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tumor microenvironment (TME) cells, especially microg-
lia/macrophages (30–50%) [3]. While pLGG patients 
have a good overall prognosis (15-year overall survival 
80–90%), progression-free survival is considerably lower 
(15-year PFS: 55%), in particular in cases of incomplete 
resection (15-year PFS for non-resected patients: 27%) [4]. 

Introduction

Pediatric low-grade gliomas (pLGG) are the most common 
primary brain tumors in children [1]. They are a diverse 
group of WHO grade 1 and grade 2 glial and glioneuronal 
tumors [2], which typically contain a high proportion of 
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Incompletely resected pLGGs are a chronic disease, often 
requiring multiple lines of therapy, leading to accumulation 
of therapy-related sequelae [4]. This underscores the need 
for better and definitive therapies, to improve the quality of 
life for these patients.

pLGGs are almost exclusively driven by mutually exclu-
sive alterations in different components of the extracellular-
regulated kinase/mitogen-activated protein kinase (MAPK) 
pathway [5]. The most common alterations in pLGGs affect 
the BRAF gene, and comprise either structural BRAF rear-
rangements (~ 50% KIAA1549:BRAF fusions) or BRAF 
point mutations (~ 10% BRAFV600E mutations) [3].

The fact that pLGGs are mainly driven by increased 
MAPK activation offers the possibility for targeted therapy 
using different small molecule inhibitors of the MAPK 
pathway. Several clinical trials investigating the efficacy of 
these inhibitors have shown promising effects [6]. Two stud-
ies assessing the efficacy of the BRAF type I ½ inhibitor [7] 
dabrafenib, one retrospective analysis [8] and one phase I/II 
clinical trial [9], showed an objective response rate (ORR) 
of 80% [8] and 44% [9] respectively. Furthermore, the com-
bination of dabrafenib and trametinib was recently FDA-
approved for the first-line treatment of BRAFV600E-driven 
pLGGs [10], as it showed an improved overall response 
(OR, defined as best overall complete or partial response; 
47%), compared to standard-of-care (SOC) chemotherapy 
(OR: 11%), as well as less toxicity [11].

However, despite the efficacy of MAPKi treatment, a sub-
set of patients experiences fast tumor regrowth upon treat-
ment stop [8, 12]. This rapid tumor regrowth is also referred 
to as rebound growth, and constitutes a significant clini-
cal challenge. Rebound growth is characterized by a rapid 
tumor regrowth (≥25%) within three months after treatment 
stop (Patricia O’Hare et al., Neuro Oncol., under review; 
e.g. median time to progression after dabrafenib treatment: 
2.3 months) [8], and in some patients faster tumor growth is 
observed after MAPKi treatment compared to before treat-
ment (clinical observation). While tumor regrowth is also 
observed in patients after chemotherapy treatment, time to 
progression is considered to be shorter in bona fide rebound 
(Patricia O’Hare et al., Neuro Oncol., under review). Inter-
estingly, tumors showing rebound growth remain sensi-
tive to the initial MAPKi treatment [8, 13], suggesting that 
acquired resistance mechanisms are not responsible for the 
observed pattern.

In the present study, we show that, in a BRAFV600E-driven 
model with co-occurring CDKN2A/B deletion, rebound 
growth after MAPKi withdrawal is associated with a fast 
reactivation of the MAPK pathway. Additionally, our results 
indicate a possible involvement of MAPKi-induced cyto-
kine expression on the TME, specifically microglia cells.

Materials and methods

Cell culture

BT-40 cells, a kind gift from Prof. Peter Houghton, were cul-
ture in RPMI containing L-glutamine (cat. no 21,875,034, 
ThermoFisher Scientific) and 10% FCS (cat. no. F7524, 
Sigma Aldrich). DKFZ-BT66, DKFZ-BT308 and DKFZ-
BT314 were cultured as described previously [14, 15] 
and used in proliferating and senescent state. As described 
previously, to culture cells in proliferating state oncogene-
induced senescence, otherwise observed in these cells, is 
inhibited through the induction of the SV40-TAg [14, 15]. 
Further details on this system and the pipeline used to estab-
lish these models are described in detail in the original pub-
lications [14–16].

The microglia cell line HMC3 was purchased from the 
ATCC and cultured in MEM with L-glutamine (cat. no. 
31,095,029) supplemented with 10% FCS, non-essential 
amino acids (cat. no. 11,140,035, ThermoFisher Scientific) 
and sodium pyruvate (cat. no. 11,360,039, ThermoFisher 
Scientific).

If not otherwise indicated, BT-40, DKFZ-BT308 and 
DKFZ-BT314 were seeded for experiments two days prior 
to experiment start in complete media (containing all sup-
plements) and upon experiment start switched to minimum 
media (MM).

For further details see Supplementary materials and 
methods.

Drug treatments and withdrawal

All inhibitors used for in vitro experiments are listed in 
Table S3. For details on drug concentration choice and the 
withdrawal procedure see Supplementary materials and 
methods.

Metabolic activity assay for IC50 determination

Metabolic activity was measured using CellTiter-Glo 2.0 
(cat. no. G9241, Promega) according to the manufacturer’s 
instructions. For further details see Supplementary materi-
als and methods.

Cell counting for growth curve analysis

Cells were counted using the Vi-CELL XR (Beckman Coul-
ter; Software v2.03) using the settings described in Table 
S1. For further details see Supplementary materials and 
methods.
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Cell cycle analysis by flow cytometry

Cell cycle analysis by flow cytometry was performed as 
described previously [17].

RNA isolation, cDNA synthesis and quantitative 
reverse transcription real-time PCR (RT-qPCR)

qPCR was performed as described previously [18]. Primers 
were purchased from Qiagen or Invitrogen (Table S5). For 
further details see Supplementary materials and methods.

Protein extraction and immunoblotting

Antibodies used are listed in Table S6. For further details 
see Supplementary materials and methods.

RNA sequencing and data processing

2 × 100 bp paired-end sequencing was performed on the Illu-
mina NovaSeq 6000 according to the manufacturer’s proto-
col. For details see Supplementary materials and methods.

LC-MS/MS proteomics and phosphoproteomics data 
generation and processing

Briefly, proteins were cleaved using Trypsin/Lys-C mix 
(cat. no. V5072, Promega) and either cleaned up using self-
made SDB-PRS stage tips in case of proteomics or enriched 
for phospho-peptides using the High-Select™ TiO2 Phos-
phopeptide Enrichment Kit (cat. no. A32993, ThermoFisher 
Scientific) in case of phospho-proteomics analysis. For 
details on sample processing, data generation and process-
ing see Supplementary materials and methods.

Luminex-based multiplex assay

The Luminex-based multiplex assay was performed using 
the Bio-Plex 200 System (Bio-Rad) with the Bio-Plex Pro 
Reagent Kit 3 (cat. no. 171,304,090 M, Bio-Rad) using the 
Bio-Plex Pro HuCSP standard (cat. no. 12,007,919, Bio-
Rad) and the Bio-Plex Pro Human Chemokine Standards 
(cat. no. 171DK0001, Bio-Rad) according to the manufac-
turer’s instructions. Custom detection antibody multiplexes 
were used as indicated in Table S7. For details see Supple-
mentary materials and methods.

Kinase phosphorylation array

Proteome Profiler Human Phospho-Kinase Array Kit 
(ARY003C, R&D systems) was used according to the man-
ufacturer’s instructions using 400 µg of protein lysate per 

array set. Arrays were visualized with Amersham ECL Prime 
Western Blotting Detection Reagent (cat. no. RPN2232, 
GE Healthcare Dharmacon) using the Azure c400 imaging 
system (Azure Biosystems). Quantification was done using 
ImageJ (v2.9.0).

Stimulation with recombinant cytokines

Cells were treated for 1 h with 100 ng/ml of recombinant 
human CCL2 (cat. no. 300-04, PeproTech), CX3CL1 (cat. 
no. 300 − 31, PeproTech), CXCL10 (cat. no. 300 − 12, Pep-
roTech), CCL7 (cat. no. 300 − 17, PeproTech) or the combi-
nation of all four.

Treatment with neutralizing antibodies

For cell count experiments and western blot analysis, cells 
were treated with antibodies neutralizing CCL2 (0.5  µg/
ml; cat. no. MAB279, R&D systems), CX3CL1 (0.25 µg/
ml; cat. no. MAB3652, R&D systems), CXCL10 (0.25 µg/
mL; cat. no. MAB266, R&D systems) and CCL7 (0.1ng/ml; 
cat. no. MAB282, R&D systems) or mouse IgG (cat. no. 
MAB002, R&D systems).

Conditioned media collection for transwell assay

For conditioned media collection, BT-40 were treated for 
five days, with media changes on day 2 and day 4 of treat-
ment, and on day 5 treatment withdrawal was performed. 
CM (containing 2% FCS) was collected after five days of 
treatment (24 h after the last media change), and 24 h after 
treatment withdrawal. After collection, CM was centrifuged 
for 5 min at 1200 rpm and filtered using a 0.22 µM sterile 
filter (cat. no. SLGS033, Sigma Aldrich).

Transwell migration assay

Transwell migration assays were performed using a 24-well 
transwell chamber (insert: 8 µM pore size; cat. no. 353,097, 
Corning; companion plate: 353,504, Corning). Detailed 
experimental procedures are described in the Supplemen-
tary materials and methods.

Transwell co-culture

HMC3 cells were switched to RPMI containing 10% FCS 
upon seeding in the upper transwell chamber (6-well format, 
0.4 µM pore size; cat. no. 353,493, Corning). Two days after 
seeding, transwell inserts were added into wells containing 
BT-40 (6-well companion plate, cat. no. 353,502, Corning) 
and media was switched to MM (RPMI, 2% FCS) for the 
whole transwell chamber.
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to re-proliferate after two days, at a similar rate as control 
cells (DT control:69.8 ± 14.9 h vs. DT after: 96.0 ± 34.1 h), 
with increased cell numbers at 10 days after withdrawal, 
hence fulfilling rebound model criteria 2 but not the optional 
criteria 4. Similar patterns were observed upon dabrafenib 
and trametinib combination treatment and withdrawal (Fig. 
S3a). Cells treated with chemotherapy (vincristine (VCR) 
and carboplatin), showed no cell regrowth upon withdrawal 
in the timeframe investigated (Fig.  1b). Accordingly, cell 
regrowth upon dabrafenib treatment withdrawal was signifi-
cantly increased compared to SOC chemotherapy treatment 
(Fig. 1c, i.e. rebound model criteria 3), thereby mimicking 
the effect that is observed in patients and making BT-40 a 
suitable model to study the rebound growth.

BT40 xenograft in vivo model

All mouse procedures were performed under license 
(PP8308129), following UK Home Office Animals (Scien-
tific Procedures) Act 1986 and local institutional guidelines 
(UCL ethical review committee) and ARRIVE guidelines. 
For details on experimental procedures see Supplementary 
materials and methods.

Statistics

Statistical analysis was either performed using GraphPad 
Prism (v8.0.2) or R Studio (R version 4.2.2). Statistical 
tests performed and number of independent biological rep-
licates for each experiment are specified in the respective 
figure legends. Significance was defined as p-value/adj-p-
value ≤ 0.05 if not otherwise indicated. For details see Sup-
plementary materials and methods.

Results

Establishment of an in vitro MAPKi withdrawal 
rebound model

We tested several patient-derived in vitro models with the 
aim of establishing a MAPKi withdrawal rebound model 
fulfilling the following criteria: (1) response upon treatment 
(i.e. decreased cell proliferation or increased cell death); (2) 
cell regrowth upon treatment withdrawal; (3) cell regrowth 
upon MAPKi withdrawal faster than after chemotherapy 
withdrawal; optionally (4) faster cell proliferation after 
MAPKi withdrawal compared to untreated cells. Drug con-
centrations were chosen based on effect in vitro (Fig. S1, for 
details see Supplementary materials and methods section) 
and are within clinically relevant concentrations (Table S4).

Treatment of pilocytic astrocytoma (PA)-derived 
KIAA1549:BRAF fusion- (DKFZ-BT66, DKFZ-BT308) 
or BRAFV600E-driven cells (DKFZ-BT314) in proliferat-
ing state (induced by SV40-TAg) or senescent state (no 
SV40-TAg induction) did not reduce viable cell numbers 
compared to untreated cells (Fig. S2). Due to the lack of 
effect on viable cell numbers observed during treatment (i.e. 
rebound model criteria 1), presence or absence of rebound 
growth upon treatment withdrawal could not be assessed, 
making these models unsuitable to study the rebound 
growth. In contrast, treatment of the pleomorphic xantho-
astrocytoma (PXA)-like cell line BT-40 (derived from a 
juvenile PA, without further genetic modification) [19], 
driven by BRAFV600E and co-occurring CDKN2A/B dele-
tion, with 5 nM dabrafenib induced a decrease of cell pro-
liferation (Fig. 1a). Upon treatment withdrawal, cells started 

Fig. 1  Development and characterization of an in vitro rebound model 
using BT-40 (BRAFV600E, CDKN2A/Bdel). (a-b) Viable cell counts 
during treatment and withdrawal with 5 nM dabrafenib (dabra) (a) or 
0.75 nM vincristine (VCR), 40 µM carboplatin (carbo) and 1 nM VCR 
and 4µM carbo (b). Dashed line indicates withdrawal timepoint. Via-
ble cell counts are normalized to treatment start (-5d). Data is shown 
on a logarithmic scale (base 10) as mean ± SD (n = 3 independent bio-
logical replicates). Doubling time (DT) was calculated from two to ten 
days for each biological replicate (n = 3) and is indicated in hours as 
mean ± SD. Unpaired two-sided t-test; ns: not significant. (c) Viable 
cell counts during withdrawal of cells pretreated with 5 nM dabrafenib 
(dabra), 0.75 nM vincristine (VCR), 40 µM carboplatin (carbo) or 1 nM 
VCR and 4 µM carbo for five days; viable cell counts are normalized 
to the withdrawal timepoint (five days of treatment) for each condition. 
Data is shown on a logarithmic scale (base 10) as mean ± SD (n = 3 
independent biological). Two-way ANOVA, Bonferroni post-hoc test, 
*** adj-p-value ≤ 0.001; no indication: not significant. (d-e) Western 
blot analysis of MAPK activity markers after five days treatment with 5 
nM dabrafenib (dabra) followed by treatment withdrawal. Blots shown 
are representative of three independent biological replicates (d). Quan-
tification (e) is relative to solvent control (DMSO; dashed line) and 
shown as mean ± SD (n = 3 independent biological replicates). One-
sample t-test, *p-value ≤ 0.05 **p-value ≤ 0.01 ***p-value ≤ 0.001; 
no indication: not significant. (f) RT-qPCR analysis of FOS gene 
expression after five days treatment with 5 nM dabrafenib (dabra) fol-
lowed by treatment withdrawal. Quantification is relative to solvent 
control (DMSO; dashed line) and shown as mean ± SD (n = 3 inde-
pendent biological replicates). One-sample t-test, *p-value ≤ 0.05 
**p-value ≤ 0.01 ***p-value ≤ 0.001; no indication: not significant. (g) 
Cell cycle analysis using FACS after treatment for five days with 5nM 
dabrafenib (dabra), 2.7nM dabrafenib and 0.3nM trametinib (d + t), 
0.75nM vincristine (VCR), 40µM carboplatin (carbo) or 1nM vincris-
tine and 4µM carboplatin (v + c). Percentage of single cell population 
in the different cell cycle phases are shown as mean ± SD (n = 3 inde-
pendent biological replicates). One-way ANOVA, Tukey post-hoc test, 
* adj-p-value ≤ 0.05 ** adj-p-value ≤ 0.01 *** adj-p-value ≤ 0.001; 
no indication: not significant. (h) Western blot quantification (of blots 
in Figure S2b) showing cleaved PARP relative to full-length PARP 
after treatment for five days with 5 nM dabrafenib (dabra), 2.7 nM 
dabrafenib and 0.3 nM trametinib (d + t), 0.75 nM vincristine (VCR), 
40 µM carboplatin (carbo) or 1 nM vincristine and 4 µM carboplatin 
(v + c). Data is shown as mean ± SD (n = 3 independent biological rep-
licates). One-way ANOVA, Tukey post-hoc test, *adj-p-value ≤ 0.05 
**adj-p-value ≤ 0.01; no indication: not significant
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Decreased MAPK activity, measured using omics-spe-
cific signatures, was observed upon dabrafenib treatment 
(Fig. 2a-c). Upon treatment withdrawal, MAPK reactivation 
was observed within hours to one day (protein phosphory-
lation: 2 h, gene expression: 6 h, protein expression: 24 h) 
(Fig.  2a-c). Additionally, overactivation of the pathway 
during dabrafenib withdrawal was observed on the level of 
gene expression and protein phosphorylation (Fig. 2a-b), in 
line with our aforementioned data.

Longitudinal k-means clustering (kml) of differentially 
regulated genes, proteins and phospho-peptides showed 
that the majority of differential gene and protein expres-
sion or phosphorylation was induced during dabrafenib 
treatment, and maintained at least until 24 h of withdrawal 
(mean of highest differentially regulated clusters ≥ 1.5 or 
≤ -1.5; Fig. 2d-e, Fig. S4a) before reaching baseline levels 
(= untreated control) again. Within the upregulated genes 
(kml-clusters 1 and 2, cluster-mean ≥ 1.5) and proteins 
(kml-cluster 1, cluster-mean ≥ 1.5), a significant enrich-
ment of GO-terms related to cytokine signaling and TGF-
beta signaling, respectively, was observed (Fig. 2f-g, Table 
S8, Table S9). Furthermore, KSEA analysis of significantly 
regulated phospho-peptides (adj. p-value < 0.01 at a given 
time-point) suggested increased activity of several signaling 
pathways (TGF-beta, AKT, JAK/STAT indicated by down-
stream effectors PIM and PAK) upon dabrafenib treatment 
and early withdrawal (up to 6 h; Fig. 2h).

On the other hand, decreased cell cycle activity was 
indicated by GO-term analysis of downregulated genes 
(kml-clusters 4 and 5, cluster mean ≤ -1.5) and proteins 
(kml-cluster 2, cluster mean ≤ -1.5) (Fig. S4b-c, Table S10, 
Table S11) as well as by KSEA showing decreased CDK 
activity (Fig. 2h). This is in line with cell cycle arrest upon 
treatment (Fig.  1g) and decreased cell proliferation seen 
until two days of withdrawal (Fig. 1a).

Taken together, these data indicate that MAPKi treatment 
induced the upregulation of cytokines and activates sev-
eral signaling pathways (TGF-beta, AKT and JAK/STAT), 
potentially participating in tumor rebound upon withdrawal. 
Treatment withdrawal on the other hand led to the reacti-
vation of the MAPK pathway and cell cycle related path-
ways, while still maintaining some of the MAPKi treatment 
induced changes.

Cytokine expression and increased AKT activity 
are independent mechanisms without a tumor cell 
intrinsic effect on rebound growth

We next investigated the secretion of cytokines show-
ing increased gene expression (21 cytokines; log2FC > 2, 
padj < 0.01 at 6 h of withdrawal; Fig. S4d) using a commer-
cially available Luminex-based multiplex assay (covering 

Characterization of the BT-40 in vitro rebound 
model

Molecular analysis of MAPK pathway activity in BT-40 
showed near complete inhibition of the pathway after five 
days treatment with 5 nM dabrafenib (Fig. 1d-f). Cell cycle 
analysis (Fig.  1g) indicated arrest in G1/0-phase upon 
MAPKi treatment, without significant increase of PARP 
cleavage (Fig. 1h, Fig. S3b). Upon dabrafenib withdrawal, 
MEK and ERK phosphorylation returned to control levels 
after five hours (Fig. 1d-e), indicating a rapid reactivation 
of the pathway. MEK phosphorylation further transiently 
increased above control levels (Fig.  1d-e). Furthermore, 
DUSP6, downstream of ERK activation [20], was re-
expressed at later withdrawal timepoints (24–72  h). FOS 
gene expression, an immediate target gene of ERK [21], 
showed a 2.5-fold increase compared to baseline two hours 
after withdrawal (Fig.  1f). While reactivation occurred 
slightly later (6 h) after combined dabrafenib and trametinib 
withdrawal, overall MAPK reactivation patterns were com-
parable (Fig. S3c-e). Importantly, DMSO withdrawal did 
not increase MAPK pathway activity (Fig. S3f-h), indicat-
ing the effect observed is not an artefact of the withdrawal 
procedure.

In contrast, as expected, SOC chemotherapy treat-
ment and withdrawal did not induce consistent changes in 
the MAPK pathway, except for fluctuations in FOS gene 
expression observed after VCR withdrawal (Fig. S3i-n). 
Cell cycle analysis (Fig. 1g) showed an increase in the sub-
G1 population in all chemotherapy treatments, indicating 
cell death. VCR and carboplatin combination additionally 
led to an increased G2/M population. Accordingly, PARP 
cleavage, was observed with all SOC drugs but only showed 
a significant increase upon carboplatin treatment (Fig. 1h, 
Fig. S2b), in line with the strongest induction of subG0/1 
(Fig. 1g).

Taken together, these data indicate that MAPKi treat-
ment induces cell cycle arrest with no significant cytotoxic 
effects, followed by a rapid reactivation of the pathway spe-
cifically upon MAPKi withdrawal.

Multi-omics analysis reveals dynamic changes in 
MAPK pathway activation, cytokine expression 
and AKT signaling upon dabrafenib treatment and 
withdrawal

To investigate the underlying molecular mechanisms of 
regrowth after MAPKi withdrawal, we generated a multi-
omics dataset from our BT-40 rebound model upon dab-
rafenib treatment and withdrawal, using RNA sequencing, 
LC-MS/MS based proteomics and phosphoproteomics.
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Fig. 2  Multi-omics analysis reveals dynamic changes in MAPK 
pathway activation, cytokine expression and AKT signaling upon 
dabrafenib treatment and withdrawal. (a-c) MAPK pathway activ-
ity scores after five days treatment with 5 nM dabrafenib followed 
by withdrawal measured using the MEK1 PTM-SEA score [54] for 
phosphoproteomics data (a), the MPAS score [55] for RNAseq data 
(b) and a proteomics-based MAPK ssGSEA-score [56] for proteomics 
data (c). Boxplots depict the median, first and third quartiles. Whiskers 
extend from the hinge to the largest/smallest value no further than 1.5 
*IQR from the hinge (where IQR is the interquartile range). Dashed 
line indicates the mean of the solvent control (five days DMSO). Two-
tailed unpaired t-test, *p-value ≤ 0.05 **p-value ≤ 0.01 no indication: 
not significant (n = 3 independent biological replicates). (d-e) Longi-
tudinal k-means clustering of differentially expressed genes (a) and 
proteins (e) after five days treatment with 5 nM dabrafenib followed by 
withdrawal relative to solvent control (five days DMSO; dashed line). 

Only genes and proteins with an adjusted p-value < 0.01 for at least 
one timepoint were included in the analysis. Unframed lines represent 
single genes or proteins, framed lines show clusters mean. Dotted line: 
log2FC = +/-1.5 (n = 3 independent biological replicates). (f-g) GO-
term enrichment analysis of upregulated genes (clusters 1 and 2 from 
panel d, cluster-mean ≥ 1.5) (f), and proteins (cluster 1 from panel e, 
cluster-mean ≥ 1.5) (g). Only terms with significant enrichment (adj. 
p-value ≤ 0.05) are shown. GO-term groups are defined by overlap-
ping genes and named based on the GO-Term with highest percentage 
of mapped genes. (h) Kinase-substrate-enrichment-analysis (KSEA) 
of differentially regulated phosphopeptides relative to solvent control 
after five days treatment with 5 nM dabrafenib (dabra) followed by 
withdrawal (wd). Only phospho-peptides with a significant regulation 
(adj. p-value < 0.01 at a given timepoint) were included in the analysis. 
*adj-p-value ≤ 0.05 **adj-p-value ≤ 0.01; ns: not significant; n.p.= no 
prediction (n = 3 independent biological replicates)
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dabrafenib treatment stabilized tumor growth within six 
days of treatment in 10/12 mice (non-responding mice were 
excluded from further analysis). Upon treatment stop, a 
trend for increased tumor size was observed during the first 
three days of withdrawal and before harvesting of tumors in 
2/6 mice, suggesting the possibility of rebound growth in 
our in vivo model (Fig. 4a-d).

Gene expression analysis of tumor samples showed 
decreased FOS expression during treatment and re-expres-
sion during treatment withdrawal compared to untreated 
controls (Fig. 4e), in line with MAPK pathway regulation 
patterns observed in vitro.

16/21 cytokines). Cytokine secretion was increased upon 
dabrafenib treatment and maintained upon withdrawal (Fig. 
S5a), with 11/16 cytokines maintaining increased secretion 
with a > 2-fold increase compared to DMSO withdrawal 
(AUC-log2FC > 1; Table S12). Of these eleven, secre-
tion of CCL2, CX3CL1, CCL7 and CXCL10 was signifi-
cantly higher 24 h after dabrafenib withdrawal compared to 
DMSO, one day before cells are proliferating again (Fig. 3a, 
Fig. S5b).

To validate the differential regulation of the aforemen-
tioned pathways, a phosphorylation kinase array and western 
blot analysis was used. Increased AKT activity (GSK3-a/b 
and AKT phosphorylation) upon treatment and withdrawal 
was confirmed (Fig. 3b-d, Fig. S6c), but no increased TGF-
beta or JAK/STAT signaling was observed (Fig. S6a-c).

Of note, increased expression of CCL2, CX3CL1, 
CCL7 and CXCL10, and increased AKT activity, were also 
observed for dabrafenib and trametinib combination treat-
ment and withdrawal (Fig. S6d-f).

We next investigated a possible interplay between CCL2, 
CX3CL1, CCL7 and CXCL10 expression and AKT acti-
vation. While some cytokine receptors were expressed in 
BT-40 (Fig. S7a), neither stimulation with recombinant 
cytokines (Fig. 3e-f) nor inhibition of cytokines using neu-
tralizing antibodies (neuABs, Fig. S7b-c) affected AKT 
activity. Furthermore, inhibition of AKT activity using the 
PI3K inhibitor alpelisib did not suppress dabrafenib-induced 
cytokine expression (Fig. 3g, Fig. S7d-e). Overall, this indi-
cates independence of MAPKi-induced cytokine expression 
from AKT signaling in our model.

While both cytokines and AKT signaling independently 
can be survival- and growth-promoting, neither cytokine 
inhibition by neuABs nor AKT inhibition by alpelisib 
(PI3Ki) or ipatasertib (AKTi) during MAPKi treatment or 
withdrawal reduced viable cell counts compared to MAPK 
inhibition only (Fig. 3h-i, Fig. S7d-j).

Taken together these data indicate the absence of a tumor 
cell intrinsic growth-promoting effect of the cytokines or 
AKT signaling during MAPKi treatment or withdrawal, 
and suggests that MAPK pathway reactivation is the natu-
ral driver of the intrinsic tumor rebound mechanism in our 
rebound model.

In vivo validation of MAPK pathway reactivation 
during rebound growth

To investigate the MAPK pathway reactivation upon 
treatment withdrawal in vivo, BT-40 cells were engrafted 
orthotopically in NOD scid gamma (NSG) mice to gener-
ate samples for molecular analysis (gene expression) dur-
ing treatment and withdrawal. As shown by bioluminescent 
imaging, used to control for treatment effect, 100  mg/kg 

Fig. 3  Cytokine expression and increased AKT activity are independent 
mechanisms without a tumor cell intrinsic effect on rebound growth. 
(a) Luminex-based multiplex assay results showing cytokine secre-
tion during withdrawal after treatment for five days with either DMSO 
(solvent control) or 5 nM dabrafenib. Data is shown as mean ± SD 
(n = 3 independent biological replicates). Two-tailed unpaired t-test, 
*p-value ≤ 0.05 **p-value ≤ 0.01; no indication: not significant. (b) 
Kinase phosphorylation array of samples treated for five days with 
5 nM dabrafenib or DMSO (solvent control) followed by 24 h with-
drawal (wd). Arrays consist of two membranes, each target is detected 
in technical duplicates. Images shown are representatives of two bio-
logical replicates. (c-d) Western blot analysis of AKT phosphorylation 
after five days treatment with 5 nM dabrafenib (dabra) followed by up 
to 72 h withdrawal. Blots shown are representative of three indepen-
dent biological replicates (c). Quantification (d) is relative to solvent 
control (DMSO; dashed line) and shown as mean ± SD (n = 3 inde-
pendent biological replicates). One-sample t-test, * p-value ≤ 0.05; no 
indication: not significant. (e-f) Western blot analysis of AKT activity 
markers after treatment with recombinant cytokines. Treatment for five 
days with DMSO or 5 nM dabrafenib (dabra) served as negative and 
positive control for western blots (e). Blots shown are representative 
of three biological replicates (e). Quantification (f) was done relative 
to untreated samples (dashed line) and is shown as mean ± SD (n = 3 
independent biological replicates). One-sample t-test; no indication: 
not significant. (g) RT-qPCR analysis of chemokine gene expression 
after five days treatment with 5 nM dabrafenib (dabra) alone or in 
combination with varying concentrations of alpelisib (alp). Quantifica-
tion was done relative to dabrafenib only treatment (0; dashed line) 
and is shown as mean ± SD (n = 3 independent biological replicates). 
One-sample t-test, *p-value ≤ 0.05 **p-value ≤ 0.01; no indication: 
not significant. (h) Viable cell counts during treatment with 5nM dab-
rafenib (dabra) alone or in combination with a combination of antibod-
ies neutralizing CCL2 (0.5 µg/mL), CX3CL1 (0.25 µg/mL), CXCL10 
(0.25 µg/mL) and CCL7 (0.1 ng/mL) (neuABs), IgG control (1 µg/
mL), 5 µM alpelisib (alp) or 1 µM ipatasertib (ipa) followed by ten 
days of withdrawal. Dashed line indicates withdrawal timepoint. Via-
ble cell counts are normalized to treatment start (-5d). Data is shown 
on a logarithmic scale (base 10) as mean ± SD of at least three biologi-
cal replicates. (i) Viable cell counts during treatment with 5 nM dab-
rafenib (dabra) followed by withdrawal. During withdrawal cells were 
either untreated (= solvent) or treated for five days with a combination 
of antibodies neutralizing CCL2 (0.5 µg/mL), CX3CL1 (0.25 µg/mL), 
CXCL10 (0.25 µg/mL) and CCL7 (0.1 ng/mL) (neuABs), IgG control 
(1 µg/mL), 5 µM alpelisib (alp) or 1 µM ipatasertib (ipa), followed 
by five days of withdrawal. Dashed lines indicate withdrawal time-
points. Viable cell counts are normalized to treatment start (-5d). Data 
is shown on a logarithmic scale (base 10) as mean ± SD of at least three 
biological replicates
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hypothesized that they might have tumor extrinsic proper-
ties, that could further increase tumor growth (i.e. optional 
rebound model criteria 4), which was not observed in 
BT-40 monoculture. As cytokines, in particular CCL2 and 

MAPKi-induced cytokines attract microglia in a 
paracrine fashion

Since the cytokines had no tumor cell intrinsic effects, we 
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Fig. 4  MAPK reactivation upon dabrafenib treatment and withdrawal 
in BT-40 orthotopic xenograft model. (a-d) NSG mice carrying BT-40 
xenograft tumors were treated with 100 mg/kg dabrafenib (treatment; 
six doses, once daily) followed by three days of withdrawal. Tumor 
growth was measure by bioluminescence imaging and is shown for 
each individual animal as radiance in photons/s/cm²/steradian (d). 
Dashed lines indicate treatment start and treatment stop. Biolumines-
cence images (a-c) of untreated animals (control, n = 3; a), animals 
undergoing treatment (n = 6; b) and animals undergoing treatment fol-
lowed by withdrawal (n = 6; c); pre-trt. = before treatment start. (e) 
RT-qPCR analysis of FOS expression in BT-40 xenograft tumors after 
six days treatment with dabrafenib (dabra; 100 mg/kg, six doses, once 

daily) followed by three days of withdrawal (withdrawal). Samples 
from mice showing tumor progression (#4, #6; panel d) during dab-
rafenib treatment were excluded from the analysis. Quantification 
was done relative to the median of untreated samples (control). FOS 
was undetected in two samples (#7, #8), for these samples Ct values 
were set to 40 (max. number of cycles). Boxplots depict the median, 
first and third quartiles. Whiskers extend from the hinge to the largest/
smallest value no further than 1.5 *IQR from the hinge (where IQR is 
the interquartile range). Two-tailed unpaired t-test; no indication: not 
significant (control: n = 3 mice, dabra: n = 4 mice, withdrawal: n = 6 
mice)
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BT-40 also apply to pLGG entities with different genetic 
backgrounds needs to be further validated in future stud-
ies using more suitable models, including non-rebounding 
models as additional control.

Using our BT-40 rebound model, we observed rapid 
reactivation of the MAPK pathway upon MAPKi with-
drawal. As rebound growth in pLGG is not associated with 
MAPKi resistance [8, 13], a MAPK-dependent driving 
mechanism is plausible and we assume that the fast MAPK 
reactivation plays a role in the rebound growth. In addition 
to a rapid reactivation, we observed a transient overshoot-
ing activation of the pathway, which has also been observed 
in other MAPK-driven tumor entities [31–33]. Interestingly, 
in our model, MAPK overactivation was most prominently 
observed on the level of MEK phosphorylation and MAPK 
target gene expression (FOS, MPAS score). Substantial 
pERK rebound, as observed in other studies and associ-
ated with reduced proliferation and cell death in MAPKi 
addiction models [31–33], was not observed, likely due 
to the parallel re-expression of DUSP6, which negatively 
regulates ERK activity [34]. Taken together, this indicates a 
potential vulnerability to DUSP6 inhibitors, as targeting of 
this phosphatase may induce apoptosis due to overshooting 
MAPK activity [35, 36].

In addition to a fast reactivation of the MAPK pathway, 
we observed upregulation of AKT signaling, which is com-
monly observed upon MAPKi in other entities [37–39] and 
combination of MAPKi and PI3K/AKT/mTORi was shown 
to have beneficial effects in different tumor entities [40–42], 
including pLGGs [43]. In contrast to what was previously 
described for BT-40 [43], inhibition of AKT signaling in 
combination with MAPKi did not further decrease viable 
cell counts compared to MAPKi only, and most importantly 
it did not affect rebound growth in our setting. This could be 
explained by the fact that the synergistic activity of mTORCi 
and MEKi involved effects mediated by the microenviron-
ment (i.e. angiogenesis) [43], which is not reflected in our 
in vitro setting.

Our analysis furthermore revealed increased expression 
and secretion of several cytokines, in particular CCL2, 
CX3CL1, CXCL10 and CCL7, upon dabrafenib treatment 
and withdrawal in vitro, with a trend for increased expres-
sion of CX3CL1 and CXCL10 also in vivo. While cyto-
kines have been described to have direct growth-promoting 
effects on tumor cells [44–47], in our rebound model, inhi-
bition of these cytokines had no effect on BT-40 viability or 
proliferation, indicating that these cytokines have no tumor 
cell intrinsic effect. However, we were able to demonstrate 
a tendency for increased attraction of microglia cells, which 
make up the majority of the TME in pLGG tumors [3]. In 
line with previous work demonstrating the role of cyto-
kines in immune cell attraction [22–24, 48–51], a trend for 

CX3CL1, have been described to attract microglia cells 
[22–24], we investigated microglia attraction using condi-
tioned media (CM; Fig. 5a). Indeed, increased migration of 
HMC3 cells, with a trend towards statistical significance, 
was observed using CM collected from BT-40 cells during 
MAPKi withdrawal (Fig. 5b, d), which was reversed by the 
addition of a combination of antibodies neutralizing CCL2, 
CX3CL1, CXCL10 and CCL7 (Fig. 5c-d). Additionally, we 
could show that microglia cells support BT-40 growth (Fig. 
S8), suggesting that microglia cells recruited upon treat-
ment withdrawal could increase tumor growth (i.e. optional 
tumor rebound criteria 4). Importantly, a trend for increased 
mRNA expression of CX3CL1 and CXCL10 in tumor 
cells was also observed upon dabrafenib treatment in vivo 
(Fig.  5e-h), suggesting that such a recruitment could take 
place in vivo. Further investigation in pLGG PDX-models 
in immunocompetent mice, yet to be established [25], will 
be necessary to validate these findings.

Of note, increased microglia attraction was also observed 
using conditioned media collected during MAPKi treat-
ment (Fig. S9). The role of microglia in the treatment period 
remains to be elucidated.

Taken together, these data suggest a possible tumor cell 
extrinsic, paracrine mechanism of MAPKi-induced cyto-
kine secretion involving microglia cells, warranting further 
investigation using more complex models.

Discussion

Rebound growth of pLGGs after MAPKi treatment remains 
a clinical challenge and is not well understood. Both predic-
tion as well as prevention of rebound growth need a deeper 
molecular and biological understanding of the underlying 
mechanisms driving it.

We successfully modeled the rebound growth of pediat-
ric glioma upon MAPKi withdrawal in vitro using BT-40 
(BRAFV600E, CDKN2A/Bdel). However, in additional pLGG 
models driven by KIAA1549:BRAF fusion (DKFZ-BT66, 
DKFZ-BT308) or BRAFV600E mutation (DKFZ-BT314) 
we did not observe an effect on viable cell counts during 
treatment, in line with previous data [14, 15, 26]. This may 
be explained by inhibition of p53 and pRB through expres-
sion of SV40-TAg [14, 27, 28] in the proliferating cells and 
by the biology of senescent cells, which commonly do not 
undergo apoptosis [15, 26, 29]. Due to the lack of effect 
during MAPKi treatment in these models, the presence or 
absence of rebound growth could not be assessed and these 
models could not be further used in this study. Nonetheless, 
our BT-40 rebound model represents an important pediatric 
glioma subgroup, as patients with this genetic background 
have the poorest prognosis [30]. Whether our findings in 
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in vivo [52]. This suggests a potential tumor growth-promot-
ing role of microglia cells (attracted either during MAPKi 
treatment and/or immediately after withdrawal while cyto-
kines are still increased), possibly enhancing tumor growth 
after MAPKi withdrawal and leading to faster growth after 
compared to before treatment. Furthermore, attraction of 
microglia cells may have implications during MAPKi treat-
ment, as microglia infiltration in pLGG tumors correlated 
with a high predictive MAPK inhibitor sensitivity score 

decreased microglia attraction was observed upon inhibition 
of CCL2, CX3CL1, CXCL10 and CCL7 in our setting.

Increased microglia attraction by the tumor cells upon 
MAPKi withdrawal observed in vitro could possibly con-
tribute to a neuroradiologically growing tumor mass, as 
observed on MRI. Furthermore, we observed growth-pro-
moting effects of microglia on BT-40 cells in vitro. In line, 
a study using BRAF fusion-driven neural stem cells showed 
the importance of microglia recruitment for tumor formation 
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currently favored to surgery to treat rebounding patients 
(clinical communication). Nonetheless, our data opens the 
question whether further development of different MAPK 
inhibitors for the treatment of pediatric glioma is enough to 
sufficiently improve patient outcome, as the MAPK path-
way will most likely be reactivated with any inhibitor upon 
treatment stop. Therefore, the exploration of more effective 
treatment strategies, possibly involving modulation of the 
tumor immune microenvironment, suggested to play a role 
by our data, are warranted to improve patient’s quality of 
life.
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(MSS) [53]. Taken together, these data indicate a possible 
complex role of microglia in response to MAPKi treatment 
and rebound growth after treatment withdrawal in pLGG. 
The exact role of microglia cells and how their activation 
status (i.e. tumor-promoting or -suppressive) may be influ-
enced by MAPKi treatment and withdrawal needs further 
investigation, for which more complex models, such as 
organoids containing immune cells or immunocompetent 
mouse models [25], will be necessary.

In summary, we have identified the MAPK pathway as 
a tumor cell intrinsic rebound driving mechanism in pedi-
atric glioma cells with BRAFV600E mutation and CDKN2A/
Bdel. In addition, MAPKi withdrawal was associated with 
the expression and secretion of microglia-recruiting cyto-
kines, which may contribute to rebound growth in a para-
crine manner. Further validation of our findings in patient 
samples will be necessary. Such samples remain to date 
extremely scarce, since re-challenging with MAPKi is 

Fig. 5  Increased cytokine secretion upon MAPKi treatment and with-
drawal induces increased microglia attraction. (a) Schematic of tran-
swell migration assay setup to investigate migration of HMC3 cells 
towards conditioned media (CM) collected from BT-40. (b) Transwell 
migration assay of HMC3 cells towards conditioned media (CM) col-
lected from BT-40 cells after 24 h of withdrawal after five days treat-
ment with DMSO (solvent control), 5nM dabrafenib (d) or 2.7 nM 
dabrafenib and 0.3 nM trametinib (d + t). 2% FCS serves as baseline 
control as CM contains 2% FCS, 0% FCS as negative control and 10% 
FCS as positive control. Quantification is shown as mean ± SD (n = 3 
independent biological replicates; 2 technical duplicates per condition; 
10–12 randomly distributed images were quantified per transwell) 
relative to 2% FCS. One-sample t-test, * p-value ≤ 0.05; no indication: 
not significant. (c) Transwell migration assay of HMC3 cells towards 
CM collected 24 h after dabrafenib withdrawal (dabra wd) containing 
either antibodies neutralizing CCL2 (1 µg/mL), CX3CL1 (0.5 µg/mL), 
CXCL10 (0.5 µg/mL) and CCL7 (0.2 ng/mL) (neuABs) or IgG (2 µg/
mL). 2% FCS serves as baseline control as CM contains 2% FCS, 0% 
FCS as negative control and 10% FCS as positive control. Quantifica-
tion is shown as mean ± SD (n = 3 independent biological replicates; 
2 technical duplicates per condition; 10–12 randomly distributed 
images were quantified per transwell) relative to 2% FCS. One-sam-
ple t-test and two-tailed unpaired t-test (comparing IgG to neuABs), 
*p-value ≤ 0.05 ***p-value ≤ 0.001; no indication: not significant. (d) 
Representative fluorescence images showing HMC3 migrated through 
the transwell, nuclei were stained with DAPI. Scale bar = 50 µM. (e-h) 
RT-qPCR analysis of CX3CL1 (e), CXCL10 (f), CCL2 (g) and CCL7 
(h) expression in BT-40 xenograft tumors after six days treatment 
with dabrafenib (dabra; 100  mg/kg, six doses, once daily) followed 
by three days of withdrawal (withdrawal). Samples from mice show-
ing tumor progression (#4, #6; Fig. 4d) during dabrafenib treatment 
were excluded from the analysis. Quantification was done relative to 
the median of untreated samples (control). CX3CL1 was undetected 
in one sample (#2), CCL2 was undetected in two samples (#2, #7) 
and CCL7 was undetected in six samples (#2, #3, #5, #7, #8, #11), for 
these samples Ct values were set to 40 (max. number of cycles). Box-
plots depict the median, first and third quartiles. Whiskers extend from 
the hinge to the largest/smallest value no further than 1.5 * IQR from 
the hinge (where IQR is the interquartile range). Two-tailed unpaired 
t-test; no indication: not significant (control: n = 3 mice, dabra: n = 4 
mice, withdrawal: n = 6 mice)
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