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TO THE EDITOR:
Somatic mutations in the splicing factor SF3B1 occur in about one-
third of all myelodysplastic neoplasms (MDS) and define a
subgroup of patients characterized by ring sideroblasts (RS),
ineffective erythropoiesis, and an indolent disease course in lower-
risk (LR) MDS [1]. They are typically heterozygous missense
substitutions, most commonly (>50% in MDS) involving p.K700E
(SF3B1 NM_012433.4: c.2098A>G (p.Lys700Glu), hereafter referred
to as SF3B1K700E), and have been shown to induce mis-splicing of
key genes throughout erythroid differentiation [2, 3]. Surprisingly,
although SF3B1 mutations are known to target multipotent
lymphomyeloid hematopoietic stem cells and clonally propagate
to myeloid progenitors [4], their impact on mature immune cells
remains largely unexplored. Clinically, SF3B1 mutations are
associated with high response rates to the erythroid maturation
agent luspatercept and lower response to immunosuppressive
treatment (IST) [5–7].
In this study, we performed multiplex immunophenotyping in

conjunction with machine learning-based analytical approaches
on bone marrow (BM)/peripheral blood (PB) samples from newly
diagnosed or disease-modifying treatment-naïve SF3B1mut or
SF3B1wt MDS patients (experimental cohort: Supplementary Table
S1; Fig. S1) and healthy donors (HD) to identify genotype-
immunophenotype correlations. Initial gene expression profiling
of 730 immune-related genes in SF3B1mut versus SF3B1wt MDS BM
mononuclear cells (BM-MNCs) revealed a predominantly myeloid
cell-related innate immune gene signature (e.g., CYBB, CSF1R)

lacking signs of overt myeloid-driven inflammation (i.e. IL1B,
CXCL5), whereas lymphoid-related genes were underrepresented
(e.g., CD3D, CD79A) (Supplementary Table S4, Fig. S2). These
results are consistent with the reported lower proportion of
lymphocytes in BM [8], mild myeloid dysplasia [9], and our
previous finding of significantly lower IL1B mRNA in BM
monocytes from SF3B1mut LR-MDS [10]. As IL-1β protein levels in
paired BM plasma samples were often below the detection limit,
we could not determine whether lower mRNA levels correspond
to lower cytokine levels.
Next, we conducted high-dimensional mass cytometry (CyTOF)

on BM-MNCs and analyzed data using the Tracking Responders
EXpanding (T-REX) algorithm to identify immunophenotypic
differences associated with LR-MDS and SF3B1K700E LR-MDS in
particular. As expected, LR-MDS (SF3B1mut and SF3B1wt) showed
several immunophenotypic changes consistent with an activated
immune response (Fig. 1A, Supplementary Fig. S3/S4), in particular
specific clusters resembling terminally differentiated effector
memory CD8+ T cells (TTE/TEMRA, cluster 1295), mature CD57+

NK cells (cluster 2495), CD27+ IgD− memory B cells (cluster 795),
and γδ T cells with an exhausted immunophenotype (cluster
1395). LR-MDS exhibited dysregulated T-cell homeostasis, with
fewer naïve CD4+ and CD8+ T cells, and memory phenotype
skewing toward CD8+ effector memory (TEM) and TTE cells
(Supplementary Fig. S4). This is consistent with progressive
memory differentiation entailing loss of survival, which could
contribute to impaired long-term antitumor immunosurveillance.
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We then compared SF3B1K700E to SF3B1wt LR-MDS using the T-REX
pipeline, which identified a SF3B1K700E-specific cluster comprising
CD33+ CD14+ monocytes (cluster 495, p < 0.01) (Fig. 1B, Supple-
mentary Fig. S5). Further analysis of CD33+ CD14+ BM-MNCs showed

that a remarkable proportion of the monocytes in SF3B1K700E LR-MDS
adopt a HLA-DRlow/neg phenotype (Fig. 1C). Importantly, retrospective
analysis of diagnostic flow cytometry data (Fig. 1D–E) and external
validation in two independent cohorts comprising combined 130
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MDS (118 LR-MDS) patients (Supplementary Fig. S6) confirmed an
increased frequency of HLA-DRlow/neg monocytes in SF3B1mut (both
SF3B1K700E and SF3B1nonK700E) compared to SF3B1wt MDS and HD. The
external data support our observation that staining cryopreserved
BM-MNCs may underestimate the actual frequency of HLA-DRlow/neg

monocytes. Additionally, we found a strong correlation between
HLA-DRlow/neg monocyte frequencies in BM and PB (Supplementary
Fig. S7). HLA-DRlow/neg monocytes in SF3B1mut MDS were classical
monocytes (CM) based on the lack of CD16 surface expression
(Supplementary Fig. S7). Analysis of longitudinal data from four
SF3B1K700E MDS patients showed a consistently high frequency of
HLA-DRlow/neg monocytes (Fig. 1F).
To the best of our knowledge, the only other study directly

investigating immunophenotypic features in BM of SF3B1mut MDS
reported lower expression of CD11b, CD36, and CD64 on
monocytes [8]. Another study found a higher frequency of
thrombomodulin-expressing CM in MDS subtypes with <5% blasts
and RS [11]. The association of SF3B1 mutations with lower
monocyte surface HLA-DR expression identified here may be of
clinical relevance, for example in view of the predicted poor
response of SF3B1mut MDS to IST [6, 7]. Overall, the frequency of
HLA-DRlow/neg monocytes showed no correlation with blood
hemoglobin levels, the Revised International Prognostic Scoring
System (IPSS-R) risk classifications, or the mutational burden of
SF3B1 and co-mutated TET2 or DNMT3A (Supplementary Fig. S7).
HLA-DRlow/neg monocyte frequencies were comparable between
transfusion-dependent and –independent SF3B1mut LR-MDS (Sup-
plementary Fig. S6). However, HLA-DRlow/neg monocytes have
known immunoregulatory properties via multiple mechanisms,
including effector T-cell inhibition, decreased antigen presentation,
and defective dendritic cell maturation [12]. A possible scenario is
that the early acquisition of SF3B1mutations [13] and the presence
of inflammation foster the emergence of HLA-DRlow/neg monocytes,
which then contribute to counteract and balance inflammatory
responses in established SF3B1mut MDS. In this context, T-REX also
identified a cluster of naïve CD4+ T cells specific to SF3B1K700E LR-
MDS with low expression of the co-stimulatory molecule CD27
(cluster 3895, MEM score CD27+1) (Fig. 1B, Supplementary Fig. S4/
S5). Thus, although disease-related shifts in CD4+/CD8+ T-cell
differentiation were noticeable irrespective of SF3B1 mutation
status, naïve CD4+ T cells in SF3B1K700E LR-MDS displayed subtle
immunophenotypic differences indicative of less recent activation.
As CD14+ monocytes lose HLA-DR expression, they become

functionally deactivated, which can contribute to the transition to a
more immunosuppressed state. To investigate whether this is the
case for CM from SF3B1K700E LR-MDS, we studied their global gene

expression profile using RNA-seq. Overall, we found 545 up- and 812
downregulated genes in the clonally involved CM from SF3B1K700E LR-
MDS compared to HD (Supplementary Table S5). Importantly, these
patients harbored an isolated K700E mutation and no confounding
cytogenetic aberrations. Upregulated genes were enriched in genes
involved in oxygen transport (e.g., HBB, HBA1/2), probably due to
erythrocyte impurities or enhanced phagocytosis of damaged
erythrocytes by CM in SF3B1K700E LR-MDS. Downregulated genes
were significantly enriched in genes related to cytokine signaling,
including cytokine receptors (e.g., IL6R, IL10RA, IL7R, TNFRSF1A), TREM1,
signaling kinases (e.g., MAP3K7, MAP3K8, PIK3CG), and NF-κB signaling
modulators (e.g., NFKBIB, IKBKG, RELA/B) (Fig. 2A). Ingenuity pathway
analysis (IPA) of DEG identified enriched pathways pertaining to
inflammatory cytokine signaling (i.e. NF-κB signaling, IL-6 signaling,
acute phase response signaling, PI3K/AKT signaling) and inflammatory
conditions (i.e. hepatic fibrosis signaling pathway) that could be
affected in SF3B1K700E CM (Fig. 2B). Expression levels of the NF-κB
targets IL1B and TNF were, however, variable between individual
patients (Supplementary Fig. S8). Notably, IPA-based analysis of DEG
in CM from SF3B1wt LR-MDS patients, of whom 2 out of 3 carried
somatic mutations in TET2, brought to the fore different inflammatory
pathways predicted to be more active compared to HD (Fig. 2B).
In addition, we analyzed alternative splicing in SF3B1K700E versus

HD CM using rMATS (Supplementary Table S6). Among the more
robust differentially spliced genes (DSG) were various genes
previously reported as mis-spliced in SF3B1mut cells, such as
BRD9, COASY, and TMEM214 (Fig. 2C, Supplementary Table S6). We
could also confirm the previously reported cryptic 3’ splice site for
MAP3K7 predicted to undergo nonsense-mediated RNA decay [14],
along with decreased MAP3K7 transcript levels in SF3B1K700E CM
(Supplementary Fig. S9, Table S5). We did not observe a clear
association of the longer IRAK4 isoform with SF3B1K700E (Supple-
mentary Fig. S9), as has been reported previously [15]. DSG were
enriched in genes involved in the regulation of defense response
and cytokine signaling, next to mRNA metabolism, apoptotic
signaling, and mitotic cell cycle (Fig. 2C, Supplementary Table S7).
Importantly, 369 out of the 834 DSG were also differentially spliced
in SF3B1K700E versus SF3B1wt LR-MDS CM (Supplementary Table S8).
Based on the RNA-seq data pointing to dysregulated cytokine

signaling in SF3B1K700E CM, we then assessed their cytokine secretion
following in vitro stimulation with the Toll-like receptor 4 agonist
lipopolysaccharide (LPS). We found that CM with a heterozygous
mutation in SF3B1 (VAF∼ 0.4) responded to LPS stimulation with
adequate secretion of pro- (TNF, IL-1β, IL-6, IP-10, MCP-1) and anti-
inflammatory cytokines (IL-10, IL-1RA) (Fig. 2D), except for one patient
with an extremely high mutation burden (VAF= 0.86) (Fig. 2D). This

Fig. 1 Monocytes with HLA-DRlow/neg immunophenotype emerge frequently in the BM of SF3B1mut MDS. A T-REX plot of regions of
significant change on Uniform Manifold Approximation (UMAP) axes for CD45+ BM-MNCs stained for CyTOF showing distinct LR-MDS-specific
(dark red, ≥95% of cells are contributed by LR-MDS samples) and HD-specific (dark blue, ≥95% of cells are contributed by HD) cell clusters. 14
LR-MDS (mean age= 74 years, 4 women, 10 men) and 4 HD (mean age= 58 years, all men) were included in the analysis. LR-MDS group
comprises SF3B1K700E (n= 5, orange dots; mean age= 75 years, 2 women, 3 men) and SF3B1wt (n= 9, blue dots; mean age= 74 years, 2
women, 7 men) patients. Top 10 Marker Enrichment Modeling (MEM) labels with enrichment scores are shown for statistically significant LR-
MDS-specific clusters (cutoff >2000 cells) indicated on T-REX plot. B T-REX analysis of CD45+ BM-MNCs stained for CyTOF showing distinct
SF3B1K700E-specific (dark red) and SF3B1wt-specific (dark blue) cell clusters. Top 10 MEM labels are shown for statistically significant and trend
clusters (cutoff >1000 cells) indicated on T-REX plot. A, B Labels on T-REX plot indicate major immune cell subsets (myeloid cells, NK cells, γδ
T cells, CD4+ and CD8+ T cells, B cells). C T-REX analysis of CD33+ CD14+ pre-gated monocytes showing SF3B1K700E-specific (dark red) and
SF3B1wt-specific (dark blue) clusters. Cluster 795 depicts a distinct HLA-DRlow/neg monocyte subset in SF3B1K700E LR-MDS (NOTE: this cluster is
not related to cluster 795 shown in (A)). HLA-DR expression was projected onto UMAP axes. A–C Two-sided Mann–Whitney-U-test/Wilcoxon
rank-sum test was performed for indicated clusters (p < 0.05 was considered significant; p-values are shown in brackets). Box plots depict
median, IQR (lower and upper hinges), and 1.5 times the IQR (lower and upper whiskers extend to values within 1.5 times the IQR from the
hinge). (D) Percentage of CD33+ CD14+ BM monocytes with HLA-DRlow/neg immunophenotype in HD (median= 9.7, IQR= 8 [n= 9, mean
age= 69 years, 6 women, 3 men]), SF3B1mut (median= 37.9, IQR= 34.9 [n= 17; orange dots, K700E; light orange-filled circles, nonK700E
including one K666R, one E622D, one H662Y, and one Y623C; mean age= 71 years, 6 women, 11 men]), and SF3B1wt (median= 6.3, IQR= 11.2
[n= 16, mean age= 66 years, 8 women, 8 men]) MDS assessed by diagnostic FCM of freshly stained BM samples (Kruskal–Wallis test with
Dunn’s post-hoc test [Bonferroni adjusted p-values]). E Representative HLA-DR staining on CD33+ CD14+ BM monocytes. The black line
indicates the set threshold distinguishing low or negative from high HLA-DR expression. F Percentage of CD33+ CD14+ BM monocytes with
HLA-DRlow/neg immunophenotype in four SF3B1K700E MDS patients over time. Patients #4, #10, and #11 harbor an isolated SF3B1K700E mutation.
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patient exhibited the highest basal mRNA levels of TNF and IL-6
(Supplementary Fig. S8), which only marginally increased with LPS
stimulation. Altogether, at the level of secreted cytokines, we did not
observe markedly hyperactivated NF-κB signaling in SF3B1K700E CM
following LPS exposure, although we can confirm mis-splicing and
reduced mRNA expression of MAP3K7, previously linked to enhanced

NF-kB activity [14]. In interpreting our findings, it is important to
acknowledge the small sample size for functional assays as a
limitation of our study. Therefore, further research with larger sample
sizes will be required to address the functional and stimulation
context-dependent deficits resulting from mis-splicing of the
identified genes.

Fig. 2 Classical monocytes (CM) from SF3B1K700E LR-MDS exhibit dysregulated immune gene expression and splicing. A Metascape
pathway and process enrichment analysis of up- and downregulated genes in peripheral blood CM from SF3B1K700E LR-MDS (n= 3) compared to
HD (n= 3). The top 10 and 20 representative terms are shown for up- and downregulated genes, respectively. B IPA core pathway analysis showing
the predicted activity (cutoff z-score of >|0.5|) of overrepresented annotations (p-value < 0.05 [right-tailed Fisher’s exact test]) based on the list of
DEG (PostFC ≥ 2 or ≤0.5, PPDE > 0.95) in SF3B1K700E or SF3B1wt compared to HD CM (n= 3 per group). C Alternative splicing (AS) signature in
SF3B1K700E CM: Volcano plot highlighting differentially spliced genes (DSG) with inclusion level difference (ILD) > |0.2| and pie chart showing
distribution of differential splicing event types detectable in SF3B1K700E LR-MDS compared to HD CM using rMATS. Shown below is the pathway
and process enrichment analysis of DSG using Metascape (top 20 enriched terms across input DSG). D Cytokine secretion of LPS-stimulated CM
was determined by Luminex analysis. Heatmap depicts Log2-transformed normalized median fluorescence intensity values for the indicated
cytokines produced by HD, SF3B1K700E, or SF3B1wt (n= 3 per group) LR-MDS classical monocytes following in vitro LPS stimulation. The variant
allele frequency (VAF) of SF3B1K700E mutation in CM is shown on the left side. AS alternative splicing, A3SS alternative 3’ splice site, A5SS alternative
5’ splice site, DEG differentially expressed genes, DSG differentially spliced genes, MXE mutually exclusive exon, RI retained intron, SE skipped exon.
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Phenotypically, the HLA-DRlow/neg CM resemble monocytic
myeloid-derived suppressor cells (M-MDSCs), but markers asso-
ciated with M-MDSC biology were not enriched in SF3B1K700E CM
(Supplementary Fig. S8). However, HLA-DRlow/neg CM from one
SF3B1K700E LR-MDS patient with co-mutations in TET2 and DNMT3A
had a less stimulatory effect on the proliferative capability of
autologous CD4+ T cells compared to their HLA-DRhigh counter-
parts (Supplementary Fig. S10). In light of this, the conversion to
HLA-DRlow/neg CM may prevent excessive inflammatory reactions
in the tissue driven partly by disproportionate T-cell activation.
Further studies comparing HLA-DRlow/neg and HLA-DRhigh CM from
patients with an isolated SF3B1K700E mutation will help to clarify
their respective roles in the inflammation process.

DATA AVAILABILITY
RNA-seq data are publicly available at GEO under accession number GSE236535.
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