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Abstract
Almost 35 years after its introduction, coronary artery calcium score (CACS) not only survived technological advances but 
became one of the cornerstones of contemporary cardiovascular imaging. Its simplicity and quantitative nature established 
it as one of the most robust approaches for atherosclerotic cardiovascular disease risk stratification in primary prevention 
and a powerful tool to guide therapeutic choices. Groundbreaking advances in computational models and computer power 
translated into a surge of artificial intelligence (AI)-based approaches directly or indirectly linked to CACS analysis. This 
review aims to provide essential knowledge on the AI-based techniques currently applied to CACS, setting the stage for a 
holistic analysis of the use of these techniques in coronary artery calcium imaging. While the focus of the review will be 
detailing the evidence, strengths, and limitations of end-to-end CACS algorithms in electrocardiography-gated and non-gated 
scans, the current role of deep-learning image reconstructions, segmentation techniques, and combined applications such as 
simultaneous coronary artery calcium and pulmonary nodule segmentation, will also be discussed.

Keywords Computed tomography · Coronary artery calcium · Coronary artery calcium score · Artificial intelligence · 
Machine learning · Deep-learning

Introduction

 Atherosclerosis, a multifactorial, dynamic, heterogeneous 
disease, profoundly impacts morbidity and mortality, impos-
ing a substantial economic burden on the healthcare system 
[1, 2]. This complex, inflammatory-based disease affects 
the elastic and muscular arteries leading to the formation 
of atherosclerotic plaques [3, 4]. Atherosclerotic plaques 
involve arteries’ intima and consist of a mixture of lipid, 
foam cells, debris, connective-tissue elements, and immune 

cells, inducing asymmetric focal thickenings of the affected 
vessels [3, 4]. There is a desire for simple, non-invasive 
biomarkers to quantify and characterize this disease, par-
ticularly in the cardiovascular field [5]. Calcium deposition 
and plaque calcification is a well-known process involving 
the lipid core of atherosclerotic plaques [5]. In patients with 
unknown atherosclerotic cardiovascular disease (ASCVD), 
coronary artery calcium (CAC) quantification, measured on 
computed tomography (CT) images (also named CAC score, 
CACS, or Agatston score), proved to be a robust, reliable and 
reproducible marker of subclinical coronary atherosclero-
sis [6–9]. CACS is a well-grounded approach for primary 
ASCVD risk stratification and a predictor for cause-specific 
cardiovascular mortality [6–9].

The groundbreaking advances of artificial intelligence 
(AI) in recent years and those foreseen in the future are 
expected to drastically change medicine, improving patient 
diagnosis, tailoring therapeutic strategies to patient needs, 
and relieving the medical community of tedious, error-prone 
tasks [10–12]. Imaging is one of the medical specialties at 
the forefront of the AI revolution. The ubiquitous presence 
of CT scanners [13], their short scan time, superiority (over 
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other imaging techniques) in detecting vascular calcifica-
tion [14], and the high clinical relevance of CAC detection 
[15], paved the way for CACS to embody the perfect task 
to benefit from the development and progress of AI. In fact, 
while plane chest X-ray, coronary angiography, ultrasound, 
and magnetic resonance, have the potential to image calcium 
deposition in the vessels, only CT can accurately quantify 
it [16].

In this critical review, we aim to describe the current state 
of research on this topic. Also, by introducing basic con-
cepts of AI, we will unveil their potential, fully exploring 
the expected advances for healthcare and setting the ground 
for a thorough understanding of their use in CACS.

Coronary artery calcium score (CACS)

In 1990, Agatston et al. provided pivotal evidence on the 
capability of (electron-beam) CT to quantify CAC, theoriz-
ing the CACS [17]. Since then, technological improvements 
in CT scanners have been tremendous, but the elegance and 
simplicity of the proposed method ensured CACS’s longev-
ity. The Agatston score is a radiological construct based on 
3 mm, electrocardiogram-gated (ECG-gated), non-contrast 
images, which relies on a semiautomatic quantification of 
calcified plaques, adopting 130 Hounsfield Units (HU) and 1 
 mm2 as the minimal cutoffs to differentiate calcified plaques 
from random noise [17]. Agatston score is the product of the 
weighted sum score of the peak density multiplied by the 
plaque’s area, summed across all eligible lesions (defined 
by n in the formula underneath) [18].

Since its introduction, minimal changes have been made 
to the technical parameters for acquiring the CACS images. 
However, the introduction of multidetector CT, the most 
prominent change since CACS theorization [19], forced 
the standardization of the scanning protocol, which was 
achieved in 2007 owing to the work of McCollough et al. 
[20] (Table 1). Since then, imaging societies have discour-
aged any possible modification to these parameters [21].

The CACS can be expressed in absolute or relative val-
ues. The latter weighs the CACS according to the age-, 
sex-, and race-specific percentile [8]. Absolute values 
stratify the near-to-midterm ASCVD risk (5 to 10 years), 
whereas the relative score compares the ASCVD risk of 
the patient with that of peers [22]. While both methods can 
predict coronary events, absolute values had better perfor-
mances and a more robust correlation with event risk [22]. 
In asymptomatic patients, CACS risk scores are grouped 
into the following categories: very low (CACS 0), mildly 

Agaston score =

n
∑

i=1

(

Plaque’s area
i
× Densityweighted score

i

)

increased (CACS 1-99), moderately increased (CACS 100-
299), moderately-to-severely increased (CACS 300-999), 
and severely increased (CACS ≥ 1000) [23, 24]. Since 
2018 CACS reporting has been standardized according 
to the CAC data and reporting system (CAC-DRS) issued 
by the Society of Cardiovascular Computed Tomography 
(SCCT) [24].

Although the Agatston score is the most widely adopted 
method, it is not the only score to evaluate CAC. The cal-
cium volume and calcium mass represent the total volume 
of calcified voxels and the “true mass” of calcium in the 
coronary tree, respectively [19, 25]. Both calcium volume 
and calcium mass had higher interscan reproducibility 
compared to the Agatston score [19, 26, 27]. Addition-
ally, the results of a sub-study of the Multi-Ethnic Study 
of Atherosclerosis (MESA) on 3,398 participants with 
CACS > 0 showed the benefits of adding calcium volume 
and calcium density to coronary artery disease (CAD) 
and ASCVD risk evaluation. Interestingly, calcium vol-
ume was associated with a stepwise increase in CAD and 
ASCVD risk, while calcium density scores showed a step-
wise decrease in the risks [19, 27]. These results helped 
disentangle the inverse relation existing between calcium 
density and ASCVD risk [6]. Indeed, highly dense plaques 
are more stable and inversely associated with ASCVD 
risk factors, begetting a lower ASCVD risk [19, 28, 29]. 
Therefore, calcium density improved CACS score based 
ASCVD risk quantification, solving some of the Agatston 
score’s intrinsic imperfections.

Table 1  Technical parameters of CACS acquisition

BMI body-mass index, CACS coronary artery calcium score, ECG 
electrocardiogram, mm millimeter

Technical parameters
Patient position Supine
 Type of acquisition Axial
 Scanning mode Prospective, ECG-gated
 Scan range From below the aortic arch to the 

base of the heart
 R-R interval 70-80%
 Slice thickness 2.5-3 mm
 Reconstruction thickness 2.5-3 mm
 Peak tube voltage 120 kV
 Tube current Modulated current based on BMI
 Reconstruction algorithm Filtered back projection
 Reconstructed matrix 512 X 512

Patient preparation
 Dietary preparation Not needed
 Pharmacological therapy No changes
 β-blockers Not mandatory
 Contrast medium Not administered
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Clinical value of CACS

Recently, several clinical guidelines endorsed the use of 
CACS to up or down-stratify asymptomatic, middle-aged 
patients at intermediate risk of ASCVD [15] and to guide 
therapeutic decisions (Table 2). Nonetheless, the benefits 
of CACS have not been fully exploited yet. Recent evidence 
showed that CACS-weighted pre-test probability models bet-
ter stratified the risk of obstructive CAD compared to those 
based on conventional risk factors in patients with typical 
and atypical chest pain [30]. Additionally, by reclassifying 
54% of patients to a lower CAD pre-test probability based on 
their CACS, it reduced downstream diagnostic testing [30].

Of note, while the “power of 0” is still debated [31], the 
10-year risk of all-cause mortality of CACS 0 is < 1% [19]. 
Conversely, minimal increases (CACS 1-10) are associated 
with a two-fold increase in the overall mortality rates [32]. 
Moreover, individuals with a CACS ≥ 1000 have five times 
the risk of ASCVD and roughly three times the risk for all-
cause mortality of those with a CACS 0 after adjusting for 
conventional risk factors [33]. Even more alarming is the 
absence, of a disease-specific and all-cause mortality plateau 
effect in this patient population [33].

CACS in non‑ECG‑gated images

Although CACS was developed on ECG-gated images, 
a meta-analysis of 661 adults showed a high correlation 
between scores derived from ECG-gated and non-gated, 
non-contrast images [34]. This may improve ASCVD risk 
assessment in specific cohorts of patients, namely candidates 
for lung cancer (LC) screening and oncologic patients shar-
ing risk factors with patients with ASCVD. Former or active 
smokers enrolled in the control arm of an LC screening ran-
domized controlled trial had equivalent 10-year mortality 
rates of LC and ASCVD (24% and 21%, respectively) [35]. 
Indeed, older age and a heavier smoking history increased 
the likelihood of undergoing LC screening in a population-
based study involving more than 14,500 adults, of whom 
67% were overweight or obese and 22% had diabetes [36]. 
Further, 62% of patients enrolled in a cross-sectional LC 
screening study were CACS positive, 7% had values > 1000, 
and 57% of those qualifying for primary prevention statin 
therapy were not actively treated [37]. Tailor et al. corrobo-
rated this evidence, confirming that a minority of LC screen-
ing patients carried a diagnosis of ASCVD (31%), while 
most (74%) were eligible for statin therapy but not under 
active treatment [38].

However, performing CACS on non-gated images may 
underestimate the Agatston score. Xie et al. showed that 
9% of CACS-positive and 19% of CACS ≥ 400 patients on 
ECG-gated images were downgraded to CACS 0 or < 400 
on non-gated images, respectively [34]. A possible solution 

to the problem of accurate CACS quantification in non-gated 
images could be qualitative analysis. CAC-DRS also sup-
ports the qualitative evaluation of the presence and extent 
of coronary tree calcification on non-gated images [24, 39]. 
Qualitative CAC-DRS are divided into the following catego-
ries: very low (CAC-DRS 0), mildly increased (CAC-DRS 
1), moderately increased (CAC-DRS 2), and moderate to 
severely increased (CAC-DRS 3), mirroring their quantita-
tive counterpart, and providing similar ASCVD risk strati-
fication and treatment recommendations [24].

Limits and future directions of CACS

Neither the Agatston score nor CAC-DRS considers plaque 
location. However, involvement of the left main trunk and 
left anterior descending artery (LAD) is associated with a 
worse outcome [40–42]. Additionally, the higher the num-
ber of affected vessels, the higher the risk of CAD [43]. 
Hence, the SCCT suggested reporting CAC location, irre-
spective of the evaluation method applied [24]. Scan-rescan 
studies showed the complexity of measuring a modifiable 
parameter. Those with a short interscan period (23 ± 27 
days) demonstrated low measurement variations [44]. Con-
versely, a sub-study of the MESA with an interscan period 
between 1 and 5 years showed that baseline CACS values, 
body mass index, and scanner factors must be considered 
when quantifying CACS variations in longitudinal stud-
ies [45]. Of the 2,832 patients with CACS > 0 at baseline, 
85% showed an increase in CACS at follow-up scans [45]. 
However, 52% of the variation was attributable to the previ-
ous factors, and factor-adjusted analysis demonstrated that 
only 32% of the initial patients had increased CACS values 
[45]. An additional point not yet taken into consideration is 
the difference in CAC profiles between sexes. Women have 
fewer calcified plaques and less calcified vessels, ultimately 
generating a lower CAC volume [46]. Additionally, the pro-
portion of women with detectable CAC typically rises at the 
age of 46, nearly a decade after that observed in men [46]. 
Nonetheless, CACS-positive women have an overall 1,3-fold 
higher relative risk of ASCVD-related death compared to 
men. This relationship increases with CACS values, being 
~ 1,8-fold higher in women with CACS > 100 [46]. Interest-
ingly, a sub-study of the MESA involving 2,456 postmeno-
pausal women showed that those with early menopause had 
a lower prevalence of CACS 0 (55%) than those without 
early menopause (60%) [47]. Further, in the coronary artery 
risk development in young adults study, the prevalence of 
women with CACS > 0 was 18%, 21%, and 13% for prema-
ture menopause, menopause ≥ 40 years, and premenopau-
sal, respectively [48]. Of note, the results of these studies 
did not reach statistical significance, leaving the associa-
tion between CACS and menopausal status unanswered. 
Finally, it is worth noting that, irrespective of sex, ~ 10% of 
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CACS-negative individuals have non-calcified plaques, 1% 
have obstructive non-calcified plaques, and ~ 0.5% develop 
cardiac events at long-term follow-up (≥ 42 months) [49].

Installation and availability of dual-energy and photon-
counting CT (PCCT) brought exciting perspectives into 
CACS [39, 50]. These techniques allow the reconstruction of 
virtual non-contrast (VNC) images from contrast-enhanced 
exams [18]. Therefore, CACS could be quantified from 
contrast-enhanced scans. However, VNC images proportion-
ally underestimated CACS values derived from non-contrast 
images primarily because of an underestimation of plaque 
volume and density, requiring ad-hoc conversion factors to 
yield accurate results [51, 52]. Additionally, ultra-low dose 
non-enhanced CACS images acquired using a dual-energy 
scanner underestimated CACS-based risk categories in 17% 
of patients compared to their standard-dose counterparts 
[39]. PCCT, a pioneering technique directly converting the 
energy of X-ray photons into an electric pulse, can increase 
the contrast-to-noise ratio (CNR) and detect smaller and 
less calcified objects [50, 53]. PCCT scanners implemented 
in clinical routine have detectors of 2 mm thickness and 
a ~ 200 μm pixel dimension at the isocenter [54], lower than 
the ~ 1000 μm of energy integrating detectors [55]. While 
the foreseeable benefits of PCCT adoption are huge, stud-
ies comparing CACS between normal (energy integrating) 
scanners and PCCT showed a systematic reduction in CACS 
values in PCCT, leading to the reclassification of 5% of 
patients [56].

Artificial intelligence

AI can be defined as the creation and development of hard-
ware and software capable of performing tasks usually 
confined to human intelligence or broadly as intelligence 
exhibited by machines [57, 58]. The implementation of AI 
is expected to improve medicine thanks to its ability to learn 
and adapt to a huge amount of data and handle onerous tasks 
requiring great cognitive dexterity [58–60]. Furthermore, 
it is expected to free clinicians from tedious and repetitive 
tasks still demanding undistracted attention [58–60]. At its 
core, AI encompasses a broad range of concepts, including 
but not limited to machine learning (ML), deep learning 
(DL), and convolutional neural networks (CNNs) (Fig. 1). 
Each of these concepts has a characteristic range of applica-
tions, is associated with distinct algorithm architectures, and 
has various layers of complexity. 

ML learns patterns directly from data/examples [57, 59]. 
This overcomes the traditional rule-based approach that sees 
computers accurately reproducing the programmer’s instruc-
tions [59]. Several different components need to be consid-
ered when building an ML algorithm. Although a detailed 
description is beyond the scope of this review, we will Ta
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briefly guide the readers through some ML approaches [61]. 
ML usually relies upon one of the following approaches: 
supervised learning, semi-supervised learning, reinforce-
ment learning, or unsupervised learning. Supervised learn-
ing uses labeled datasets with a known output or outcome 
variable [57]. The model learns patterns and relationships 
existing between inputs (in our case images) and outputs 
by minimizing the difference between its predictions and 
the real outputs throughout an iterative, optimized process 
[57]. Semi-supervised learning overcomes the challenges 
often caused by the scarce availability of high-quality data-
sets curated by experts [57, 59]. This approach trains the 
algorithms using both labeled and unlabeled output data. 
Unsupervised learning opts for using the ML algorithm 
against unlabeled output datasets, mainly aiming to discover 
hidden patterns or structures within the data. This strategy 
relies on a naïve approach to data, exempting the algorithm 
from previous evidence and empowering it to unveil oth-
erwise hidden connections and associations. Finally, rein-
forcement learning, infrequently used in medicine, finds a 

balance between exploration and exploitation in a specific 
environment by yielding different grades of rewards.

DL represents a subset of ML that uses stacks of artificial 
neural networks (ANNs) processing layers to perform repre-
sentation learning on structured and unstructured raw data 
(Fig. 1) [62–64]. ANNs are inspired by the human brain, 
particularly the primary visual cortex, and are composed 
of interconnected linear units called neurons [62, 63]. As 
their biological counterpart, artificial neurons receive and 
process signals (using a non-linear activation function, 
mostly ReLU), activating (i.e., passing the information to 
subsequent units) based on the weighted sum of their inputs 
[65]. Artificial neurons have full pairwise connections with 
the following layers [65, 66]. Conversely, they are not con-
nected to neurons of the same layer [65, 66]. Passing through 
multiple, hidden ANN layers extracting and transforming 
lower-level features into higher-level features, the input 
information is interpreted [57, 63]. Therefore, ANNs can 
learn different intricate representations at different levels of 
abstraction [62].

Fig. 1  Deep-learning and convolutional neural network algorithm 
architecture. A Deep learning (DL) relies on multiple hidden layers of 
artificial neural networks (ANN), hence the name "deep". These lay-
ers are usually defined as "hidden" because they do not belong either 
to the input or output layer. The number of hidden layers determines 
the depth of a model. Their role is to capture patterns and features, 
transforming input data into other data forms usable by the subse-
quent layer of neurons. Indeed, each neuron contained in these lay-
ers relates to the formers. Information flows from layer to layer, mov-
ing from input to output, progressively increasing its complexity and 

abstractedness. B Convolutional neural networks (CNN) are the most 
common DL architecture used in image analysis. This architecture 
has two major components: convolutional and pooling layers. The 
former is the core building of a CNN and works by applying filters to 
the input data, generating an activation map. Pooling layers combine 
the outputs of the convolutional step, reducing the number of features 
extracted. These steps can be repeated multiple times. Usually, the 
last step is allocated to layers of artificial neural networks, which in 
turn generates the output. ANN artificial neural network, CNN Convo-
lutional neural network, DL deep learning
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CNNs are a specialized type of ANN architecture, work-
ing best on grid-like topology data, such as images and vid-
eos. Therefore, they are commonly used to analyze medical 
images [62, 63]. Three layers form the CNN: convolutional, 
pooling, and fully connected layers (Fig. 1) [67]. The convo-
lutional layer plays a vital role in CNNs by processing small 
regions of space of the input images using learnable filters, 
extracting local patterns and spatial relationships, and gen-
erating feature maps [67, 68]. Pooling layers down sample 
feature maps, preserving important information [68]. The 
output of the pooling layer is finally fed to fully connected 
layers of ANNs. A significant upgrade in CNNs came with 
the development of the so-called U-net and ResNet/VGGNet, 
which currently represent two of the most used algorithms 
for image analysis [65, 66]. U-net consists of a symmetric 
architecture, including a contracting and an expansive path, 
yielding a U-shaped appearance, and is largely employed 
for image segmentation [66, 69]. This architecture, devoid 
of any fully connected layers, relies only on convolutions 
[69], improving the spatial localization of image features 
and maintaining high performances in image classifica-
tion. ResNet and VGGNet are classically adopted in image 
classification tasks. VGGNet was developed to increase the 
CNN depth by applying small-size filters [66], while ResNet 
overcame the degradation problem encountered as the depth 
increased [70, 71]. A detailed description of these networks’ 
architecture is beyond the scope of this review. However, 
further details can be found in the review from Alzubaidi 
et al. [66].

AI performance assessment

Datasets, model fitting, and model performances are crucial 
notions to understand the complexities and nuances of ML, 
DL, and CNNs. The training dataset is used to build the 
model/algorithm, whereas the validation dataset serves to 
tune and improve the learning performance of the algorithm 
and the testing dataset to evaluate the model’s performance 
(Fig. 2, i.e., accuracy, precision, recall, etc.), respectively 
[61, 62]. It is not surprising that the size of the training 
dataset should be tailored to the underlying task, with more 
complex tasks requiring larger datasets. Larger training data-
sets also obviate false pattern recognition due to imbalances 
in variables (i.e., sex, age, smoking status, etc.) used to build 
the algorithm [58]. Training, validation, and testing datasets 
need to be independent, with no overlap. Further, to increase 
the algorithm’s generalizability, the testing dataset should, 
ideally, be external [61]. These steps help reduce overfitting, 
which refers to an algorithm working exceptionally well on 
the data (images) it was trained on (training dataset) but 
then fails to generalize adequately to new, unseen data (test-
ing dataset) [61]. 

Several performance metrics can be used to interpret the 
quality and accuracy of the results of AI algorithms. Accu-
racy evaluates the number of correct predictions within the 
whole dataset. Although useful, accuracy is generic and 
unable to disentangle the performance in different classes 
(i.e., sensitivity and specificity) [72]. The confusion matrix 
and the area under the receiver-operating curve improve 

Fig. 2  Steps required to create, validate, and commercialize an AI 
algorithm. AI algorithm/model creation always starts by identifying 
a research/clinical question, which dictates the starting dataset. Simi-
larly, the algorithm’s architecture is selected among those perform-
ing best according to the data type. Subsequently, the starting dataset 
is subdivided into separate datasets of different dimensions, naming 
training dataset, validation dataset, and test dataset. The latter does 
not need to be generated from the starting dataset. Indeed, it is pref-
erable to have an external test dataset. During the training step, the 
model analyzes the training dataset, deriving features that are tested 

against the ground truth. The identical process is performed on a sep-
arate dataset, the validation dataset. This validates the performances 
of the algorithm and fine-tunes it. Subsequently, the algorithm is 
tested on an additional separate dataset (the test dataset), and its final 
performances are evaluated. Valuable AI models are finally commer-
cialized. After commercialization, the algorithms learn continuously 
from real-world data. Also, the model can be re-trained to overcome 
some flaws encountered when dealing with a real-world scenario.AI 
artificial intelligence



958 The International Journal of Cardiovascular Imaging (2024) 40:951–966

the understanding of the performance of the classifier [72], 
while the F1-score evaluates the harmonic average between 
recall and precision rates [66]. Jaccard index and DICE 
similarity index are commonly used to grade image seg-
mentation, measuring the degree of proximity between two 
segmentations on a pixel-wise analysis [72, 73]. Their values 
always lie between 0 and 1, with the two extremes represent-
ing the lack of or the exact correspondence between the seg-
mentation generated by the algorithm and the ground truth 
[73]. Finally, signal-to-noise ratio (SNR), CNR, modulation 
transfer function, and noise power spectrum are commonly 
used to quantify the image quality. The mathematical formu-
las used to calculate these metrics are reported in Table 3.

Translating AI concepts into CACS

CAC detection and segmentation

CAC detection and segmentation strategies rely either on 
the intrinsic high density of calcified plaques or on the ana-
tomic location of coronary arteries (Fig. 3) [74]. While these 
approaches seem robust, the presence of high-density car-
diac (i.e., aortic and valvular calcification) and non-cardiac 
(i.e., lymph nodes, metal structures, noise, etc.) mediastinal 
structures, as well as the low coronary arteries-to-myocar-
dium contrast difference on non-contrast images, are inher-
ent difficulties encountered in automatic CAC segmenta-
tion algorithms creation [75, 76]. To date, the following 
approaches have been used in ECG-gated images:

•  Calcified plaque detection based on the localization of 
large structures (i.e., cardiac profile and the aortic root). 
This approach allowed either image co-registration with 

previously built atlases, deriving the expected location of 
coronary arteries [77], or isolating the heart by applying 
various subsequent segmentation steps. Subsequently, 
calcifications were identified on the segmented images 
by image thresholding or geometrical constraints locating 
coronary arteries’ origin [78, 79].

•  ML-based selection of imaging features correctly clas-
sifying the presence of CAC  [75, 76]. In this scenario, 
different approaches were explored, ranging from those 
necessitating user inputs [75, 80] to fully automatized 
ones [76]. At their core, these approaches rely on letting 
software grow regions of interest from which different 
features were derived. Features were further subdivided 
into intensity-based features (i.e., mean or maximum 
density), spatial features (i.e., the cartesian coordinates 
of the plaque), or geometrical features (i.e., the shape and 
size of the plaque) [81]. The best feature combination, 
enabling accurate CAC detection, was calculated by com-
bining and testing various models [75, 76, 80]. Interest-
ingly, lesion location and plaque highest density always 
led to the best model performances, whereas shape- and 
dimension-related features were consistently discharged 
[75, 76]. The results of these approaches varied consider-
ably, with a study reporting a calcification detection of 
~ 74% [76], while others had sensitivity and specificity 
values of 92–93% and 98–99%, respectively [75].

Table 3  Evaluation metrics

FN false negative, FP false positive, TN true negative, TP true posi-
tive, Sp sum of all positive ranked samples, np number of negative 
samples, np number of positive samples, |X| and |Y|: representing the 
X and Y segmentations, respectively; |X∩Y|: representing the inter-
section between X and Y

Metrics Formula

Accuracy TP+TN

TP+TN+FP+FN

Sensitivity (or recall) TP

TP+FN

Specificity TN

FP+TN

Precision TP

TP+TN

F1 score 2 ×
Precision×Recall

Precision+Recall

Area under the receiving operator S
p
−

np(nn+1)

2

n
p
n
n

Jaccard index |X∩Y|

|X|+|Y|+|X∩Y|

DICE score 2
|X∩Y|

|X|+|Y|

Fig. 3  Coronary artery calcium segmentation. Automatic detection, 
segmentation, and classification of coronary artery calcium in the left 
main (light green) and left anterior descending artery (purple blue) 
in an 80-year-old man with severe coronary artery calcification (i.e., 
Agatston score: 2187).
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•  ML-based derivation of imaging features obtained 
using coronary arteries-based atlases, created upon CT-
angiography images [74, 81, 82]. This method summed 
up the advantages of the formers using both lesion fea-
tures and atlases and yielded CAC detection sensitivity 
between 81 and 87%, while specificity varied between 
97% and 100% [82].

In non-gated CT images, the cardiac motion artifacts 
preclude the possibility of applying segmentation-based 
approaches [74]. Lessemann et al. overcame this shortcom-
ing by proposing a two-stage CNN approach [74]. The first 
CNN’s large receptive field applied image thresholding, 
categorizing all voxels exceeding 130 HU and subdivid-
ing them according to the presumed coronary artery they 
belonged to, while the second CNN’s smaller receptive field 
refined the results of the previous subdividing authentic cal-
cification from other high-density structures (false positive 
voxels) [74]. 

CACS quantification

Fully automated CACS algorithms offered high perfor-
mances on both ECG-gated and non-gated scans. In ECG-
gated images, the mean difference between manually and 
AI-calculated Agatston scores was − 2.86 to 3.24 [83] in 
older algorithms and 0.0 to 1.3 in more recent ones [84]. 
Additionally, experts-to-AI intraclass correlation coefficient 
(ICC) values ranging from 0.84 to 0.99 were reported by 
several authors [84–88], while the expert-to-expert ones 
were 0.84, 0.85, and 0.77 [84]. Interestingly, the availability 
of additional datasets rather than adopting multiple mod-
els (in the same dataset) improved the AI-based accuracy 
[89]. While these results already proved the potential of AI, 
the adoption of U-net++, an ameliorated version of U-net 
[90], reduced the CACS error from 5.5 to 0.48, indicating a 
bright future for this application [91]. On non-gated images, 
ICC values of 0.99 and 0.90 were reported using chest CT 
scans [92] and low-dose chest CT scans acquired for LC 
screening [93], respectively. Similarly, AI and expert CACS 
evaluation had a good correlation on Bland-Altmann plots 
using non-gated chest scans [94]. However, the agreement 
of risk categorization between AI and expert evaluation 
varied according to the test dataset used, being between 
k = 0.58 and k = 0.80 on routine chest CT using external 
datasets [83] and between k = 0.85 [93] and k = 0.91 [74] 
on low-dose chest CT using internal ones. Similarly, the 
agreement between risk categories based on ECG-gated and 
non-gated images ranked from k = 0.52 to 0.82, with lower 
values obtained with external datasets [83, 95]. This proves 
the important connection between the algorithm’s perfor-
mance and the dataset-specific characteristics (i.e., scanner, 
field-of-view, reconstruction filter, slice thickness, etc.) in 

non-gated images, resulting in a rapid performance degrada-
tion varying the input data [96]. In the study by Lessmann 
et al., the overall sensitivity of the algorithm, trained on 
soft reconstruction kernels only, decreased from 91 to 54% 
when applied to images reconstructed with a sharp kernel 
[74]. To overcome these issues, van Velzen et al. retrained 
their algorithm with a small additional set of representa-
tive data-specific examinations [96]. Supplementing the 
network with data-specific scans generated narrower confi-
dence intervals (CIs) on Bland-Altman plots, indicating an 
improved correlation between the Agatston values calculated 
by the software and the reference standard [96]. Further, the 
combined reliability of risk category assignment improved 
from k = 0.90 to 0.91 [96]. However, the amount of supple-
mentary data-specific scans needed to ensure optimal per-
formance is unknown. Besides these drawbacks, a recent 
study on 5,678 adults without known ASCVD transitioned 
AI usage from research into a clinical scenario by utilizing a 
DL-based algorithm to analyze CACS on non-gated images, 
showing that adults with DL-CACS ≥ 100 had an increased 
risk of death (adjusted hazard ratio: 1.51; 95% CI: 1.28 to 
1.79) compared to those with DL-CACS 0 [97]. A fascinat-
ing, additional perspective was provided by a cloud-based 
DL CACS evaluator showing high ICC value (0.88; 95% 
CI: 0.83 to 0.92) between ECG-gated and non-gated images 
derived from 18 F-fluorodeoxyglucose positron emission 
tomography (PET) [95]. Although these results were not 
replicated in a similar setting [98], cloud-based tools have 
the potential to broaden the users of AI-based CACS evalu-
ation beyond university and tertiary hospitals, helping to 
reach its full potential.

Total CACS is currently used by international guidelines 
to guide therapeutic decisions; however, it is worth noting 
that CAC is unevenly distributed, mostly located in the LAD 
or the right coronary artery [41]. However, as previously dis-
cussed, heavily calcified left main trunk or LAD correlates 
with a higher mortality risk [41, 42]. Therefore, detailing 
algorithm performances on a vessel-based level is of utter-
most importance but often overlooked or done by using dis-
similar metrics, as described in Table 4.

Computational time

Algorithm architecture, use of graphic processing unit, 
and the number of cores of the computer processing unit 
strongly impacted the computational time taken to quan-
tify CACS, generating heterogeneous results (mean com-
putational time: 3 min, range: 2 s to 10 min, Fig. 4) [74, 
81, 83–86, 96, 98–100]. Irrespective of the computational 
time, these results show that automatizing CACS calculation 
may reduce its costs and streamline the workflow of imaging 
departments. 
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Deep learning image reconstruction

The growing awareness of the potential risks associated 
with ionizing radiation usage forced CT manufacturers and 
the medical community to adopt low-dose protocols [101]. 
Low-dose images inherently exhibit higher image noise and 
artifacts than standard-dose images. Hence, in the last five 
years, vendors have introduced deep learning reconstruction 
(DLR) to address these problems [102, 103]. To date, three 
DLR methods have been developed: TrueFidelity, AiCE, and 
Precise Image. These algorithms differ based on the input 
data used in the training phase, the framework they were 
built on, and the ground truths adopted to compare their 
performances [102]. Inputs included raw data (sinograms), 
filtered back projections (FBP), or iterative reconstruction IR 
images (specifically model-based iterative reconstruction), 
while frameworks distinguished between direct and indirect. 
Direct frameworks generated DLR-optimized images in a 
single step by applying DL algorithms to sinograms (TrueFi-
delity and Precise Image). Indirect frameworks either gener-
ate DL-optimized sinograms before reconstructing images or 
optimize reconstructed images using DL algorithms (AiCE) 
[102]. A more comprehensive and detailed description of Ta
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Fig. 4  Computational time taken to quantify CACS according to dif-
ferent technical set-ups. The computational time taken to analyze the 
images was extremely heterogeneous between studies, varying from 
a few seconds (invisible cones) to approximately ten minutes. This 
heterogeneity was highly dependent on the computational approach 
used. However, most studies reported computational times lower than 
that taken by experts (red ring). The latter was based on the results by 
Eng et al. [83] CPU central processing unit, GPU graphics process-
ing unit, min minutes, sec seconds
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the strategies used to create DLR can be found in Koetzier 
et al. [102].

The use of DLR led to a reduction in image noise and a 
concomitant increase in SNR and CNR compared to FBP 
[104–106]. However, a phantom study using standard acqui-
sition parameters showed that, compared with other image 
reconstruction techniques, DLR failed to detect calcifica-
tions ≤ 1.2 mm [107]. While most studies showed Agatston 
scores being comparable throughout different reconstruc-
tion techniques, its values were reduced with increasing 
DLR strengths compared to FBP [104–106]. This trans-
lated into a downward reclassification of risk scores in 2 
to 8% of patients [104–107]. The sole study comparing 3 
mm FBP-reconstructed ECG-gated images to 1 mm, low-
dose, non-gated DLR-reconstructed images showed that the 
latter underestimated the CACS (94 ± 249 vs. 105 ± 249) 
and had 90% accuracy in classifying different risk classes 
(Fig. 5) [108]. These results prove that DLRs are a promis-
ing tool. However, their intrinsic tendency to down-quantify 
the Agatston score may profoundly impact treatment strate-
gies. Hence, their implementation in CACS evaluation needs 
additional studies or correction factors. 

Extracardiac findings

Although CACS images rely on a limited field-of-view, a 
holistic AI algorithm aiming to automatize CACS reporting 
should not overlook possible extracardiac findings. A sys-
tematic review including more than 11,000 patients undergo-
ing cardiac CT showed that 41% of them had extracardiac 
findings (ECFs) with an average prevalence of clinically 

significant ECFs of 16% [109]. Although these results may 
not be entirely transferable to patients undergoing CACS, 
they highlight the need for additional automated AI-based 
evaluation of ECFs. Suspicious lung nodules, hiatal hernia, 
emphysema, enlarged lymph nodes, and pleural effusion 
accounted for 63% of clinically significant ECFs [109] and 
are readily diagnosable on non-enhanced CT images. The 
sole study exploring the automated detection of CAC and 
solid lung nodules on low-dose CT images had ambiguous 
results [110]. The AI-to-expert agreement was excellent in 
discriminating between patients with CACS 0 and those with 
CACS > 0 (k = 0.85), whereas the performance of nodule 
detection was suboptimal (k = 0.42) [110]. These results 
prove that further research is needed to improve the perfor-
mance of AI algorithms in handling multiple inputs.

Conclusions

The discrepancies between the number of chest CT (~ 12,7 
million), PET/CT (~ 1,8 million), and ECG-gated CACS 
scans (~ 57,500) acquired in the United States [111] high-
light the potential to diagnose/refine the ASCVD risk in 
a wider population [112]. However, it also confirms the 
future additional diagnostic burden expected to impact the 
medical imagers community. In this context, AI may be a 
valuable tool to alleviate the workload, supporting every-
day routine. While this process is expected to transform 
medical imaging, it will likely not put imagers out of their 
job nor alter their professional identity or autonomy [11, 
113, 114]. Instead, it will enable them to profit from the 

Fig. 5  CAC detectability according to different image reconstruction 
algorithms. Coronary artery calcium detectability according to dif-
ferent image reconstruction algorithms in a 78-year-old hypertensive 
male. Two small calcifications were detectable on the filtered back 
projection image (dotted white arrowhead) along the course of the 
right coronary artery. However, the same calcifications (dotted white 
arrowhead) on the corresponding images, reconstructed using vari-

ous deep-learning strengths, were less evident. Specifically, using the 
highest deep-learning reconstruction strength (DLIR-H), the margins 
of the bigger calcification were more blurred, while the smaller clas-
sification became barely evident. The Agatston score reduced from 
691 to 688, 674, and 667, with FBP, DLIR-L, DLIR-M, and DLIR-H, 
respectively.CAC  coronary artery calcium, DLIR deep-learning image 
reconstruction, FBP filtered back projections
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human-to-AI relationship, benefiting from complemen-
tary strengths, ultimately fortifying the central role that 
imaging plays in modern medicine. Before this becomes a 
reality, additional steps must be taken into consideration. 
Automated CACS quantification needs to be a reliable, 
error-free, and easily implementable tool, irrespective of 
the computational power. An interesting perspective to 
further improve algorithms’ performances would be gath-
ering a highly curates, analyzed CACS dataset, includ-
ing scans acquired from different vendors, serving as the 
global benchmark to test algorithms. Additionally, testing 
fully trained algorithms on different datasets would ensure 
the reproducibility of the results. The effects of image fil-
ters and reconstruction on the algorithm’s performances 
should be clarified in detail. DLR could be retrained using 
ECG-gated, normal-dose scans, enabling the quantifica-
tion of the performance changes compared with non-
dedicated training. Finally, a holistic approach to image 
analysis should be regarded as the ultimate goal, including 
the evaluation of extracardiac findings, bone density, and 
anemia detection, quantifying blood density [115], ensur-
ing to derive the most from a single scan.
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