vivo the synergistic effects observed in vitro [12, 93, 94].
The doses of TNF evaluated in the phase I trials were
used in phase II clinical trials, which are by definition
designed to evaluate efficacy (and safety) in selected
populations of patients suffering from the disease to be
treated. Thus, these trials should yield a success rate for
the administered drug. Of the evaluable patients, some
responded with no change, and the majority showed
progressive disease [95–101]. In conclusion, since
recombinant TNF has no demonstrable antitumor
efficacy, it is inactive as a single agent in patients with
different neoplastic diseases. Thus, it proved necessary to
initiate novel means of delivery or combination therapy
studies designed to exploit the biological activities of
TNF.

The promises
To restrict the toxic side effects of systemically adminis-
tered TNF, direct delivery into the tumor or isolated
limb perfusion was performed. Isolated limb perfusion
is an established method for the treatment of regionally
advanced melanoma and sarcoma [102]. It allows the
delivery of high doses of the drug in a closed system
with acceptable toxicity and minimal systemic side ef-
fects. Local therapy, particularly isolated limb perfu-
sion, has resulted in complete and long-lasting tumor
regression with necrotic activity in most cases confined
to the tumor vascular bed [103–105]. Combination
therapies were applied to reduce the toxicity of a single
agent and to increase the efficacy of TNF. In one study,
a protocol with a triple-drug regimen was based on the
reported synergism of TNF with chemotherapy, inter-
feron-g and hyperthermia. In patients with melanoma-
in-transit metastases (stage IIIA or AB), 91% complete
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response was obtained. In unresectable soft tissue sarco-
mas, this protocol was found to produce a 50% complete
response with 87.5% limb salvage, since most tumors
became removable [106]. These successes also triggered
other perfusion studies such as the isolated perfusion of
the kidney with TNF for localized renal-cell carcinoma
[107] and isolated hepatic perfusion in the pig with TNF
with and without melphalan [108–110]. The clinical
success of the application of TNF in the setting of isolated
limb perfusions in patients with advanced sarcomas,
melanomas and other tumors has sparked renewed inter-
est in TNF as an anticancer drug [111, 112]. Currently
a number of renowned cancer centers in Europe and the
United States are exploiting this method for tumor
treatment.
An even more locally confined action of TNF can be
achieved by specific gene transfer into cells in the tumor
or adjacent tissue. Implantation of tumor cells modified
by in vitro cytokine gene transfer has been shown by
many investigators to result in potent in vivo antitumor
activities in mice. These methods are still in the develop-
ing stage, and to date only experiments in cell cultures and
mice have been conducted. Transduction of the TNF gene
to primary culture tumor cells by the use of a retrovirus
vector resulted in up to 12 copies of the gene per cell. The
cytotoxic activity of killer cells to nontransduced au-
tologous tumor cells incubated with these TNF gene
transfectants was augmented. These and other findings
indicate the potential for using TNF gene-transduced
tumor cells as a vaccine [113]. Others transfected fibro-
blasts with the TNF gene and showed that these cells
started to produce TNF and had antitumor activities
[114]. Intratumoral injection of the TNF gene in a suitable
vector and concomitant irradiation resulted in a complete
tumor regression in over 70% of xenografted malignant
human gliomas in athymic nude mice [115]. Furthermore,
the lack of the 55-kDa TNF receptor on some tumor cells
may be responsible for an incomplete or missing response
to TNF. Gene transfer of the 55-kDa TNF receptor to
these cells restored TNF susceptibility and resulted in
suppression of in vivo tumor formation in nude mice
[116]. In contrast, human TNF expressed from aden-
ovirus vector infected tumor cells is quite toxic to mice
while inducing only a moderate antitumor response [117].
Although a number of problems need to be resolved
before TNF gene transfer or therapy can be tested in
humans, the use of the powerful anticancer activity of
TNF by locally confining its toxicity appears to be a
promising step in the direction of tumor eradication.

The strategy: suicide of cancer cells

The prerequisites for a modern antineoplastic agent are
specificity, deliverability, nontoxicity and avoidance of

side effects. TNF can meet some of these requirements
if administered appropriately. In particular, triggering the
self-destruction of cancer cells through the apoptotic
machinery is one feature of TNF which might in the near
future revive the use of this cytokine as an anticancer
drug. Characteristic features of apoptosis are the active
participation of the affected cell in its demise, the removal
of the cell debris (apoptotic bodies) by cells in neighboring
tissue through phagocytosis and the lack of inflammatory
responses by the organism during this process. Employ-
ing this naturally occurring cell death mechanism will
facilitate elimination of cancer cells in a specific manner
without triggering side effects such as severe inflamma-
tion. However, in vitro experiments and animal studies
showed that TNF alone is not able to eliminate all cancer
cells. Thus, combination therapy with other cytokines,
new therapies and/or conventional adjuvant therapies
will be necessary to control and eventually cure a devas-
tating disease like cancer. Combination therapies might
also include agents to reduce or avoid side effects of the
toxic substances used to treat tumors.
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