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Abstract Cancer immune evasion contributes to checkpoint immunotherapy failure in many 
patients with metastatic cancers. The embryonic transcription factor DUX4 was recently character-
ized as a suppressor of interferon-γ signaling and antigen presentation that is aberrantly expressed 
in a small subset of primary tumors. Here, we report that DUX4 expression is a common feature of 
metastatic tumors, with ~10–50% of advanced bladder, breast, kidney, prostate, and skin cancers 
expressing DUX4. DUX4 expression is significantly associated with immune cell exclusion and 
decreased objective response to PD-L1 blockade in a large cohort of urothelial carcinoma patients. 
DUX4 expression is a significant predictor of survival even after accounting for tumor mutational 
burden and other molecular and clinical features in this cohort, with DUX4 expression associated 
with a median reduction in survival of over 1 year. Our data motivate future attempts to develop 
DUX4 as a biomarker and therapeutic target for checkpoint immunotherapy resistance.

eLife assessment
This study presents a valuable finding on the association between DUX4 expression with features 
of immune evasion in human tissue and clinical outcomes in patients with advanced urothelial 
cancer. The evidence supporting the claims of the authors is convincing, using a range of corrobo-
rative statistical techniques. Compared to an earlier version, the quality of the manuscript has been 
enhanced, for example Figure 5 now illustrates the key features of survival probability estimates over 
time for patients assigned to with the test or training set.

Introduction
Immune checkpoint inhibition (ICI) therapy utilizes immunomodulatory monoclonal antibodies to stim-
ulate patient anti-tumor immune responses. Blockade of T cell co-inhibitory receptors, such as CTLA-4 
and the PD-1/PD-L1 axis, has achieved major success in the treatment of diverse metastatic cancers 
compared to first-line chemotherapy (Doki et al., 2022; Hellmann et al., 2019; Klein et al., 2020; 
Larkin et al., 2019; Motzer et al., 2020; Stein et al., 2022). However, a majority of advanced cancer 
patients fail to respond to ICI due to de novo or acquired resistance, the mechanistic bases of which 
remain incompletely understood.

Diverse mechanisms modulate sensitivity and resistance to ICI (Kalbasi and Ribas, 2020). These 
mechanisms include defects in Major Histocompatibility Complex (MHC) class I-mediated antigen 
presentation due to loss of B2M or HLA (Grasso et al., 2018; Lee et al., 2020; McGranahan et al., 
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2016; Sade-Feldman et al., 2017; Sucker et al., 2014; Wolf et al., 2019), PTEN and LSD1 inacti-
vation, which sensitizes tumor cells to type I interferon signaling (Li et al., 2016; Peng et al., 2016; 
Sheng et al., 2018), T cell dysfunction (Jiang et al., 2018), presence of specific T cell populations 
in the tumor microenvironment (Gide et al., 2019), and active WNT–β-catenin signaling (Spranger 
et al., 2015). Mitogen-activated protein kinase (MAPK) signaling in BRAF-mutated melanomas and 
CDK4/CDK6 activity have also been implicated in reduced ICI efficacy, and combination treatment 
with an MAPK/CDK inhibitor improves response to checkpoint blockade (Ascierto et al., 2019; Deng 
et al., 2018; Ebert et al., 2016; Goel et al., 2017; Jerby-Arnon et al., 2018; Ribas et al., 2019; 
Schaer et al., 2018; Sullivan et al., 2019).

Tumor cell-intrinsic interferon-gamma (IFN-γ) signaling is particularly important in anti-tumor immu-
nity. This pathway induces expression of genes involved in MHC class I-mediated antigen processing 
and presentation, which include genes encoding the TAP1/TAP2 transporters, components of the 
immunoproteasome, HLA proteins, and B2M (Alspach et  al., 2019). Thus, suppression of IFN-γ 
activity promotes tumor immune evasion and decreased CD8+ T cell activation. Indeed, decreased 
ICI efficacy was observed in patients with tumors harboring inactivating mutations in IFN-γ pathway 
genes such as JAK1 and JAK2 (Gao et al., 2016; Nguyen et al., 2021; Sucker et al., 2017; Zaretsky 
et al., 2016). Similarly, a recent study reported a splicing-augmenting mutation in JAK3, linked to 
decreased JAK3 expression levels, as a potential mechanism of resistance in a patient with metastatic 
melanoma treated with anti-PD-1 and anti-CTLA-4 combination therapy (Newell et al., 2022).

Some cancers exhibit aberrant expression of embryonic DUX transcription factors. For instance, 
DUXB is expressed in diverse primary malignancies, most notably in testicular germ cell and breast 
carcinomas (Preussner et  al., 2018). Recent work from our group and others showed that DUX4 
is expressed in a small subset of primary tumors, where it suppresses tumor cell antigen presen-
tation and response to IFN-γ signaling (Chew et  al., 2019; Spens et  al., 2023). We additionally 
observed signals that DUX4 expression was associated with reduced survival following response to 
anti-CTLA-4 or anti-PD-1 in melanoma; however, those analyses relied upon two small cohorts (n = 
27 or 41 patients), limiting the statistical power of our conclusions.

In its native embryonic context, DUX4 initializes human zygotic genome activation. DUX4 expres-
sion levels peak at the 4-cell stage of the cleavage embryo; DUX4 is then immediately silenced via 

eLife digest Over time cancer patients can become resistant to traditional treatments such as 
chemotherapy and radiotherapy. In some cases, this can be counteracted by administering a new type 
of treatment called immune checkpoint inhibition which harnesses a patient’s own immune system to 
eradicate the tumor. However, a significant proportion of cancers remain resistant, even when these 
immunotherapy drugs are used. This is potentially caused by tumors reactivating a gene called DUX4, 
which is briefly turned on in the early embryo shortly after fertilization, but suppressed in healthy 
adults.

Activation of DUX4 during the early stages of cancer has been shown to remove the cell surface 
proteins the immune system uses to recognize tumors. However, it remained unclear whether DUX4 
changes the response to immunotherapy in more advanced cancers which have begun to spread and 
metastasize to other parts of the body.

To investigate, Pineda and Bradley analyzed publicly available sequencing data which revealed the 
genes turned on and off in patients with different types of cancer. The analysis showed that DUX4 is 
reactivated in approximately 10–50% of advanced bladder, breast, kidney, prostate and skin cancers.

Next, Pineda and Bradley studied a cohort of patients with advanced bladder cancer who had 
been treated with immune checkpoint inhibitors. They found that patients with tumors in which DUX4 
had been turned back on had shorter survival times than patients who had not reactivated the gene.

These results suggest that the activity of DUX4 could be used to predict which patients with 
advanced bladder cancer may benefit from immune checkpoint inhibitors. In the future, this work 
could be extended to see if DUX4 could be used as a prognostic tool for other types of cancer. Future 
studies could also investigate if the DUX4 gene could be a therapeutic target for mitigating resistance 
to immunotherapy in metastatic cancers.

https://doi.org/10.7554/eLife.89017
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epigenetic repression of the D4Z4 repeat array that contains the DUX4 gene (De Iaco et al., 2017; 
Hendrickson et al., 2017; Himeda and Jones, 2019; Sugie et al., 2020; Whiddon et al., 2017). 
Aside from select sites of immune privilege such as the testis, DUX4 remains silenced in adult somatic 
tissues (Das and Chadwick, 2016; Snider et al., 2010).

Since DUX4 expression in cancer cells suppresses MHC class I-mediated antigen presentation 
(Chew et al., 2019), we hypothesized that DUX4 expression might be particularly common in the 
setting of metastatic disease (vs. the primary cancers that we studied previously), where immune 
evasion is particularly important. We therefore analyzed several large cohorts of patients with different 
metastatic cancers to determine the frequency of DUX4 expression in advanced disease. We addi-
tionally rigorously tested the potential importance of DUX4 expression for patient response to ICI in 
a well-powered cohort.

Results
DUX4 is commonly expressed in diverse metastatic cancer types
To assess the prevalence of DUX4-expressing human malignancies, we performed a large-scale anal-
ysis of publicly available RNA-seq data across diverse cancer types (Figure  1A, Figure  1—figure 
supplement 1A). The majority of the cohorts in The Cancer Genome Atlas (TCGA) are most commonly 
comprised of primary samples and local metastases. We found that DUX4 expression is a particularly 
common feature across advanced-stage cancers, with 10–50% of cancer samples (depending upon 
cancer type) displaying DUX4 expression levels comparable to or greater than those observed in the 
early embryo, where expression of the highly stereotyped DUX4-induced gene expression program is 
observed (Chew et al., 2019; Hendrickson et al., 2017). A markedly higher proportion of advanced 
metastatic cancers express DUX4—and tend to have higher absolute DUX4 expression levels—than 
do their TCGA cancer counterparts (Figure 1B,C).

We sought to determine if the DUX4 transcripts in metastatic cancers express the entire coding 
sequence or only a portion thereof, as expressed DUX4 truncations due to genomic rearrangements 
are frequent oncogenic drivers in particular cancer subtypes, most notably undifferentiated round cell 
sarcomas (CIC-DUX4 oncoprotein) (Antonescu et al., 2017; Choi et al., 2013; Graham et al., 2012; 
Italiano et al., 2012; Kawamura-Saito et al., 2006; Yoshida et al., 2016; Yoshimoto et al., 2009) 
and adolescent B-cell acute lymphoblastic leukemia (ALL) (Lilljebjörn et al., 2016; Liu et al., 2016; 
Qian et al., 2017; Yasuda et al., 2016). We aligned RNA-seq reads to the DUX4 cDNA sequence and 
examined read coverage over the open reading frame. Resembling the cleavage stage embryo and 
DUX4-expressing primary cancers, DUX4-positive metastatic tumors transcribe the full-length coding 
region. In contrast, B-cell ALL exhibited the expected C-terminal truncation due to DUX4 fusion with 
the IGH locus (Figure 1D).

Since DUX4 is typically silent in most healthy tissue contexts outside the cleavage-stage embryo 
(Das and Chadwick, 2016; Snider et al., 2010), we investigated if artifacts related to sequencing 
and sample processing could account for the observed high rates of DUX4 expression in metastatic 
vs. primary cancers. We were particularly interested in determining whether the method of RNA 
recovery influenced DUX4 detection rate, as the analyzed metastatic cohorts frequently relied 
upon formalin-fixed samples rather than the frozen samples frequently used by TCGA. We took 
advantage of a cohort of patients with diverse metastatic tumor types for which patient-matched 
flash-frozen and formalin-fixed metastatic tumor samples were analyzed by RNA-seq (via poly(A)-
selection and hybrid probe capture sequencing library preparations, respectively) (Robinson 
et al., 2017). Our re-analysis revealed that DUX4 expression is readily detectable and quantifiable 
for both sample and library preparation methods. DUX4 transcript levels in the majority of the 
sequenced samples were higher in poly(A)-selected sequencing than were the analogous measure-
ments obtained from hybrid capture (Figure  1—figure supplement 1B,C). These data demon-
strate that the high rates of DUX4 expression that we observed across metastatic cancer cohorts 
reflect true DUX4 expression rather than technical biases introduced by studying formalin-fixed 
tissues and are consistent with expression of a polyadenylated DUX4 transcript in both primary 
and metastatic cancers.

https://doi.org/10.7554/eLife.89017
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Figure 1. DUX4 is frequently expressed in diverse metastatic cancers. (A) Matched The Cancer Genome Atlas (gray, TCGA) and advanced metastatic 
(orange) cancer datasets analyzed in our study. (B) The proportion of DUX4-expressing cancers in TCGA (purple shading) and metastatic (red shading) 
cancers. The blue line indicates the median over TCGA cancer cohorts. The 95% confidence intervals were estimated via a two-sided proportion test. 
(C) DUX4 expression values (TPM, transcripts per million) in TCGA (purple shading) and advanced metastatic (red shading) cancer cohorts analyzed in 
our study. (D) Representative RNA-seq coverage plots from primary and metastatic cancers for reads mapping to the DUX4 cDNA. Open reading frame 
(ORF, black rectangle); UTR (untranslated region, gray line); homeobox domains (yellow rectangles).

The online version of this article includes the following figure supplement(s) for figure 1:

Figure 1 continued on next page

https://doi.org/10.7554/eLife.89017
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DUX4 expression is associated with immune cell exclusion
We next sought to assess the downstream consequences of DUX4 expression in metastatic cancers. 
We focused on urothelial cancers for two reasons. First, urothelial cancers exhibited one of the highest 
frequencies of DUX4 expression (54% of patients) in any of the five metastatic cancer cohorts that 
we analyzed, suggesting that DUX4 could be particularly important in that tumor type. Second, 
pretreatment samples from 347 patients enrolled in the IMvigor210 trial, a phase 2 trial of anti-PD-L1 
(atezolizumab) therapy with advanced urothelial carcinoma, were subject to transcriptome profiling 
by RNA-seq as well as immunohistochemical analysis, enabling us to conduct comprehensive studies 
of the association between DUX4 expression, the global transcriptome, and immunophenotypes in a 
well-powered cohort (Balar et al., 2017; Mariathasan et al., 2018; Rosenberg et al., 2016).

We examined associations between global gene expression profiles and DUX4 expression in this 
advanced urothelial carcinoma cohort. We performed differential gene expression analyses on the 
individuals stratified according to tumor DUX4 expression status. Gene Ontology (GO) network anal-
yses on the upregulated genes in DUX4-positive cancers identified multiple clusters of development-
associated terms, consistent with the known role of DUX4 in early embryogenesis (Figure 2—figure 
supplement 1A; De Iaco et  al., 2017; Hendrickson et  al., 2017; Sugie et  al., 2020; Whiddon 
et al., 2017). In contrast, we found a single network associated with downregulated genes: GO terms 
corresponding to humoral or cell-mediated immunity (Figure  2A). Using an IFN-γ gene signature 
predictive of response to blockade of the PD-1/PD-L1 axis, we found that DUX4-expressing cancers 
have statistically lower levels of IFN-γ activity (Figure 2—figure supplement 1B; Ayers et al., 2017). 
Consistent with IFN-γ suppression, we observed extensive downregulation of genes involved in anti-
tumor immunity such as those involved in MHC class I-dependent antigen presentation and T cell acti-
vation, checkpoint proteins, and chemokines involved in effector T cell recruitment. DUX4-expression 
was also correlated with suppression of genes critical for MHC class II-mediated antigen presenta-
tion, namely: MHC class II isotypes (HLA–DP/DQ/DR), HLA-DM, and HLA-DO, and the invariant chain 
(CD74) (Roche and Furuta, 2015). MHC class II gene expression is regulated by the transactivator 
CIITA via a conserved SXY-module present in the promoter regions of these genes. CIITA is induced by 
IFN-γ and is also conspicuously downregulated in DUX4-expressing tumors (Figure 2B; Glimcher and 
Kara, 1992; Masternak et al., 2000; Steimle et al., 1993; Steimle et al., 1994). MHC class II-medi-
ated antigen presentation can regulate T cell abundance in the tumor microenvironment and patient 
response to PD-1 blockade (Johnson et al., 2020). These analyses suggest that DUX4 expression in 
the metastatic context induces an immunosuppressive gene expression program, concordant with its 
established function in inhibiting JAK–STAT signaling in primary cancers (Chew et al., 2019).

We hypothesized that DUX4 expression in these cancers will generate related transcriptomic 
signals consistent with CD8+ T cell exclusion from the tumor. We assessed this using an effector CD8+ 
T cell transcriptomic signature developed from initial studies of the IMvigor210 phase 2 trial (Balar 
et al., 2017; Rosenberg et al., 2016). DUX4-expressing cancers had lower measures of the gene 
signature, consistent with decreased CD8+ T cell infiltration into the tumor (Figure 2C). We also inves-
tigated the possible effects of DUX4 expression on the exclusion of other immune cell types using 
gene signatures developed from TCGA (Danaher et al., 2017). In these analyses, we recapitulated 
the observation of lower CD8+ T cell signature associated with DUX4 positivity (Figure 2—figure 
supplement 1C). In addition, we observed patterns consistent with widespread immune cell exclusion 
from the tumor microenvironment (Figure 2—figure supplement 1D).

Defects in chemokine signaling could partially account for the observed DUX4-associated decrease 
in immune gene signature measurements. To test this hypothesis, we examined expression of chemo-
kines involved in immune cell recruitment. In DUX4-expressing cancers, we observed lower mRNA 
levels of CXCL9 and CXCL10, chemokines which recruit T cells to the tumor site (Figure 2D,E; Nagar-
sheth et al., 2017). Utilizing a chemokine signature associated with host immune response to solid 
tumors, we observed that DUX4 expression was correlated with broad reduction in the expression 
of chemokine signaling genes, beyond T cell-associated signals (Figure 2—figure supplement 1E; 
Coppola et al., 2011).

Figure supplement 1. The DUX4 transcript is likely polyadenylated.

Figure 1 continued

https://doi.org/10.7554/eLife.89017
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Figure 2. DUX4 expression in advanced cancers is associated with signatures of host anti-tumor immunity inhibition. (A) Gene Ontology (GO) 
enrichment network analysis of DUX4-downregulated genes. Differentially expressed genes were identified from the comparison of advanced urothelial 
carcinoma tumors with high (>1 TPM) vs. low (≤1 TPM) DUX4 expression. The nodes and node sizes correspond to significantly enriched GO terms 
(Benjamini–Hochberg-adjusted p-value <0.05) and the number of DUX4-downregulated genes in each, respectively. The edges connecting nodes 
indicate shared genes. (B) Downregulated (blue) and upregulated (red) anti-tumor immunity genes in tumors with DUX4-positive (>1 TPM) vs. -negative 
(≤1 TPM) advanced urothelial carcinomas. (C) Effector CD8+ T cell score, defined as the mean of the z-score normalized gene expression values in the 
signature (Mariathasan et al., 2018) for DUX4+/− tumors. The p-value was estimated via a Mann–Whitney U test. (D) CXCL9 expression for DUX4+/− 
tumors. The p-value was estimated via a Mann–Whitney U test. (E) As in (D), but illustrating CXCL10 expression. (F) Proportion of immune phenotypes 
in DUX4+/− cancers. The phenotypes were based on the CD8+ T cell abundance and degree of tumor infiltration determined by anti-CD8 staining of 
tumor formalin-fixed paraffin-embedded (FFPE) sections in the original study (Mariathasan et al., 2018). The p-value was estimated via a multinomial 
proportion test. (G) PD-L1 expression on tumor cells stratified by DUX4 expression status measured by immunohistochemistry in the original study. The 
samples were categorized based on the percentage of PD-L1-positive tumor cells. The p-value was estimated via a multinomial proportion test. (H) As in 
(G), but PD-L1 staining on tumor-infiltrating immune cells (lymphocytes, macrophages, and dendritic cells) is represented.

Figure 2 continued on next page

https://doi.org/10.7554/eLife.89017
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We directly assessed the correlation of DUX4 expression to immune cell exclusion by examining 
CD8+ T cell abundance in the tumor microenvironment, measured by immunohistochemistry (IHC) 
on formalin-fixed paraffin-embedded patient tumor sections. We verified that DUX4 expression in 
the advanced urothelial carcinoma tumors was associated with an immune exclusion phenotype: a 
higher proportion of DUX4+ tumors exhibit either an immune-excluded or immune-desert pheno-
type compared to malignancies where DUX4 is silent (Figure 2F, Figure 2—figure supplement 1F). 
We similarly examined the correlation of DUX4 expression status with PD-L1 levels in the tumor and 
immune compartments quantified via IHC. We determined that DUX4 expression was associated with 
a significant decrease in PD-L1 levels on both tumor and host immune cells, consistent with DUX4-
induced suppression of IFN-γ signaling (Figure 2G,H, Figure 2—figure supplement 1G,H). PD-L1 
expression on immune cells such as dendritic cells and macrophages modulate anti-tumor immune 
suppression and response to ICI in in vivo mouse models (Lau et al., 2017; Lin et al., 2018; Noguchi 
et al., 2017). Importantly, PD-L1 levels on immune cells are correlated with response to ICI in clinical 
trials (Powles et al., 2014; Rosenberg et al., 2016).

DUX4 expression is correlated with poor response to ICI in advanced 
urothelial carcinoma
Given the correlation between cancer DUX4 expression and signatures of anti-tumor immune 
response suppression, we sought to understand if DUX4 expression in patient tumors was associated 
with accompanying changes to overall survival during PD-L1 inhibition. DUX4 expression was associ-
ated with a significant decrease in objective response rates, assessed using the Response Evaluation 
Criteria in Solid Tumors (RECIST) (Figure 3A). As expected, higher tumor mutational burden (TMB) 
was linked to improved survival outcomes in this cohort (Figure 3B). Interestingly, we found that DUX4 
expression was correlated with statistically lower survival rates in this cohort after crudely adjusting 
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Figure 3. DUX4 positivity is associated with decreased response to immune checkpoint inhibition. (A) The proportion of clinical response classifications 
(RECIST, Response Evaluation Criteria in Solid Tumors) in DUX4-positive (DUX4+, >1 TPM) or -negative (DUX4−, ≤1 TPM) advanced urothelial carcinoma 
patients. RECIST categories were assigned in the original study (Mariathasan et al., 2018). The p-value was estimated via a multinomial proportion test. 
(B) Kaplan–Meier (KM) estimates of overall survival for the patients in (A) stratified by tumor mutational burden (TMB, number of missense mutations). 
The estimated survival functions (solid lines), censored events (crosses), and 95% confidence intervals (transparent ribbons) for the patients in the top 
and bottom TMB quartiles are plotted. The p-value was estimated via a log-rank test. (C) As in (B), but patients are stratified by DUX4 expression. To 
control for possible confounding by TMB, the quartile of patients with the lowest TMB was excluded.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. DUX4 expression status stratifies patients according to survival.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. DUX4 positivity is correlated with an embryonic gene expression signature, downregulation of interferon-gamma (IFN-γ) 
signaling, and exclusion of diverse immune cell types.

Figure 2 continued

https://doi.org/10.7554/eLife.89017
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for the effects of TMB by removing the bottom quartile of patients, those with the lowest number of 
missense mutations in their tumors (Figure 3C, Figure 3—figure supplement 1A). Those results moti-
vated us to more carefully control for the effects of other patient covariates in order to better clarify 
the effects of DUX4 expression on survival.

Risk assignments are improved with DUX4 expression
We next determined whether DUX4 expression was a significant predictor of survival for ICI-treated 
patients after controlling for TMB and other potentially relevant variables in a statistically rigorous 
manner. We used Cox Proportional Hazards (PH) regression to quantify the effects of multiple clinical, 
demographic, and molecular features on risk of death during ICI. For these and subsequent anal-
yses, we elected to define DUX4-negative samples as those with DUX4 expression levels <0.25 TPM. 
This scheme excludes 126 patients but presumably produces more reliable categorizations, avoiding 
potential misclassifications due to loss of sensitivity of bulk RNA-seq at very low expression levels 
(Mortazavi et al., 2008). In the context of multivariate Cox PH regression, which controls for the 
confounding effects of all other covariates simultaneously, we observed that TMB was positively asso-
ciated with survival [hazard ratio (HR) = 0.14], as expected. Conversely, DUX4 expression, Eastern 
Cooperative Oncology Group Performance Status (ECOG PS) >0, and previous administration of plat-
inum chemotherapy were correlated with increased risk (or shorter survival), while other features that 
have previously been reported as associated with reduced survival e.g., TGFB1 expression (Maria-
thasan et al., 2018) did not remain significant after controlling for TMB and other variables. In partic-
ular, DUX4 positivity was associated with dramatically worse survival, with a 3.2-fold increase in risk 
of death at any point in time compared to DUX4-negative status (Figure 4A, Supplementary file 1, 
Supplementary file 2).

We next investigated if DUX4 expression status carried added value as a predictor over routinely 
collected clinical and molecular information. We focused on the variables with significant HRs under 
both the univariate and multivariate regression settings: DUX4 expression status, TMB, ECOG PS, and 
history of platinum chemotherapy. We employed goodness-of-fit measurements, which compare the 
observed data to expectations from Cox PH models created using various combinations of the covari-
ates. In these analyses, we observed a quantifiable improvement in data-model congruence with the 
addition of DUX4 expression status (Figure 4B, Figure 4—figure supplement 1A,B). Additionally, we 
measured statistically significant differences in the likelihoods of the reduced models (without DUX4 
expression as a predictor) when compared to the full model (employs all covariates) (Supplementary 
file 3). Taken together, these analyses indicate that DUX4 expression status is an informative predictor 
of risk under ICI treatment.

We evaluated the utility of DUX4 expression status for pretreatment risk assignment in predicting 
patient response to ICI. We trained full and reduced Cox PH models on randomly sampled patients 
(training set, 70% of the cohort) and quantified their respective risk scores. A reference risk score per 
model was computed as the median score across the training set and was used to ascribe patients into 
low- vs. high-risk groups. Using these models, we quantified risk scores on the individuals excluded 
from model construction (test set, 30% of the patients), and similarly assigned patients into low- or 
high-risk groups based on the training set reference score. By empirically quantifying survival of the 
two risk groups using KM (Kaplan–Meier) estimation, we found that the full model stratifies patients 
in an informative manner, appropriately discriminating patients with longer vs. shorter survival times 
(Figure  4C, Figure  4—figure supplement 1C,D). Furthermore, the addition of DUX4 expression 
status improves model performance as illustrated by the time-dependent Brier score, a measure of 
survival prediction accuracy at specific timepoints (Figure 4—figure supplement 1E).

DUX4 expression impedes response to ICI after controlling for other 
clinical characteristics
We used a Random Survival Forest (RSF) model to quantify the effect of DUX4 expression on survival 
in ICI-treated advanced urothelial carcinoma patients (Ishwaran et al., 2008). The RSF is a machine 
learning ensemble, an extension of the Random Forest algorithm for right-censored data (Breiman, 
2001). It can provide accurate estimates of risk and survival probability at definite times by aggre-
gating predictions from a multitude of base learners (survival trees) (Ishwaran et al., 2008). RSFs 
have been successfully used to study time-to-event problems in medicine, including measurement of 

https://doi.org/10.7554/eLife.89017
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variable importance (Dietrich et al., 2016; Hsich et al., 2019; Ishwaran et al., 2009; O’Brien et al., 
2021; Semeraro et al., 2011). We utilized the RSF model to address potential limitations of our Cox 
PH analyses. First, the RSF model is fully non-parametric and as such does not operate under the 
Cox PH assumptions: a constant relative hazard between strata over time (PH), a linear relationship 
between the predictors and the log hazard, and the unspecified baseline hazard function. Second, the 
RSF model can compute estimates of absolute risk and survival probability over time independent of 
a reference, unlike relative risk models such as Cox PH (Ishwaran et al., 2008).
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Figure 4. DUX4 expression status affects clinical response after controlling for other genetic and clinical variables. (A) Hazard ratios (HRs) and 95% 
confidence intervals for the variables included in univariate (left) or multivariate (right) Cox Proportional Hazards (PH) regression. For categorical 
variables, the reference groups are indicated by points at HR = 1. Statistically significant predictors that are associated with increased (orange) or 
decreased (blue) risk in both the univariate and multivariate contexts are highlighted. ECOG (Eastern Cooperative Oncology Group); BCG (Bacillus 
Calmette–Guerin). (B) Bayesian information criterion (BIC) measurements for goodness of fit for the full (tumor mutational burden [TMB], Clinical, 
DUX4 expression) vs. reduced Cox PH models, where lower values indicate better fit. The bootstrapped BIC mean and the 95% confidence interval are 
illustrated. Clinical (ECOG Performance Status and Platinum treatment history). (C) Kaplan–Meier (KM) estimates of overall survival, 95% confidence 
interval (transparent ribbon), and censored events (crosses) for low-risk (solid gray line) and high-risk (solid orange line) patients in the training (left) and 
test (right) sets. Risk group assignments were based on risk scores estimated by the full Cox PH model. p-values were estimated via a log-rank test.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Cox Proportional Hazards regression models containing DUX4 expression status as a predictor have a better fit to the data.

https://doi.org/10.7554/eLife.89017
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We used all available molecular, clinical, and demographic covariates to grow an RSF. We randomly 
selected 70% of the patients to grow the forest, with the resulting model having an out-of-bag (OOB) 
error of 38.4%. The OOB error stabilizes with increasing number of trees and converges to the leave-
one-out cross-validation error estimate. Thus, OOB error is characterized as an unbiased estimate of 
the model’s true prediction error (Breiman, 2001; Hastie et al., 2009). In some instances, the OOB 
error provides overestimates and some reports have recommended treating it as an upper bound 
(Bylander, 2002; Janitza and Hornung, 2018; Mitchell, 2011). Thus, we measured the RSF model’s 
test error using a holdout set (the remaining 30% of the cohort) excluded from training. The RSF 
model recorded a test error of 32.6% illustrating an appropriate fit (Figure 5—figure supplement 
1A). Our error measurements are comparable to Ishwaran et al., 2008, suggesting our model can 
be used for inference purposes. Furthermore, the time-dependent Brier score of the RSF model on 
the training and test sets confirms informative survival prediction (Figure 5—figure supplement 1B).

The RSF model predicted worse survival outcomes in patients with DUX4-expressing cancers 
compared to their DUX4-silent counterparts. These predictions were mirrored in the test dataset, illus-
trating robustness of the model (Figure 5A). Using time-dependent receiver operating characteristic 
(ROC) curve analyses, we identified the time range for which the RSF predictive performance is statis-
tically divergent from random guessing: approximately 6–20 months (Figure 5—figure supplement 
1C). In this window, we observed significant survival differences between patients with DUX4+ and 
DUX4− tumors. We highlighted the model’s performance at predicting 1- and 1.5-year survival, typical 
timepoints of clinical interest. For these times, the RSF appropriately discriminates patient death and 
survival (Figure 5—figure supplement 1D). Examining the absolute effects of DUX4 expression on 
survival, the RSF model predicted an approximately 20% decrease in both 1- and 1.5-year survival 
probabilities in patients with DUX4-expressing cancers (Figure 5B). Importantly, RSF survival predic-
tions conform closely with the empirical survival estimates obtained via the Kaplan–Meier model 
(Figure 5C).

We sought to determine the importance of DUX4 expression status relative to the other covariates 
in the RSF model. We measured feature importance using estimated Shapley values, which quantify the 
marginal contribution of each variable to the RSF prediction (Lundberg and Lee, 2017; Maksymiuk 
et al., 2020; Shapley, 1953; Štrumbelj and Kononenko, 2014). Specifically, Shapley values measure 
variable contributions to predictions at the level of each patient. Contributions to the overall perfor-
mance of the RSF model can be assessed by examining the aggregated summary: the average of 
the absolute Shapley values for a predictor across the patient cohort. We estimated Shapley values 
associated with predicting ensemble mortality, the RSF risk estimate. In these analyses, ECOG PS had 
the largest contribution, followed by TMB and DUX4 expression (Figure 5—figure supplement 1E). 
We validated these feature rankings using two independent metrics. The first metric was permutation 
importance, which quantifies the change in prediction error associated with permutation of a variable’s 
data; important covariates will record large deviations from the original predictions (Breiman, 2001; 
Ishwaran, 2007). The second measure employed was minimal depth, a measure of the variable-node-
to-root-node distance within the survival trees of the RSF; important variables tend to have smaller 
minimal depth values as they are typically used for earlier decision splits (Ishwaran et  al., 2010; 
Ishwaran et al., 2011). Feature contributions measured using permutation importance and minimal 
depth were consistent with the Shapley-based assignments, notably identifying DUX4 expression as 
an important contributor to patient survival outcomes (Figure 5—figure supplement 1E). We inves-
tigated time-dependent changes in variable importance by estimating Shapley values associated with 
predicting survival probability at distinct timepoints along the observation window. Interestingly, we 
observed the strong dependence on ECOG PS for predicting survival at early timepoints under this 
paradigm. The importance of DUX4 expression for survival prediction is most prominent at later times 
(Figure 5D). Altogether, we found that diverse variable importance measures converge on identifying 
DUX4 as a major contributor to patient survival prediction.

We sought to quantify the effect of DUX4 expression on survival predictions after controlling for 
the effects of the other covariates. With Shapley dependence plots, which allows visualization of 
the marginal effects of a variable on the predicted outcome, we measured the expected negative 
correlation between TMB and mortality (Figure 5—figure supplement 1F; Lundberg et al., 2020). 
We performed a similar dependence analysis on DUX4 expression and observed a clear separation of 
positive and negative Shapley values based on DUX4-positive and -negative status, respectively. These 

https://doi.org/10.7554/eLife.89017
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Figure 5. DUX4 expression is associated with decreased overall survival in the context of immune checkpoint inhibition. (A) Random Survival Forest 
(RSF) predicted overall survival for patients with either DUX4-positive or -negative tumors in the training and test sets. Out-of-bag (OOB) survival 
predictions are shown for the patients in the training set. Survival predictions for individual patients (thin lines) and the median survival function across 
the cohort (thick line) are represented. DUX4− (<0.25 TPM); DUX4+ (>1 TPM). (B) Training (OOB) and test set survival probability predictions for patients 
with DUX4+/− tumors at 12 and 18 months. The p-values were estimated using a two-sided Mann–Whitney U test. (C) Survival probability for patients 
in the training and test sets. Survival functions corresponding to the median RSF prediction (solid orange line) and the Kaplan–Meier estimate (dashed 
gray) are displayed. (D) Feature importance for variables used in the RSF model. The average absolute estimated Shapley values (solid lines) are shown, 
associated with predicting survival probability at particular times. The 95% confidence interval of the mean (transparent ribbon) is plotted.(E) Surface 
plot showing adjusted (marginal) survival probability, measured via partial dependence, as a function of tumor mutational burden (TMB, number of 

Figure 5 continued on next page
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results signify an increase in predicted risk of death associated with DUX4 expression (Figure 5—
figure supplement 1G). Shapley values are scaled, variable attributions which add up to the differ-
ence between the prediction for an individual and the average prediction across the entire cohort and 
thus require transformation to get absolute measures of risk. To quantify the effects of TMB and DUX4 
expression in the appropriate risk units (mortality, expected number of deaths), we utilized partial 
dependence as an alternative way to represent mortality predictions as a function of these variables, 
marginalized over the other predictors in the data (Friedman, 2001). Specifically, the average model 
predictions across the individuals in the cohort are calculated over the unique predictor values. The 
marginal effects of TMB and DUX4 expression measured via partial and Shapley dependence anal-
yses show strong concordance. Comparison of the patients with the lowest vs. highest TMB revealed 
an approximately 67% difference in mortality. On the other hand, we measured an approximately 
53% increase in mortality associated with DUX4 positivity (Figure 5—figure supplement 1H,I). We 
then extended the partial dependence analyses to survival probability predictions over time. In this 
paradigm, we similarly observed that higher TMB was correlated with increased survival probability, 
more pronounced at later times (Figure 5E). DUX4 expression was correlated with poorer survival 
outcomes, with a 1- and 1.5-year survival difference of 20.7% and 19.2% between patients with 
DUX4+ and DUX4− tumors, respectively. Strikingly, our analyses measure a difference of at least 
12.5  months in median survival between the DUX4+ and DUX4− strata (Figure  5F). Overall, our 
analyses demonstrate a significant and robust decrease in survival attributable to DUX4 expression in 
advanced cancers.

Discussion
DUX4 expression is a common feature of metastasis and may be an important driver of immune 
evasion. While the mechanism governing DUX4 de-repression in cancer remains to be elucidated, we 
show that DUX4 expression in the metastatic context is associated with reduced anti-tumor immunity, 
mirroring previous observations in primary cancers and cancer cell line models (Chew et al., 2019), 
and is correlated with decreased patient survival under ICI treatment.

The prognostic value of IFN-γ activity (Ayers et al., 2017; Grasso et al., 2020; Newell et al., 
2022) and its non-redundancy relative to TMB in terms of influencing ICI response is widely appreci-
ated (Cristescu et al., 2018; Newell et al., 2022; Rozeman et al., 2021). For example, patients with 
advanced melanoma that is nonresponsive to anti-CTLA-4 or anti-PD-1/PD-L1 therapy have higher 
frequencies of genetic alterations associated with IFN-γ signaling defects compared to responsive 
patients (Gao et al., 2016; Nguyen et al., 2021; Sucker et al., 2017). DUX4 has been implicated 
in modifying IFN-γ activity through direct binding and inhibition of STAT1 via its C-terminal domain 
(Chew et al., 2019; Spens et al., 2023). Our sequence analyses show that DUX4 transcripts in the 
metastatic context contain the full-length coding region, suggestive of an intact capability as a STAT1 
suppressor. DUX4’s ubiquitous expression across metastatic cancers and our controlled survival anal-
yses emphasize DUX4 as an underappreciated contributor to ICI resistance.

Our RSF model allowed us to interrogate changes in variable importance over time. For instance, 
the contribution of DUX4 expression to survival prediction is most prominent at later timepoints, 
suggesting principal effects on long-term survival. Intriguingly, these analyses revealed the outsize 
influence of ECOG PS, a measure of patient functional status, on survival at early timepoints relative to 
other patient covariates. ECOG PS negatively impacts patient survival during ICI therapy, inferred from 
our multivariate Cox PH analysis and from findings of the IMvigor210 clinical trial: patients with ECOG 
PS = 2 (n = 24) had a median overall survival of 8.1 months, lower than the subgroup with ECOG PS 

missense mutations) and time. Each point on the surface corresponds to the mean survival prediction (at the respective timepoint) after TMB is fixed to 
the respective value for all patients. (F) Partial plot showing adjusted survival probability as a function of DUX4 expression status. The median survival 
probability (solid lines) and the 95% confidence interval (transparent ribbon) after DUX4 expression status is fixed to the indicated value for all patients 
are plotted.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. A Random Survival Forest (RSF) model quantifies the effect of DUX4 status on overall survival probability in the context of 
immune checkpoint inhibition.

Figure 5 continued
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<2 (n = 35) whose median survival was not reached during the observation period (Balar et al., 2017). 
Other studies have similarly reported poorer outcomes associated with ICI treatment in patients 
with high ECOG PS (Chalker et  al., 2022; Krishnan et  al., 2022; Cristescu et  al., 2018; Sehgal 
et al., 2021). Altogether, these results possibly indicate the existence of co-occurring conditions in 
patients with higher degrees of disability, predisposing them to adverse effects associated with ICI 
treatment— comorbidities whose effects presumably manifest shortly after therapy commencement. 
Our data underscore the utility of time-dependent approaches in identifying covariate-linked survival 
effects which may not be apparent in a summary computed over the entire time period.

Our results may have broad implications for ICI treatment. First, DUX4 expression may promote 
patient resistance in a wide array of ICI modalities. Our previous work showed that DUX4 expression is 
associated with resistance to anti-CTLA-4 and anti-PD-1 therapies (Chew et al., 2019). In our current 
study, we comprehensively demonstrate that DUX4 modulates patient response to PD-L1 blockade. 
We also report that DUX4 expression in metastasis is correlated with downregulation of TIGIT (Zhang 
et al., 2018) and other immune checkpoints whose interception are currently under clinical investi-
gation: HAVCR2/TIM3 (NCT02608268; Dixon et al., 2021) and LAG3 (NCT02658981; Amaria et al., 
2022; Tawbi et al., 2022). Second, the pervasive expression of DUX4 in all the metastatic cohorts 
we examined exhibits its potential as a pan-cancer biomarker. We show that binary categorization 
of patients according to DUX4 expression status was sufficient to stratify patients according to ICI 
response. Screening for DUX4 tumor expression, with binarized results such as through IHC using 
anti-DUX4 antibodies, could have clinical utility.

Our data motivate the investigation into DUX4’s potential to prognosticate response to ICI. 
However, our current study is limited by the availability of sufficiently sized ICI-treated cohorts with 
associated patient data on relevant characteristics such as demographics and risk factors. Additional 
randomized trial data from diverse metastatic cancer cohorts, with adequate genomic and clinical 
data, is imperative. As these become available in the future, extending the analyses we have outlined 
in this study will be important to appraise DUX4’s definitive clinical relevance, contextualized among 
response-modifying clinical variables, in the use of immunotherapy in the treatment of metastatic 
cancer.

Materials and methods

 Continued on next page

Key resources table 

Reagent type (species) or 
resource Designation Source or reference Identifiers Additional information

Software, algorithm UCSC knownGene
Meyer et al., 2013; 
 PMID:23155063

Software, algorithm Ensembl 71
Flicek et al., 2013; 
 PMID:23203987

Software, algorithm MISO v2.0
Katz et al., 2010; 
 PMID:21057496

Software, algorithm RSEM v1.2.4
Li and Dewey, 2011; 
 PMID:21816040

Software, algorithm Bowtie v1.0.0
Langmead et al., 2009; 
 PMID:19261174

Software, algorithm TopHat v.2.0.8b
Trapnell et al., 2009; 
 PMID:19289445

Software, algorithm
Trimmed mean of M values (TMM) 
method

Robinson and Oshlack, 2010;  
PMID:20196867

Software, algorithm clusterProfiler
Wu et al., 2021; Yu et al., 2012; 
 PMID:34557778, 22455463

Software, algorithm samtools
Li et al., 2009; 
 PMID:19505943

Software, algorithm kallisto v.0.46.1
Bray et al., 2016;  
PMID:27043002

https://doi.org/10.7554/eLife.89017
https://pubmed.ncbi.nlm.nih.gov/23155063/
https://pubmed.ncbi.nlm.nih.gov/23203987/
https://pubmed.ncbi.nlm.nih.gov/21057496/
https://pubmed.ncbi.nlm.nih.gov/21816040/
https://pubmed.ncbi.nlm.nih.gov/19261174/
https://pubmed.ncbi.nlm.nih.gov/19289445/
https://pubmed.ncbi.nlm.nih.gov/20196867/
https://pubmed.ncbi.nlm.nih.gov/34557778/
https://pubmed.ncbi.nlm.nih.gov/22455463/
https://pubmed.ncbi.nlm.nih.gov/22517427/
https://pubmed.ncbi.nlm.nih.gov/27043002/
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Reagent type (species) or 
resource Designation Source or reference Identifiers Additional information

Software, algorithm Integrative Genomics Viewer
Thorvaldsdóttir et al., 2013;  
PMID:22517427

Software, algorithm survival
Therneau and Grambsch, 2000; 
 Therneau, 2022; https://github.com/therneau/survival

Software, algorithm stats
R Development Core Team, 2022; 
 https://www.r-project.org/

Software, algorithm caret
Kuhn, 2022; 
 https://github.com/topepo/caret/

Software, algorithm ggplot2
Wickham, 2016;  
https://github.com/tidyverse/ggplot2

Software, algorithm dplyr
Wickham et al., 2022; 
 https://github.com/tidyverse/dplyr

Software, algorithm survminer
Kassambara et al., 2021; https://rpkgs.datanovia.com/​
survminer/index.html

Software, algorithm randomForestSRC
Ishwaran et al., 2008; https://www.randomforestsrc.org/​
articles/survival.html

Software, algorithm fastshap
Greenwell, 2021; https://github.com/bgreenwell/​
fastshap

Software, algorithm pammtools
Bender and Scheipl, 2018; https://adibender.github.io/​
pammtools/

Software, algorithm plotly Sievert, 2020; https://plotly.com/r/

Software, algorithm timeROC
Blanche et al., 2013; 
 https://CRAN.R-project.org/package=timeROC

Software, algorithm pec
Mogensen et al., 2012; 
 https://CRAN.R-project.org/package=pec

 Continued

 Continued on next page

Datasets analyzed in this study

Dataset name Accession number(s) PMID(s)

2013/TCGA.ACC NCI Genomic Data Commons

2013/TCGA.BLCA NCI Genomic Data Commons

2013/TCGA.BRCA NCI Genomic Data Commons

2013/TCGA.CESC NCI Genomic Data Commons

2013/TCGA.CHOL NCI Genomic Data Commons

2013/TCGA.COAD NCI Genomic Data Commons

2013/TCGA.DLBC NCI Genomic Data Commons

2013/TCGA.ESCA NCI Genomic Data Commons

2013/TCGA.GBM NCI Genomic Data Commons

2013/TCGA.HNSC NCI Genomic Data Commons

2013/TCGA.KICH NCI Genomic Data Commons

2013/TCGA.KIRC NCI Genomic Data Commons

2013/TCGA.KIRP NCI Genomic Data Commons

2013/TCGA.LAML NCI Genomic Data Commons

2013/TCGA.LGG NCI Genomic Data Commons

2013/TCGA.LIHC NCI Genomic Data Commons

2013/TCGA.LUAD NCI Genomic Data Commons

2013/TCGA.LUSC NCI Genomic Data Commons

https://doi.org/10.7554/eLife.89017
https://pubmed.ncbi.nlm.nih.gov/22517427/
https://github.com/therneau/survival
https://www.r-project.org/
https://github.com/topepo/caret/
https://github.com/tidyverse/ggplot2
https://github.com/tidyverse/dplyr
https://rpkgs.datanovia.com/survminer/index.html
https://rpkgs.datanovia.com/survminer/index.html
https://www.randomforestsrc.org/articles/survival.html
https://www.randomforestsrc.org/articles/survival.html
https://github.com/bgreenwell/fastshap
https://github.com/bgreenwell/fastshap
https://adibender.github.io/pammtools/
https://adibender.github.io/pammtools/
https://plotly.com/r/
https://CRAN.R-project.org/package=timeROC
https://CRAN.R-project.org/package=pec
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Dataset name Accession number(s) PMID(s)

2013/TCGA.MESO NCI Genomic Data Commons

2013/TCGA.OV NCI Genomic Data Commons

2013/TCGA.PAAD NCI Genomic Data Commons

2013/TCGA.PCPG NCI Genomic Data Commons

2013/TCGA.PRAD NCI Genomic Data Commons

2013/TCGA.READ NCI Genomic Data Commons

2013/TCGA.SARC NCI Genomic Data Commons

2013/TCGA.SKCM NCI Genomic Data Commons

2013/TCGA.STAD NCI Genomic Data Commons

2013/TCGA.TGCT NCI Genomic Data Commons

2013/TCGA.THCA NCI Genomic Data Commons

2013/TCGA.THYM NCI Genomic Data Commons

2013/TCGA.UCEC NCI Genomic Data Commons

2013/TCGA.UCS NCI Genomic Data Commons

2013/TCGA.UVM NCI Genomic Data Commons

2014/su2c.prostate_cancer phs000915.v1.p1 (dbGaP) 26000489

2016/chen-chen.acute_lymphoblastic_leukemia Chinese Genotype-phenotype Archive 27428428

2016/fioretos.acute_lymphoblastic_leukemia EGAD00001002112 (EGA) 27265895

2016/mano.acute_lymphoblastic_leukemia JGAS00000000047 (JGA) 27019113

2015/garraway-schadendorf.melanoma_checkpoint_blockade phs000452.v2.p1 (dbGaP) 26359337

2016/hammerbacher.melanoma_checkpoint_blockade 27956380

2016/lo.melanoma_checkpoint_blockade GSE78220 (GEO) 26997480

2017/chinnaiyan.metastatic_cancer phs000673.v3.p1 (dbGaP) 28783718

2017/yang-yeoh.acute_lymphoblastic_leukemia EGAD00001002151 (EGA) 27903646

2018/perou.metastatic_breast_cancer phs000676.v2.p2 (dbGaP) 29480819

2018/powles.urothelial_cancer_checkpoint_blockade EGAD00001003977 (EGA) 29443960

2018/van_allen-choueiri.clear_cell_checkpoint_blockade phs001493.v1.p1 (dbGaP) 29301960

Genome annotations, gene expression, and GO enrichment analyses
A genome annotation was created through merging of the UCSC knownGene (Meyer et al., 2013), 
Ensembl 71 (Flicek et al., 2013), and MISO v2.0 (Katz et al., 2010) annotations for the hg19/GRCh37 
assembly. Furthermore, this annotation was expanded by generating all possible combinations of 
annotated 5′ and 3′ splice sites within each gene. RNA-seq reads were mapped to the transcriptome 
using RSEM v1.2.4 (Li and Dewey, 2011) calling Bowtie v1.0.0 (Langmead et al., 2009), with the 
option ‘-v 2’. TopHat v.2.0.8b (Trapnell et al., 2009) was used to map the unaligned reads to the 
genome and to the database of splice junctions obtained from the annotation merging described 
previously. Gene expression estimates (TPM, transcripts per million) obtained were normalized using 
the trimmed mean of M values (TMM) method (Robinson and Oshlack, 2010). Endogenous expres-
sion of DUX4 during early embryogenesis range from approximately 2 to 10 TPM (Chew et al., 2019; 
Hendrickson et al., 2017). We have therefore defined DUX4-positive samples as those with expres-
sion levels >1 TPM. In the differential gene expression analyses for the DUX4-positive vs. -negative 
comparison, gene expression values per sample group were compared using a two-sided Mann–
Whitney U test. Differentially expressed genes illustrated in Figure 2B were identified as those with 
an absolute log2(fold-change) ≥ log2(1.25) and a p-value <0.05. GO enrichment analyses, using the 
clusterProfiler package (Wu et al., 2021; Yu et al., 2012), were performed on DUX4-upregulated 

 Continued
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or -downregulated genes [absolute log2(fold-change) ≥ log2(1.5) and a p-value <0.05] compared 
against the set of coding genes. Significant GO terms were defined as ‘Biological Process’ terms with 
a Benjamini–Hochberg FDR-adjusted p-value <0.05. The top 25 significant GO terms were illustrated 
(Figure 2A and Figure 2—figure supplement 1A). To investigate DUX4 RNA-seq coverage patterns, 
a fasta file containing the DUX4 cDNA sequence was assembled, indexed using samtools (Li et al., 
2009), and used as a reference for read pseudoalignment by kallisto v.0.46.1 (Bray et  al., 2016). 
The following kallisto parameters were used: kmer size of 31, estimated fragment length of 200, and 
estimated fragment length standard deviation of 80. Usage of the single-end option (‘--single’) and 
bias correction (‘--bias’) were also specified. DUX4 read coverage was visualized using the Integrative 
Genomics Viewer (IGV, Thorvaldsdóttir et al., 2013).

Gene signature analyses
For a given gene set, z-score normalization of the expression values per gene was performed across 
the patient cohort. The signature score was defined as the mean of the normalized values across the 
genes of the set.

Survival analyses, goodness-of-fit measures, and risk modeling
KM estimation, p-value estimates from the log-rank test, and Cox PH regression in the univariate 
and multivariate contexts were performed using the survival package (Therneau, 2022; Therneau 
and Grambsch, 2000). Goodness-of-fit evaluations of the Cox PH models were done by measuring 
the Akaike information criterion (AIC) and Bayesian information criterion (BIC). AIC and BIC metrics 
balance model complexity with maximized likelihood, penalizing feature number increases without a 
concomitant improvement in performance. The likelihood ratio test was also used to compare good-
ness of fit of full (all variables) vs. reduced (subset of variables) Cox PH models. Specifically, the null 
hypothesis that the simple model provides as good as a fit as the more complex model was evaluated. 
The AIC, BIC, and likelihood ratio test p-values were computed using R’s stats package (R Develop-
ment Core Team, 2022). For the Cox PH risk modeling, the patients were randomly assigned into 
training (70%) and test (30%) datasets. The createDataPartition() function from the caret package 
(Kuhn, 2022) was used to preserve the DUX4 status class distribution after splitting. Full and reduced 
Cox PH models were created using the training data and the risk scores for each respective model 
were calculated using caret’s ​predict.​coxph() function. For a given patient, the calculated risk score is 
equal to the HR relative to a ‘reference patient’ (an individual whose covariate values are set to the 
respective means, from the training set). Specifically, the risk score is the quotient of the patient’s and 
the reference’s exponentiated linear predictors (the sum of the covariates in the model, weighted by 
the model’s regression coefficients). A ‘reference risk score’ for each model was defined as the median 
risk score in the training data. Patients were assigned into low- or high-risk groups if their risk scores 
were lower or higher than the reference, respectively. The trained models were used to calculate risk 
scores and assign risk labels (based on the training set risk score reference) in the test set. The survival 
difference between low- and high-risk patients was empirically assessed via KM estimation and the 
log-rank test. Visualizations were created using the ggplot2 (Wickham, 2016), dplyr (Wickham et al., 
2022), and survminer (Kassambara et al., 2021) packages.

Random Survival Forest, feature importance, and partial dependence
We implemented an RSF model, an ensemble of multiple base learners (survival trees), using the 
randomForestSRC package (Ishwaran et  al., 2008). The RSF algorithm is an extension of the 
Random Forest Algorithm (Breiman, 2001) for usage with right-censored data. Here, B bootstrap 
datasets are created from the original data, used to grow B concomitant survival trees (usually 
constrained by membership size in the terminal nodes) constructed using a randomly selected 
subset of the variables. Terminal node statistics are obtained for each tree: the survival function 
(via the KM estimator), the cumulative hazard function (CHF, via the Nelson–Aalen estimator), and 
mortality (expected number of deaths; sum of the CHF over time). The RSF prediction is the average 
across the forest. Of note, each bootstrap dataset excludes 36.8% of the original data on average, 
the OOB samples. Thus, predictions for a particular sample can be made using the subset of the 
trees for which it was excluded from training (OOB predictions). Similarly, the associated OOB 
error for the RSF model can calculated, representing an unbiased estimate of the test error. We 
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randomly assigned patients into training (70%) and test (30%) datasets. Since the DUX4-positive 
status was a minority class, we utilized the createDataPartition() function from the caret package 
(Kuhn, 2022) to preserve the class distribution within the splits. To determine optimal hyperparame-
ters, we evaluated 5616 RSF models representing different combinations of ntree (number of trees), 
nodesize (minimum terminal node size), mtry (number of randomly selected splitting variables), ​na.​
action (handling of missing data), splitrule (splitting rule), and samptype (type of bootstrap). We 
selected the model with hyperparameters which minimized both the OOB training and the test 
errors (defined as 1 − concordance index), namely: ntree = 1500, nodesize = 15, mtry = 3, ​na.​action 
= "​na.​impute", splitrule = "bs.gradient", and samptype = "swr". We specified the use of an nsplit 
(number of random splits) value of 0 to indicate evaluation of all possible split points and usage of 
the optimum. For test set predictions, patients with missing data were omitted (​na.​action = "​na.​
omit").

Feature importance in the final RSF model was evaluated using three metrics. First, permutation 
importance was measured using randomForestSRC’s subsample() function. RSF permutation impor-
tance utilizes OOB values: a variable’s OOB data is permuted and the change in the new vs. orig-
inal OOB prediction error is quantified. The RSF permutation importance values were standardized 
by dividing by the variance and multiplying by 100, and the variance and confidence regions were 
obtained via the delete-d jackknife estimator (Ishwaran and Lu, 2019). Second, the tree-based 
feature importance metric minimal depth was calculated using randomForestSRC’s ​var.​select() func-
tion. The minimal depth threshold (mean minimal depth) is the tree-averaged threshold (conservative 
= "medium"). Last, Shapley values were estimated using the fastshap package (Greenwell, 2021), 
using 1000 Monte Carlo repetitions. For each prediction, the sum of the estimated Shapley values 
was corrected (adjust = TRUE) to satisfy the efficiency (or local accuracy) property: for an individual i, 
the sum of i’s feature contributions equal the difference between the prediction for i and the average 
prediction across the entire cohort. For the overall measure of importance, the Shapley values were 
estimated from the mortality predictions from the RSF model (Figure 5—figure supplement 1E). 
Mortality is defined as the number of expected deaths over the observation window. That is, if all 
patients in the cohort shared the same covariate values as patient i who has mortality mi, then an 
average of m deaths is expected (Ishwaran et al., 2008). For the time-dependent implementation, we 
estimated Shapley values associated with the per timepoint RSF survival probability predictions along 
the observation window (Figure 5C).

The relationships of DUX4 expression and TMB to mortality or survival probability (marginal contri-
butions) were assessed via Shapley dependence plots and partial dependence plots. Partial depen-
dence values were obtained using randomForestSRC’s partial() function and OOB predictions for 
mortality and survival probability were used as input. Visualizations were created in the R program-
ming environment using the dplyr (Wickham et al., 2022), ggplot2 (Wickham, 2016), pammtools 
(Bender and Scheipl, 2018), and plotly (Sievert, 2020) packages.

Measuring survival model predictive accuracy
The time-dependent ROC curve analyses were done to evaluate the RSF model’s accuracy in differ-
entiating patients who die before a particular time t, from those who survive past t (Heagerty and 
Zheng, 2005). Specifically, for each timepoint, the cumulative/dynamic area under the ROC curve 
(AUCC/D) was calculated by computing the sensitivity (true positive rate) and specificity (1 − false posi-
tive rate) associated with using RSF-predicted mortality as the prognostic marker. The time-dependent 
AUCC/D and 95% confidence interval per timepoint were estimated using the timeROC package, which 
adds the inverse-probability-of-censoring weights (IPCW) to the sensitivity calculation to correct for 
selection bias due to right-censoring (Blanche et al., 2013). The OOB (training) or the test mortality 
predictions were used as input. The time-dependent Brier score and the Continuous Ranked Prob-
ability Score (CRPS, integrated Brier score divided by time) for the Cox PH models were computed 
using the pec package (Mogensen et al., 2012). The time-dependent Brier score and the CRPS for 
the RSF model was calculated using the randomForestSRC package (Ishwaran et al., 2008). The KM 
estimator for the censoring times was used to estimate the IPCW (​cens.​model = "marginal"). Harrell’s 
concordance index for the Cox PH and RSF models was calculated using the survival (Therneau, 2022; 
Therneau and Grambsch, 2000) and randomForestSRC packages, respectively. Visualizations were 
created in the R programming environment using the dplyr and ggplot2 (Wickham, 2016) packages.
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