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Future projections 
of temperature‑related indices 
in Prince Edward Island using 
ensemble average of three CMIP6 
models
Junaid Maqsood 1, Xiuquan Wang 2,3*, Aitazaz A. Farooque 2,3,4 & Rana Ali Nawaz 2,4

Prince Edward Island (PEI) is an agricultural province heavily relying on rainfed agriculture. The 
island has already experienced significant impacts from climate change. Accurate projections of PEI 
temperature extreme indices are required to mitigate and adapt to the changing climate conditions. 
This study aims to develop ensemble projections using Coupled Model Intercomparison Project 
Phase 6 (CMIP6) global circulation models (GCMs) to analyze temperature extremes on PEI. In this 
study, the ECMWF ERA5 reanalysis dataset was chosen for stepwise cluster analysis (SCA) due to 
its high accuracy. Three CMIP6 (NorESM2‑MM, MPI‑ESM1.2‑HR, and CanESM5) GCMs, along with 
their ensemble average, were utilized in the SCA model to project future changes in daily maximum 
temperature (Tmax) and minimum temperature (Tmin) at four meteorological stations on PEI (East 
Point, Charlottetown, Summerside, and North Cape) under two shared socioeconomic pathways 
(SSP2‑4.5 and SSP5‑8.5). These GCMs were selected based on their low, medium, and high Equilibrium 
Climate Sensitivity. The bias‑corrected results for the future period of Tmax and Tmin showed that 
the GCM‑specific changes in the ECS also impact the regional scale. Additionally, several temperature 
extreme indices, including the daily temperature range (DTR), summer days (SU), growing degree 
days (GDD), growing season length (GSL), ice days (ID), and frost days (FD), were analyzed for two 
future periods: FP1(202–2050) and FP2 (2051–2075). The results indicate that DTR, SU, GDD, and GSL 
are expected to increase, while ID and FD are projected to decrease during FP1 and FP2 under both 
scenarios. The future projected mean monthly changes in Tmax, Tmin, and the selected temperature 
extreme indices highlight warmer future periods and an increase in agriculture‑related indices such 
as GDD and GSL. Specifically, July, August, and September are expected to experience even higher 
temperatures in the future. As the climate becomes warmer, cold extreme events are projected to be 
shorter in duration but more intense in terms of their impact. The largest increments/decrements for 
Tmax, Tmin, and their relevant indices were observed during FP2 under SSP5‑8.5. The outcomes of 
this study provide valuable insights for agricultural development, water resource management, and 
the formulation of effective mitigation strategies to address the impacts of climate change on PEI.

The future can witness fluctuations in the intensity and frequency of extreme climatic events, as evidenced by 
the global average surface temperature of 2011–2020, which surpassed 0.2–1 °C compared to the average tem-
perature recorded from 1850 to  19001. The rise in atmospheric greenhouse gases is primarily responsible for the 
temperature increase and global warming  phenomenon2. The shift in the pattern of climatic parameters has also 
been observed in  Canada3, including Prince Edward Island (PEI),  Canada4. Global climate variability has signifi-
cantly affected various aspects of life, such as agriculture, water resources, and food  security5,6. Consequently, it 
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becomes essential to thoroughly investigate and comprehend future climate variability at a site-specific scale to 
adapt to and mitigate these changes.

Reliable information on possible changes in future climate is vital for planning sustainable development. 
In this regard, global circulation models (GCMs) are considered valuable tools for identifying historical and 
projected climate variations, and their outcomes have been extensively employed for various purposes. The first 
phase of CMIP started 20 years ago under the guidance of the World Climate Research Program Working Group 
on Paired Models. Over its six phases (CMIP6), CMIP has played a crucial role in developing and evaluating 
models that progressively offer comprehensive representations of the climate  system7. CMIP6 was developed by 
integrating common socioeconomic trajectories with trajectories that represent greenhouse gas concentrations. 
This integration allows for examining the feedback between climate change and socioeconomic factors, including 
global population growth, economic development, and technological  advancements8. The shared socioeconomic 
pathway (SSP) covers various economic and social  domains9. The CMIP6 covers a wide range of updated models 
and eliminates some of the limitations and uncertainties of CMIP5. The CMIP6 launch has led to extensive stud-
ies on the comparative evaluation of CMIP6 and CMIP5 models in simulating temperature and precipitation 
extremes. Hamed et al.10 compare the CMIP6 and CMIP5 models to simulate the precipitation and temperature 
in Egypt. Their results revealed that CMIP6 models better replicated the historical Tmax, Tmin, and precipitation, 
and CMIP5 models exhibited a higher bias than CMIP6. Zhou et al.11 also compared the CMIP6 and CMIP5 
models to project the surface air temperature of the Tibetan Plateau. They found less uncertainty in the CMIP6 
results compared to CMIP5. The future projection results of the CMIP5 model (CanESM2) for Tmax and Tmin 
showed that the increments in these climatic parameters for the growing season in PEI are expected 0.72–5.37 °C 
and 0.87–5.91 °C, respectively, irrespective of the  RCPs4. So, there is a need to analyze the performance of CMIP6 
models for future periods of PEI.

However, the outputs of GCMs frequently exhibit limitations in terms of temporal and spatial resolution, 
leading to systematic biases and increased uncertainties in projected climate variables. To address these chal-
lenges, utilizing multiple-model ensembles (MME) of GCM models is common practice, allowing for a more 
comprehensive assessment of the projected climate  conditions12,13. Comparison studies also indicated that CMIP6 
models performed better regarding MME than CMIP5  models14,15. GCMs are globally used to simulate climatic 
variables but cannot be directly used due to coarse spatial  resolution16. Therefore, downscaling techniques are 
necessary to enhance the resolution of these model outputs and align them with local scales. Statistical and 
dynamic downscaling methods have been developed to achieve this  transformation17,18. In dynamic downscal-
ing, GCMs simulate regional climate models locally by incorporating detailed physical processes and boundary 
 conditions19. This technique can provide higher spatial resolution based on coarse-scale GCM outputs, but it 
requires substantial data and computational resources, which may exceed the scope of many studies. On the other 
hand, a statistical relationship is established between observed climate variables and GCM outputs to develop 
predictand-predictor  relationships20. The statistical downscaling also has high accuracy in downscaling the tem-
perature  data4. This approach offers advantages in terms of computational efficiency and accuracy compared to 
dynamic downscaling. During statistical downscaling, calibration or training periods aim to replicate historical 
regional climatic parameters. This Statistical downscaling technique is widely adopted due to its simplicity and 
lower computational requirements than dynamic downscaling methods.

In statistical downscaling, climate science researchers have widely used reanalysis data to downscale coarse-
resolution GCM data to regional  scales21. These datasets are prepared using the spectral statistical interpolation 
method, which incorporates various sources such as national archives, meteorological observation stations, ship 
and aircraft observations, satellite data, and weather forecasting  models22. Selecting the appropriate reanalysis 
dataset is crucial for obtaining accurate outputs of current and future rainfall and temperature variables in 
regions affected by climate change. Nacar et al.23 compared the performance of downscaling models with three 
different reanalysis datasets (NCEP/NCAR, ERA-Interim, and ERA5), and it was revealed that the simulated 
values by ERA5 models were in closer agreement with the observed climatic. This conclusion was drawn based 
on the lower RMSE values obtained from the ERA5 models compared to those from NCEP and ERA-Interim. 
The RMSE values observed across all 36 selected stations in this study varied between 0.35 and 0.79. Furthermore, 
recent downscaling studies have also utilized the ERA5 and NCEP-DOE reanalysis 2  datasets24,25. However, the 
studies comparing these updated reanalysis datasets are limited.

Numerous statistical downscaling methods exist, but the relationship between large-scale and small-scale 
climatic parameters can be discrete and highly non-linear. Conventional statistical downscaling methods assume 
explicit functional expressions, which may not be suitable in such cases. Consequently, there is a need for more 
effective approaches to address this complexity. Stepwise cluster analysis (SCA) is one of those approaches that 
can handle discrete or continuous, linear, or non-linear variables without relying on a predefined functional 
relationship. SCA is a multivariate automatic interaction detection algorithm initially developed by  Huang26 for 
air quality modeling. Due to the superior performance of SCA, it has applications in various domains, includ-
ing groundwater modeling, air quality management, and climate  modeling27–29. Therefore, in this study, SCA is 
utilized for the statistical downscaling of temperature at various PEI stations. Zhai et al.30 also observed the high 
accuracy of the SCA model with MME outputs to downscale and future projects the Tmax, Tmin, and Tmean in 
Ottawa, Canada. After downscaling, the uncertainties present in the model’s simulated results can be removed 
using different bias correction methods. Different comparison studies showed that the quantile delta mapping 
method performs well in removing the biases from the model simulated results compared to the other methods, 
such as the delta method, quantile mapping, linear scaling, and scaled distribution  mapping31,32.

Therefore, this research aims to develop a stepwise clustered downscaling model to help investigate the 
plausible changes in Tmax and Tmin in PEI. The main aim of this paper is to (i) evaluate reanalysis datasets 
(NCEP-DOE Reanalysis 2 and ECMWF ERA5) that can complement the observed dataset, (ii) three GCMs 
(i.e., NorESM2-MM, MPI-ESM1.2-HR, and CanESM5) and their ensemble average data under two Share 
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Socioeconomic Pathways (i.e., SSP2-4.5 and SSP5-8.5) were statistically downscaled through the SCA tech-
nique to examine the future trends of projected temperature, (iii) calculate the temperature based indices Daily 
Temperature Range (DTR), Frost Days (FD), Ice Days (ID), Summer Days (SU), Growing Degree Days (GDD), 
and Growing Season Length (GSL), iv) calculate the magnitudes of expected changes in the Tmax and Tmin and 
their relevant selected indices during observed and two future periods: FP1 (2026–2050) and FP2 (2051–2075). 
The results from this research can consequently help policymakers and farmers explore the possible adaptation 
plans against the changing climate in PEI.

Materials and methods
Study area
The study area chosen for this research is Prince Edward Island (PEI), the smallest province of Atlantic Canada 
in terms of land and population. This island is located 46–47°N and 62–64°W in the Gulf of Saint Lawrence. The 
island’s climate is mild, mainly influenced by the surrounding warm water of the Gulf of Lawrence. This region is 
highly vulnerable to climate change due to low-laying topography and extensive coastline. During summer, the 
temperature ranges from 20 to 34 °C, while in winter, temperatures drop to − 11 to − 3 °C33. July and August are 
PEI’s warmest and driest  months34. It was also observed that the PEI average of daily mean temperature, mean 
daily minimum temperature and continuous dry days significantly increased by 0.77 °C, 1.17 °C, and 3.33 days, 
respectively, for the past three decades. For the same period, decreasing trends were observed of − 1.01 °C, − 3.7
5 days, − 5.67 days, − 11.40 nights, and − 2.00 days for daily temperature range, frost days, cold days, cold nights, 
and warmest day,  respectively6. Farming is the backbone of the PEI economy, with nearly half of its total land 
area, 240,514 out of 566,560 hectares, used for  agriculture35. The agriculture sector of PEI also faces numerous 
challenges due to climate change, mainly because a significant portion of the agricultural land relies on rainfall for 
 irrigation6. To assist farmers and policymakers, it is essential to project the future climate extremes of the island.

Datasets
Four meteorological stations, namely East Point (46.43°N, − 62.68°W), Charlottetown (46.29°N, − 63.13°W), 
Summerside (46.44°N, − 63.83°W), and North Cape (46.85°N, − 64.02°W), were strategically selected based on 
their random distribution across the island, extensive data availability, and high data quality. The daily observed 
data of Tmax and Tmin for the historical period (1989–2014) of four meteorological stations located throughout 
the PEI (Fig. 1) were acquired from Environment  Canada36. The data was missing around 0.41% at East Point, 
0.65% at Charlottetown, 9.7% at Summerside, and 1.17% at North Cape. To estimate all these missing values, 
the linear regression model utilized data from the neighboring meteorological station that has a high degree of 
similarity with the selected station’s data  (R2 > 90.0). This approach ensured that all the estimated values aligned 
closely with the observed data.

In this study, two reanalysis datasets, the National Centers for Environmental Prediction-Department of 
Energy (NCEP-DOE) Atmospheric Model Intercomparison Project (AMIP)-II Reanalysis (also called NCEP-
DOE Reanalysis 2)37 as well as European Centre for Medium-Range Weather Forecasts (ECMWF) Atmospheric 
Reanalysis Fifth Generation (ERA5)38, were utilized to calibrate and validate the downscaling model (Table 1). 
NCEP-DOE Reanalysis 2 represents an enhanced version of the NCEP analysis, which rectifies errors and incor-
porates updated parameterizations of physical processes. This improved version addresses the previous limita-
tions and provides more accurate and reliable  results39. ERA5, a successor to ERA-Interim reanalysis, employs 
advanced modeling and data assimilation systems to merge extensive historical observations into comprehensive 
global  estimates40. These reanalysis datasets were chosen over the predictors of the Global Circulation Models 
(GCMs) due to their high level of correctness and accuracy. Three GCMs from the Coupled Model Intercompari-
son Project Phase 6 (CMIP6) were employed in this study (Table 1) to examine the future variations (2015–2100) 
of Tmax and Tmin under two Shared Socioeconomic Pathways (SSP2-4.5 and SSP5-8.5). These GCMs include 
Norwegian Earth System Model version 2 (NorESM2-MM), Max Planck Institute for Meteorology Earth System 
Model version 1.2 (MPI-ESM1.2-HR), and Canadian Earth System Model version 5 (CanESM5) (Table 1). These 
GCMs were selected based on their different Equilibrium Climate sensitivity (ECS) values. The NorESM2-MM 
possesses a low ECS, MPI-ESM1.2-HR exhibits medium ECS, and CanESM5 has a high ECS value (Table 1). 
All these GCMs are the current and updated versions like NorESM2-MM is the latest version of NorESM1, 
MPI-ESM1.2-HR is an updated version of MPI-ESM, and CanESM5 is the current version of CanESM2. Hence, 
the most recent and updated reanalysis datasets and GCMs were utilized in this study to minimize any error or 
uncertainty. The future projection considers different Shared Socioeconomic Pathways (SSPs), including SSP1-
2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5, as defined by CMIP6. However, the current study focuses solely on two 
SSPs: SSP2-4.5, which represents the middle-of-the-road scenario, and SSP5-8.5, which depicts the fossil-fueled 
development pathways. These selected emission scenarios align with the corresponding global Representative 
Concentration  Pathways7. The r1i1p1f1 variant of each GCM was used in this study. Both reanalysis and GCMs 
datasets were acquired from the Canadian climate data and scenarios  website41, which provides a grid-based 
dataset. The whole island is encompassed by two grids (106X_49Y and 107X_49Y), each has a native CanESM5 
grid resolution of 2.8125° × 2.8125° (312.47 × 312.47 km). To ensure consistency and better comparison, all other 
datasets (reanalysis and GCMs) were interpolated using the Spherical Harmonics Interpolation method to match 
the CanESM2 grid resolution. This interpolation method transforms data from a fixed grid to a Gaussian grid 
on the sphere’s surface. The f2gsh_Wrap (fixed to Gaussian grid spherical harmonic wrapper) tool within NCL 
(NCAR Command Language) was used to perform this interpolation.
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Methodology
The Stepwise Cluster Analysis (SCA) technique was employed in this study to downscale and future project the 
Tmax and Tmin for four selected meteorological stations in PEI. The research methodology involved the follow-
ing steps: (i) screening of the predictors, (ii) comparison of reanalysis datasets and model validation, (iii) bias 
correction, (iv) projection of Tmax and Tmin, (v) Calculate temperature extreme indices and their trends for the 
baseline period (1989–2014) and two future periods: FP1 (2026–2050) and FP2 (2051–2075).

Screening of predictors
The screening of reanalysis predictors plays a vital role in statistical downscaling methods, as these carefully 
selected predictors significantly impact the output of the models. This step holds utmost importance and is 
considered crucial in the overall process. First, the reanalysis dataset was extracted for the same period as the 

Figure 1.  Geographical map showing the study area and four selected meteorological stations within Prince 
Edward Island, Canada. The map was generated using ArcMap 10.7.1 (https:// www. esri. com).

Table 1.  List of Global Circulation Models (GCMs) and reanalysis datasets, their institute, resolution, 
Equilibrium Climate Sensitivity (ECS) values, variant label, Shared Socioeconomic Pathways (SSPs), and 
period used in this study. Reanalysis datasets do not have a variant ID and ECS value and are available only for 
historical periods; therefore, multiple columns are marked as not applicable (N/A).

Data Reanalysis dataset & model Institute ECS (°K) Resolution Variant label SSPs Period

Reanalysis dataset
NCEP-DOE Reanalysis 2 National Centre for Environ-

mental Prediction N/a 312.47 × 312.47 km N/A N/A 1989–2014

ECMWF ERA5 European Centre for Medium-
Range Weather Forecasts N/a 312.47 × 312.47 km N/A N/A 1989–2014

Global circulation model

NorESM2-MM Norwegian Earth System Model 2.5 312.47 × 312.47 km r1i1p1f1 SSP2-4.5, SSP5-8.5 2015–2100

MPI-ESM1.2-HR Max Planck Institute Earth 
System Model 3.0 312.47 × 312.47 km r1i1p1f1 SSP2-4.5, SSP5-8.5 2015–2100

CanESM5 Canadian Earth System Model 
version 5 5.6 312.47 × 312.47 km r1i1p1f1 SSP2-4.5, SSP5-8.5 2015–2100

https://www.esri.com
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observed dataset (1989–2014) for a better correlation between these datasets. Then, predictors were assessed by 
following the steps used by Maqsood et al.42, where a combination of statistical measures correlation, partial cor-
relation, and p-value were used to evaluate the relationship between the observed data and reanalysis predictors. 
These steps help to identify the most relevant predictors of the targeted variables. This screening approach aimed 
to enhance the accuracy and reliability of the downscaling results by focusing on the predictors that demonstrated 
the strongest correlations and statistical significance.

Stepwise cluster analysis
Stepwise Cluster Analysis (SCA) is employed in this study to downscale the Tmax and Tmin. It is an R-package 
developed by Wang et al.28 and used to perform this modeling. Being a multivariate statistical model, SCA 
creates a statistical relationship between local surface variables (predictands) and large-scale atmospheric vari-
ables (predictors) by grouping pairs of predictors and predictands into clusters without assuming functional 
relationships. This grouping process involves iterative cutting and merging actions, where clusters are initially 
separated into smaller clusters, and then similar small clusters are merged. So, the core principle of SCA is based 
on a series of cutting and merging operations to divide clusters (sample sets) containing multiple related and 
independent variables into indivisible  subclusters28. The SCA algorithm is based on the multivariate analysis 
of variance (MANOVA) theory, which helps identify differences between two sets of dependent variables. The 
process involves dividing the original dependent variable set into unrelated subsets based on specific criteria. A 
cluster tree is generated by rejecting further cutting or merging hypotheses (final model), which represents the 
complex relationship (e.g., non-functional, nonlinear) between independent and dependent variables. The values 
of independent variables serve as references to determine the cluster/leaf that a sample from the original set 
will be assigned. Using the obtained clustering tree, predictions can be made for new input data to estimate the 
corresponding output. Thus, the SCA is based on a classification approach, where the Wilks statistic and F-test 
serve as classification criteria. Instead of relying on a specific function, the cluster tree reflects the relationship 
between climate outputs and actual observations.

Bias correction
Certain biases exist in the model’s output, which can be addressed using bias correction methods. These uncer-
tainties arise in the results of models due to insufficient calibration, lack of observed data, and the complexity 
of the climatic system Balov and  Altunkaynak43. Bias correction methods are employed to remove the biases 
and improve the accuracy of the model’s generated results for the historical and future periods. These methods 
estimate the bias factor by comparing the observed and model-simulated results of the baseline period and then 
utilize that factor to remove the biases in model-simulated and future projected data. This study utilized the 
quantile delta mapping (QDM) method to remove the biases. This method maintains the quantile changes and is 
equivalent to the equidistant and equation forms of quantile mapping. The model projection undergoes quantile 
detrending initially, and the simulated value is then bias-corrected using quantile mapping. The transfer func-
tion for this correction is constructed during the calibration period. Finally, the projected absolute changes (for 
temperature) in quantiles are added to the bias-corrected model outputs to yield the final results.

The calculation is based on the Python language package ‘cmethods’, https:// github. com/ btsch wertf eger/ 
python- cmeth ods. git, which implemented the equations of Tong et al.31.

Temperature extreme indices and their trends analysis
Six temperature extreme indices defined by the Expert Team on Climate Change Detection and Indices (ETC-
CDI) were calculated for the baseline and two future periods (FP1 and FP2). The details of these selected indices 
are given in Table 2. These calculations were performed using ClimPACT2 software developed by Alexander and 
 Herold44. This software incorporates several data quality control processes to ensure the accuracy and reliability 
of the calculated  indices4. The minimum errors were found in the data and eliminated before computing the 
indices by taking appropriate steps.

The selected six temperature indices are crucial in agricultural decision-making, crop selection, and resource 
management. The Growing Degree Days (GDD) and Growing Season Length (GSL) indices are commonly used 
in agriculture and climatology to assess the suitability of a region for various crops and to understand the length 
of the growing season. GDD measures accumulated heat units over a specific period, usually from the begin-
ning of the growing season to a specific threshold  temperature45. GSL determines the length of time available 

Table 2.  Description of temperature extreme indices used in this study. Tmax Daily maximum temperature, 
Tmin Daily minimum temperature, Tmean Daily minimum temperature.

Index ID Index name Definition Unit

SU Summer days Number of days when Tmax > 25 °C Days

ID Ice days Number of days when Tmax < 0 °C Days

FD Frost days Number of days when Tmin < 0 °C Days

DTR Daily temperature range Tmax–Tmin °C

GSL Growing season length Annual number of days between the first occurrence of 6 consecutive days with Tmean > 5 °C and the first occurrence of 6 
consecutive days with Tmean < 5 °C Days

GDD Growing degree days A measure of heat accumulation to predict plant and animal developmental rates Degree/days

https://github.com/btschwertfeger/python-cmethods.git
https://github.com/btschwertfeger/python-cmethods.git
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for planting, growth, and harvesting of crops. Frost days (FD) is a crucial index for understanding the potential 
risks and planning necessary measures to protect crops from cold temperatures. Frost days can damage crops, 
which results in a reduction in agricultural  production46. Daily temperature range (DTR) provides insights into 
temperature fluctuations and variations that crops may experience during their growth  cycle47. Ice days (ID) are 
decreasing, while summer days (SU) are increasing throughout  Canada48. These indices can also provide valuable 
guidance in planting and harvesting crops.

The Modifiedmk R-package was used to calculate trends in selected  indices49. This package is a modified ver-
sion of the Man-Kendall test designed to analyze the non-random data influenced by autocorrelation. This test 
first examines the data for autocorrelation; if present, it employs a prewhitening technique proposed by  Hamed50. 
This technique simultaneously estimates the slope and lag-1 serial correlation coefficient, correcting the latter 
for bias before prewhitening. After prewhitening, the test utilized the Man-Kendall test to identify increasing or 
decreasing trends and calculates changes per year using Sen’s slope test. This test determined the direction of the 
trends, enabling us to accurately assess changes over time and their statistical significance.

Statistical evaluators
To evaluate the stepwise cluster analysis downscaling method and evaluate the bias correction method, four 
statistical parameters (R-square  (R2), Nash–Sutcliffe model efficiency coefficient (NSE), root mean square error 
(RMSE), and mean absolute error (MAE)) were selected.

The  R2 is mainly used to measure the model’s goodness-of-fit and strength of the relationship between simu-
lated and observed values. A value close to “0” indicates a low or no relationship, while values close to “1” show 
a strong relationship between simulated and observed values.

It is important to note that relying solely on the  R2 value does not comprehensively evaluate the model’s per-
formance. Therefore, this study also incorporates other statistical indicators, namely NSE and RMSE, to achieve 
a more comprehensive assessment. The NSE is used to evaluate how effectively a model captures the observed 
variation and performs in comparison to the mean of the observed values. The NSE coefficient has a range from 
negative infinity to 1, and a value closure to 1 represents the best-performing model.

The RMSE is an error index that measures the average magnitude of the error between simulated and observed 
values. A smaller RMSE value closure to “0” indicates the best performance of the model.

The MAE tells how big an error we can expect from the measurement by averaging the amount of errors 
present in the measurements.

where, Yobs
i

andY
sim
i

 are the actual and simulated values at the ith time, respectively. i ranges from 1 to N with N 
being the total number of values. Ymean represents the mean value of the Yi . The performance of the reanalysis 
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(R_1 = 0.95) with observed data. It was the first screened predictor. The following steps were followed to find 
the next predictor.

4. In the next step, find the correlation (R_2) between selected 12 predictors and eliminate those predictors 
that had high correlation (R_2 > 0.5) with super predictor (temp) to minimize the multicollinearity. In the 
following example, the red-colored predictors were eliminated as they have a high correlation (R_2 > 0.5) 
with the super predictor (temp).

5.  Calculate the p.r and p-value for the remaining predictors (p5_f, p1_v, p5_u, p5_z, p1_zh, and p8_v).
6.  Eliminate the predictors that have a p-value > 0.05. In the bottom example, all the predictors used in step-5 

were retained to calculate the PRP, as all the predictors have p-values less than 0.05.

Predictors PRP
temp  

p5_f -0.56

p1_v -0.35

p5_u -0.88

p5_z 0.02
P1_zh -0.05

p8_v -2.56

Predictors R_1
(%)

temp 0.95
shum 0.89

p500 0.82

s850 0.79

s500 0.54

p850 0.53

p5_f -0.36

p1_v 0.33

p5_u -0.29

p5_z -0.27

P1_zh -0.26

p8_v 0.17

Predictors R_2
(%)

temp
shum 0.92

p500 0.83

s850 0.78

s500 0.54

p850 0.54

p5_f -0.30

p1_v 0.33

p5_u -0.24

p5_z -0.27

P1_zh -0.26

p8_v 0.20

Predictors p.r p-value
temp    

p5_f -0.16 0.00

p1_v 0.34 0.00

p5_u -0.03 0.00

p5_z -0.17 0.00

P1_zh -0.25 0.00

p8_v -0.27 0.00

Reanalysis datasets (NCEP-DOE-2 and ECMWF ERA5)

(1979-2014)

1. Extract for the length of the observed

period (1989-2014)

2. Correlation and select the highly correlated predictors

6. Eliminate the predictors with p-value > 0.05

4. Minimize the multicollinearity

5. Calculate the p.r and p-value for the

remaining predictors

Observed datasets (Tmax and Tmin)

(1989-2014)

3. Super predictor

temp (R_1 = 0.95)

7. Calculate PRP

8. Select the second predictor

Figure 2.  Schematic diagram for screening of predictors. In this diagram, the red font shows the eliminated 
predictors and the blue font shows the selected predictor.
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7.  The percentage of reduction in partial correlation to the correlation coefficient (PRP) was used to find the 
second most appropriate atmospheric predictor.

8.  The predictor with low PRP was selected as a second predictor. 
  P5_z was selected as it had the lowest PRP value (0.02) among all other predictors.

For the Tmax variable, the temp (mean temperature at 2 m) and p500 (500 hpa geopotential height) predic-
tors from both reanalysis datasets (NCEP-DOE Reanalysis 2 and ECMWF ERA5) underwent screening. In the 
case of Tmin, the temp (mean temperature at 2 m) and p5z (500 hpa vorticity) predictors were selected. The 
temp predictor was observed as the super predictor for both Tmax and Tmin variables. These findings align with 
similar observations made in other studies, which further reinforce the significance of these super predictors in 
temperature  modeling42,51.

Model’s evaluation and comparison of reanalysis datasets
To evaluate the SCA model, the baseline period (1989–2014) was divided into 70% (1989–2006) for calibration 
and 30% (2007–2014) for validation. The screened predictors were employed during the calibration and valida-
tion period. The performance of the SCA model in downscaling Tmax and Tmin was found to be satisfactory. 
The simulated results demonstrated a strong correlation  (R2 > 0.86) with the observed data at all four stations for 
both reanalysis datasets (Figs. 3 and 4). Lu et al.52 also utilized the SCA model to downscale Tmax and Tmin and 
reported similarly favorable results. Their study revealed a strong performance of the SCA model  (R2 > 0.84) in 
downscaling these climatic predictors. The downscaling performance of the ECMWF ERA5 and NCEP-DOE 
Reanalysis 2 datasets for Tmax and Tmin was also accessed. The  R2 values are almost the same at all the stations 
for both reanalysis datasets. However, the ECMWF ERA5 performed better than the NCEP-DOE Reanalysis 2 
in terms of NSE and RMSE values. The NSE values for ECMWF were slightly higher at most stations and had 
fewer errors (RMSE) at all the stations from 2.84 to 3.80 °C compared to the NCEP-DOE Reanalysis 2, which 
has an error range from 3.28 to 3.82 °C (Fig. 3). The monthly anomalies using NCEP-DOE Reanalysis 2 datasets 
overestimate the Tmax most of the time, while the anomalies using ECMWF ERA5 simulated time series for 
both Tmax and Tmin have better agreement with the observed data, as illustrated in Figs. 3 and 4.

For Tmin, the  R2 and NSE values were slightly higher (0.1–0.2) for ECMWF ERA5 as compared to the NCEP-
DOE Reanalysis 2. Additionally, NCEP-DOE Reanalysis 2 had higher errors ranging from 2.80 to 3.69 °C, while 
ECMWF ERA5 had errors ranging from 2.76 to 3.62 °C (Fig. 4). De Lima et al.53 also compared the previous 
versions of these reanalysis datasets (ERA/Interim ECMWF, NCEP/NCAR, and CFSR) to downscale the Tmax 
and Tmin and observed better results for ERA/Interim ECMWF and found more errors for NCEP/NCAR. The 
comparison of reanalysis datasets in downscaling the Tmax and Tmin indicates that ECMWF ERA5 performed 
slightly better than NCEP-DOE Reanalysis 2 as it includes the latest features and systems, has a high temporal 
resolution, and more consistent sea surface  temperature41. Therefore, ECMWF ERA5 was further used to down-
scale the historical and future projects of the Tmax and Tmin.

The ECMWF ERA5-based model was utilized first to downscale the Tmax and Tmin for the historical period 
using three CMIP6 GCMs (NorESM2-MM, MPI-ESM-1.2-HR, and CanESM5) separately to check their histori-
cal performance. Both the Tmax and Tmin results of the CanESM5 were not satisfactory as they showed more 
inconsistency  (R2 varied from 0.70 to 0.85, with high error values RMSE 3.69–4.98 °C and MAE 3.05–3.96 °C) 
with the observed data compared to the NorESM2-MM and MPI-ESM-1.2-HR (Table 3). Due to its high ECS 
value, it overestimated the Tmax and Tmin at all the stations (Fig. 5). The QDM method was utilized to remove 
these biases from the GCM-simulated Tmax and Tmin at all the stations for the historical period. The QDM 
method performs well in removing biases as after the bias correction, the correlation of GCM-simulated Tmax 
and Tmin increased from 0.92 to 0.95 at all the stations. The QDM method also improved the other statisti-
cal parameter values for the simulated results of Tmax and Tmin, such as RMSE values falling between 2.11 
and 2.60 °C and MAE values from 1.60 to 1.93 °C (Table 3). This bias correction method mostly improves the 
CanESM5 results as it had more inconsistency with the observed data. While others already had a better correla-
tion with the observed, so it improved a little for them (Fig. 5) (Table 3). Overall, the QDM method resulted in 
satisfactory results, reducing the biases between observed and simulated daily Tmax and Tmin.

Future projection and ensembling of global circulation models
The screened ECMWF ERA5 predictors were utilized in the SCA model to perform downscaling and projections 
of the Tmax and Tmin using three CMIP6 GCMs (NorESM2-MM, MPI-ESM-1.2-HR, and CanESM5) separately 
and by taking the ensemble average of these GCMs at all the selected stations. These results were tuned first 
by utilizing the already built QDM method for each station, which helps to remove any biases present in the 
projected results (Figs. 6 and 7). Our analysis focused on two specific Shared Socioeconomic Pathways (SSPs): 
SSP2-4.5 and SSP5-8.5, representing different future scenarios. The future projections for Tmax exhibit varia-
tions across different models. Specifically, for the NorESM2-MM model, the average annual Tmax is expected 
to vary from 7.86 to 15.62 °C under SSP2-4.5 and 7.91 to 17.58 °C under SSP5-8.5 at all the stations. For the 
MPI-ESM-1.2-HR model, the projected average Tmax ranges from 7.19 to 15.81 °C under SSP2-4.5 and 7.32 to 
18.69 °C under SSP5-8.5. The CanESM5 model suggests an average annual Tmax range of 8.55 to 18.08 °C under 
SSP2-4.5 and 9.33 to 22.08 °C under SSP5-8.5 at all the selected stations. Lastly, when considering the ensemble 
average of these GCMs, the projected average annual Tmax ranges from 15.09 to 16.20 °C under SSP2-4.5 and 

PRP =

p · r− R_1

R_1
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from 17.45 to 19.14 °C under SSP5-8.5 at all the selected stations. The projected average annual Tmax values 
vary slightly across different stations (Fig. 6). So, the projected average annual Tmax using the ensemble average 
of these GCMs at East Point ranges from 8.90 to 15.09 °C under SSP2-4.5 and 8.24 to 17.45 °C under SSP5-8.5. 
In Charlottetown, the projected average annual Tmax ranges from 9.56 to 16.20 °C under SSP2-4.5 and 8.78 
to 19.15 °C under SSP5-8.5. Moving to Summerside, the projected average annual Tmax ranges from 9.77 to 
15.66 °C under SSP2-4.5 and 9.36 to 18.44 °C under SSP5-8.5. Finally, at North Cape, the projected average 
annual Tmax ranges from 9.33 to 16.02 °C under SSP2-4.5 and from 9.42 to 19.17 °C under SSP5-8.5 (Fig. 6). 
The maximum values were observed under SSP5-8.5.

Like Tmax, the future projections for average annual Tmin also display variations, particularly maximum vari-
ation under SSP5-8.5 as depicted in Fig. 7. The future projections for average annual Tmin also exhibit variations 
across different models. The average annual Tmin is expected to vary from − 0.36–8.50 °C for the NorESM2-MM 
model, − 0.89–9.70 °C for the MPI-ESM-1.2-HR model, maximum variation − 0.21–11.48 °C was observed 
for CanESM5 model, and for ensemble average of these GCMs, the projected average Tmin ranges from 0.18 
to 9.40 °C under SSP5-8.5 at all the selected stations. The projected Tmin using the ensemble average of these 
GCMs at East Point ranges from 0.70 to 9.40 °C, 0.18 to 8.14 °C at Charlottetown, 1.10–8.88 °C at Summerside, 
and 0.23–9.11 °C at North Cape under SSP5-8.5 (Fig. 7). The multi-model ensemble (MME) approach serves 
as a valuable strategy to address uncertainties among global circulation models (GCMs), enabling improved 
forecasting capabilities. By combining the MME approach with downscaling techniques, forecasting skills have 
been  enhanced54. The simulated results for Tmax and Tmin showed that the GCM-specific changes in the ECS 
also impact the regional scale.

Figure 3.  Monthly average anomalies of the daily maximum temperature (Tmax) using two reanalysis datasets 
(NCEP-DOE Reanalysis 2 and ECMWF ERA5) during the validation period (2007–2014) with respect to the 
baseline period (1989–2014) and statistical parameters to evaluate the models.
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Future projection of temperature extreme indices
The bias-corrected results of three CMIP6 GCMs (NorESM2-MM, MPI-ESM-1.2-HR, and CanESM5) and their 
ensemble average were utilized to calculate the future temperature extreme indices under two different scenarios 
(SSP2-4.5 and SSP5-8.5). The future period was divided into two periods: FP1 (2026–2050) and FP2 (2051–2075). 
The projected changes in the six extreme temperature indices are presented as box-and-whisker plots (Figs. 8, 
9, 10, 11, 12 and 13). Each box is defined in these plots by its upper and lower limits, which correspond to the 
75th and 25th percentile values. The horizontal line within each box represents the median of the distributions. 
Additionally, the upper and lower whiskers of the plot indicate the 95th and 5th percentile values, respectively.

The DTR results revealed that NorESM2-MM exhibited the minimum difference between Tmax and Tmin, 
while the maximum for CanESM5 at all the stations due to their different ECS values at all the stations. East Point 
station depicted the lowest difference between Tmax and Tmin among the four stations. The average annual DTR 
projections, derived from the ensemble average of three models for future periods, varied from 6.76 to 7.30 °C 
at East Point, 8.93–9.48 °C at Charlottetown, 8.27–8.67 °C at Summerside, and 8.56–8.99 °C at North Cape, 
regardless of the SSPs (Fig. 8). An increasing trend was observed at all the stations and under all the GCMs. The 
highest rate of change per year in DTR (0.06–0.09 °C/year) was observed at East Point and North Cape stations, 
which are at the edge of the island, while in the middle two stations, DTR per year varied from 0.01 to 0.06 °C/
year (Table 5). A wider DTR means warmer days and cooler nights, which result in higher evaporation rates 
and increased water demand. It can also induce stress in plants, which may impact crop yield. Pest attacks also 
increase with an increase in temperature. So, the DTR is essential for the farmers as it enables them to make 

Figure 4.  Monthly average anomalies of the daily minimum temperature (Tmin) using two reanalysis datasets 
(NCEP-DOE Reanalysis 2 and ECMWF ERA5) during the validation period (2007–2014) with respect to the 
baseline period (1989–2014) and statistical parameters to evaluate the models.



11

Vol.:(0123456789)

Scientific Reports |        (2024) 14:12661  | https://doi.org/10.1038/s41598-024-63450-9

www.nature.com/scientificreports/

decisions regarding crop selection, planting dates, irrigation management, pest control, and overall agricultural 
practices to maximize productivity, optimize resource utilization, and adapt to changing climate conditions.

The frost days (FD) are projected to decrease throughout the PEI, and the maximum decrease was observed 
during FP2 (Fig. 9). The lowest FD was observed for CanESM5, which has the highest ECS value among the 
selected three GCMs. These days are projected to decrease, according to the ensemble average of three models, 
from 141 (observed) to 127 (SSP2-4.5) and 96 days (SSP5-8.5) at East Point, 157 (observed) to 141 (FP1) and 
112 days (FP2) at Charlottetown, 151 (observed) to 128 (SSP2-4.5) and 100 (SSP5-8.5) at Summerside, and 149 
(observed) to 130 (SSP2-4.5) and 101 (SSP5-8.5) at North Cape during FP2 (Fig. 9). Furthermore, a decreas-
ing trend was observed in FD for all the GCMs at every station. The annual reduction in FD, derived from the 
ensemble average of three GCMs, is projected to range from 0.00 to 1.00 days per year across the entire island 
(Table 4). The decrease in frost days has implications for agriculture on PEI as it extended the growing season. 
This increased growing season provides more opportunities for growing crops. On the other hand, the reduction 
in frost days may increase pest attacks and diseases. Hence, planting schedules, crop selection, and pest manage-
ment strategies may be necessary to optimize agricultural production under the changing frost day patterns.

The increase in summer days (SU) was higher during FP2 compared to FP1 across the entire island in all the 
GCMs. The increase in SU was observed in accordance with the ECS values of the GCMs. The results from the 
ensemble average of three GCMs showed that SU is projected to increase by 49 days at East Point, 46 days at 
Charlottetown, 44 at Summerside, and 48 days at North Cape compared to their observed average summer days 
during FP2 under SSP5-8.5 (Fig. 10). In the future, estimated summer days from the ensemble average data are 
projected to significantly increase from 0.07 to 1.74 days/year across the Island, irrespective of SSPs (Table 4). 
The increase in summer days may impact agriculture and other sectors of PEI. The farmers may need to adjust 
their planting schedules and irrigation practices to adapt to the extended summer period. Moreover, the rise in 
summer days may also reduce the energy consumption in winter, tourism patterns, and various other aspects 
of daily life on the island.

The projected increase in summer days on PEI is accompanied by a notable decrease in ice days (ID) at all the 
stations of PEI and a maximum decrease observed during FP2 (Fig. 11). The lowest number of IDs was observed 
for CanESM5, as it has a high ECS value and represents a higher temperature than the other two GCMs. There-
fore, it reduces the occurrence of days where temperatures remain below freezing. The average annual number of 
ice days, based on the ensemble average of three models, is projected to decrease from 60 to 34 days at East Point, 
63–35 days at Charlottetown, 48–36 days at Summerside, and 48–37 days at North Cape during FP2 under SSP5-
8.5. The future projections suggest a decrease in ice days all over the island irrespective of the SSPs and GCMs, 

Table 3.  Comparison of without and quantile delta mapping bias-corrected climate model simulations. Tmax 
Daily maximum temperature, Tmin Daily minimum temperature.

Stations GCMs

Without bias 
correction With bias correction

R2 RMSE MAE R2 RMSE MAE

East Point

Tmax

CanESM5 0.81 3.90 3.23 0.93 2.33 1.82

MPI-ESM-1.2-HR 0.92 2.36 1.88 0.94 2.26 1.77

NorESM2-MM 0.92 2.39 1.86 0.94 2.18 1.72

Tmin

CanESM5 0.72 4.61 3.74 0.94 2.11 1.60

MPI-ESM-1.2-HR 0.91 2.48 1.86 0.94 2.16 1.64

NorESM2-MM 0.92 2.35 1.77 0.94 2.14 1.62

Charlottetown

Tmax

CanESM5 0.79 4.29 3.42 0.93 2.45 1.93

MPI-ESM-1.2-HR 0.91 2.76 2.2 0.94 2.33 1.76

NorESM2-MM 0.90 2.94 2.25 0.94 2.30 1.78

Tmin

CanESM5 0.70 4.98 3.96 0.92 2.18 1.66

MPI-ESM-1.2-HR 0.91 2.70 2.06 0.95 2.12 1.64

NorESM2-MM 0.91 2.62 2.00 0.93 2.26 1.71

Summerside

Tmax

CanESM5 0.83 4.02 3.45 0.93 2.54 1.96

MPI-ESM-1.2-HR 0.93 2.45 1.95 0.95 2.24 1.74

NorESM2-MM 0.93 2.64 2.08 0.95 2.26 1.75

Tmin

CanESM5 0.82 3.99 3.33 0.93 2.41 1.79

MPI-ESM-1.2-HR 0.93 2.40 1.87 0.94 2.26 1.79

NorESM2-MM 0.94 2.30 1.75 0.95 2.23 1.73

North Cape

Tmax

CanESM5 0.85 3.69 3.05 0.93 2.60 1.98

MPI-ESM-1.2-HR 0.93 2.38 1.92 0.94 2.32 1.86

NorESM2-MM 0.93 2.52 1.97 0.94 2.27 1.78

Tmin

CanESM5 0.80 4.23 3.59 0.93 2.51 1.93

MPI-ESM-1.2-HR 0.93 2.41 1.87 0.94 2.33 1.80

NorESM2-MM 0.93 2.33 1.77 0.94 2.32 1.77
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while the lowest ice days were observed with CanESM5 and the highest were observed with MPI-ESM1.2-HR. 
The ensemble average results of three GCMs for ice days show a decrement at all the stations ranging from 0.00 
to 0.68 days/year, irrespective of SSPs (Table 4). The decrease in ice days can significantly affect various sectors, 
including transportation, infrastructure, and winter recreational activities.

Two agriculture-related indices, Growing degree days (GDD) and Growing season length (GSL), were also 
examined in this study. The results revealed that both indices exhibit an increase in future periods due to warming 
conditions. The GDD derived from the ensemble of three GCMs is projected to increase on an average from 835 
(observed) to 1059 (SSP2-4.5) and 1126 degree-days (SSP5-8.5) during FP1, while during FP2, these days are 
projected to further increase to 1246 (SSP2-4.5) and 1452 degree-days (SSP5-8.5) at East Point. At Summerside, 
Average GDD is projected to increase from 940 (observed) to 1103 (SSP2-4.5) and 1208 degree-days (SSP5-8.5) 
during FP1 and 1255 (SSP2-4.5) and 1508 degree-days (SSP5-8.5) during FP2 at Summerside stations (Fig. 12). 
Yearly, All the GCMs projected an increment these days, with CanESM5 showing a maximum increment. The 
increment projected by the ensemble of three GCMs falls within the range of 5.41 to 15.58 degree-days across 
the island (Table 5). The increase in GDD has implications for agriculture on PEI. It provides an extended grow-
ing season, allowing for cultivating a wider range of crops and potentially enhancing crop yields. Farmers can 
utilize this information to optimize planting schedules, select appropriate crop varieties, and make decisions 
regarding agricultural practices.

The GSL also increased at all the stations of PEI and the results are in accordance with the ECS values of 
GCMs. The maximum growing season is projected in FP2 under SSP5-8.5 pathways of CanESM5 (Fig. 13). The 
eastern stations (East Point and Charlottetown) depicted maximum length for growing season in the future as 
compared to the western stations (North Cape and Summerside). The GSL from the ensemble average of three 
GCMs is projected to increase from 197 (observed) to 230 days (SSP5-8.5) at East Point, 194 (observed) to 
229 days (SSP5-8.5) at Charlottetown, 194 (observed) to 239 days (SSP5-8.5) at Summerside, 193 (observed) to 
237 days (SSP5-8.5) at North Cape during FP2. Furthermore, the change in GSL estimated by the ensemble aver-
age of three GCMs was observed to range from 0.18 to 2.31 days/year at all the stations, regardless of the emission 
scenarios (Table 5). The extension of the growing season length has important implications for agriculture on 
the island. It provides more time for crop growth. It also allows the cultivation of a wider range of crops and can 

Figure 5.  Historical performance of the NorESM2-MM, MPI-ESM-1.2-HR, CanESM5, and Ensemble-
Average, with and without bias correction, to downscale the maximum temperature (Tmax (°C)) and minimum 
temperature (Tmin (°C)) using ECMWF ERA5-based model at East Point, Charlottetown, Summerside, and 
North Cape.
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Figure 6.  Projected changes in the bias-corrected average annual maximum temperature (Tmax (°C)) using 
NorESM2-MM, MPI-ESM-1.2-HR, CanESM5, and Ensemble average of selected three global circulation 
models at (a) East Point, (b) Charlottetown, (c) Summerside, and (d) North Cape.

Figure 7.  Projected changes in the bias-corrected average annual minimum temperature ((Tmin(°C)) using 
NorESM2-MM, MPI-ESM-1.2-HR, CanESM5, and Ensemble average of selected three global circulation 
models at (a) East Point, (b) Charlottetown, (c) Summerside, and (d) North Cape.
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lead to higher crop yields and diversification of agricultural practices. Farmers can utilize this information to 
optimize their planting and harvesting schedules, select appropriate crop varieties, and implement strategies to 
maximize the benefits of an extended growing season.

The results obtained in this study are consistent with the findings reported by Lu et al.52. In their study, they 
investigated temperature extreme indices for Toronto, Canada, and similarly observed increases in Tmax, Tmin, 
DTR, SU, GDD, and GSL. Additionally, they noted decreases in ID and FD, aligning with the trends observed 
in this current study for PEI.

Monthly changes in climatic parameters
The projected changes to mean monthly SU and ID for observed and two future periods (FP1 and FP2) at all 
the stations under SSP2-4.5 and SSP5-8.5 are given in Fig. 14. The projected mean monthly Summer Days (SU) 
indicate that the summer months spanned from May to October during the observed period. However, in future 

Figure 8.  Projected variations in the average annual Daily Temperature Range (°C) for baseline (1989–2014) 
and two future periods: FP1 (2026–2050), FP2 (2051–2075) at four selected stations (East Point, Charlottetown, 
Summerside, and North Cape) under SSP2-4.5 and SPP5-8.5 scenarios. (*) asterisk sign indicates the outlier 
present in the data.

Figure 9.  Projected variations in the average annual Frost Days (days) for baseline (1989–2014) and two future 
periods; FP1 (2026–2050), FP2 (2051–2075) at four selected stations (East Point, Charlottetown, Summerside, 
and North Cape) under SSP2-4.5 and SPP5-8.5 scenarios. (*) asterisk sign indicates the outlier present in the 
data.
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projections, the summer period extends from May to November, extending the month count from six to seven. 
Additionally, at Charlottetown, Summerside, and North Cape stations, April and November are also included as 
a summer/warm month during FP2 under SSP5-8.5. The highest number of Summer Days (SU) was observed 
for CanESM5 during FP2 under the SSP5-8.5 scenario. The Ice Days (ID) indicated a decrease in the number of 
days in future periods compared to the observed period. In the observed period, Ice Days were observed from 
November to April, and similar changes were observed in the future periods. However, most of the ice days fall 
in December to March. Notably, the fewest Ice Days were observed for CanESM5 and during FP2 under the 
SSP5-8.5 scenario.

The mean monthly results of DTR demonstrated less difference between Tmax and Tmin in the future periods 
at East Point station. Conversely, higher mean monthly DTR values were observed at all the stations, with North 
Cape and Charlottetown stations recording the maximum DTR. This suggests greater temperature fluctuations 
throughout the day or longer at these locations. It indicates that the island’s eastern part is colder than the central 
and western parts of PEI. Collectively, the results for DTR highlight that July, August, and September are expected 
to be the warmest months at all stations in the future periods under both SSP2-4.5 and SSP5-8.5 scenarios. The 

Figure 10.  Projected variations in the average annual Summer Days (days) for baseline (1989–2014) and 
two future periods; FP1 (2026–2050), FP2 (2051–2075) at four selected stations (East Point, Charlottetown, 
Summerside, and North Cape) under SSP2-4.5 and SPP5-8.5 scenarios. (*) asterisk sign indicates the outlier 
present in the data.

Figure 11.  Projected variations in the average annual Ice Days (days) for baseline (1989–2014) and two future 
periods; FP1 (2026–2050), FP2 (2051–2075) at four selected stations (East Point, Charlottetown, Summerside, 
and North Cape) under SSP2-4.5 and SPP5-8.5 scenarios. (*) asterisk sign indicates the outlier present in the 
data.
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results for FD reveal that during the observed period, the months of June, July, August, and September had no 
frost days. However, the projected results for FP1 and FP2 indicate that June and September will also have a few 
frost days. Additionally, very few frost days are projected for the months of May and October. Notably, the fewest 
frost days are anticipated for CanESM5 during FP2 (Fig. 15).

Conclusions
In this study, Stepwise Cluster Analysis (SCA) was employed to project changes in Tmax and Tmin at four sta-
tions on PEI (East Point, Charlottetown, Summerside, and North Cape). Two reanalysis datasets, ECMWF ERA5 
and NCEP-DOE Reanalysis 2, were compared and evaluated for model calibration (1989–2006) and validation 
(2007–2014) periods. The results indicated that ECMWF ERA5 performed slightly better downscaling Tmax and 
Tmin than NCEP-DOE Reanalysis 2. As a result, ECMWF ERA5 was selected to develop a downscaling model. 

Figure 12.  Projected variations in the average annual Growing Degree Days (degree-days) for baseline 
(1989–2014) and two future periods; FP1 (2026–2050), FP2 (2051–2075) at four selected stations (East Point, 
Charlottetown, Summerside, and North Cape) under SSP2-4.5 and SPP5-8.5 scenarios.

Figure 13.  Projected variations in the average annual Growing Season Length (Days) for baseline (1989–2014) 
and two future periods; FP1 (2026–2050), FP2 (2051–2075) at four selected stations (East Point, Charlottetown, 
Summerside, and North Cape) under SSP2-4.5 and SPP5-8.5 scenarios. (*) asterisk sign indicates the outlier 
present in the data.
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The Quantile delta mapping method was utilized to remove the biases from the model-simulated results for the 
historical and future periods. Three CMIP6 (NorESM2-MM, MPI-ESM1.2-HR, and CanESM5) GCMs, along 
with their ensemble average, were used to project Tmax and Tmin under two shared socioeconomic pathways 
(SSP2-4.5 and SSP5-8.5) during future periods (FP1 and FP2). These three GCMs were selected based on their 
different (low, medium, and high) equilibrium climate sensitivity values. These ECS values also impact the future 
projection of Tmax and Tmin, as low, medium, and high increments were observed for both Tmax and Tmin for 
NorESM2-MM, MPI-ESM1.2-HR, and CanESM5, respectively. Furthermore, the three GCMs and their ensemble 
average were used to calculate six temperature indices (DTR, FD, SU, ID, GDD, and GSL) to reduce any biases 
present in individual GCMs. The projected mean monthly changes revealed a warmer future climate for PEI. 
The DTR was observed to increase; months with frost days (FD) and ice days (ID) were projected to decrease, 
and months with summer days (SU) were projected to increase. Agriculture-related indices, such as growing 
degree days (GDD) and growing season length (GSL), were also projected to increase under both scenarios. 
The highest changes were observed for CanESM5, due to its high ECS value, during FP2 under SSP5-8.5 for 
all the temperature-related indices. The projected warming conditions have potential benefits for PEI growers, 
including extended summer and growing seasons. However, it is important to consider the potential impacts 
of rising sea levels and increased evapotranspiration rates, which contribute to more atmospheric moisture and 
potentially result in increased precipitation. The increase in evapotranspiration rate may also impact crop water 
requirements. Monitoring and analyzing these temperature indices can provide valuable insights for farmers 
and researchers, helping them assess crop suitability in specific regions, evaluate risks, optimize planting and 
harvesting schedules, and implement effective irrigation and crop protection strategies.

Table 4.  Changes per year and trends of the Frost Days (FD), Summer Days (SU), and Ice Days (ID) for 
observed (1989–2014) and two future periods: FP1 (2026–2050) and FP2 (2051–2075), under two shared 
socioeconomic pathways SSP2-4.5 and SSP5-8.5. ↑ Increasing trend, ↓ Decreasing trend, aSignificant at 0.001 
level (99.9%); bSignificant at 0.01 level (99%); cSignificant at 0.05 level (95%).

Stations

FD (days/year) SU (days/year) ID (days/year)

OBS

FP1 FP2

OBS

FP1 FP2

OBS

FP1 FP2

SSP2-
4.5

SSP5-
8.5

SSP2-
4.5

SSP5-
8.5

SSP2-
4.5

SSP5-
8.5

SSP2-
4.5

SSP5-
8.5

SSP2-
4.5

SSP5-
8.5

SSP2-
4.5

SSP5-
8.5

East 
Point

Observed ↓0.89c ↑0.50a ↓0.75

NORESM2-
MM ↓0.35 ↓0.50 ↓0.10 ↓0.03 ↑0.96c ↑1.10b ↑0.77 ↑0.97b ↓0.68c ↓0.34 ↓0.32c ↓↓0.54c

MPI-
ESM1.2-HR ↓1.08c ↓1.00c ↓0.00 0.60 ↑1.68a ↑1.14a ↑0.87 ↑1.30a ↓0.55 ↓0.74c ↓0.33 ↓0.17

CanESM5 ↓0.28 ↓0.34 ↓0.54 ↓0.56 ↑1.24a ↑1.26a ↑0.82c ↑1.45a ↓0.12 ↓0.39a ↓0.20 ↓0.57c

Ensemble-
Average ↓0.47 ↓0.97c 0.00 0.08 ↑1.5  9a ↑1.38a ↑1.13c ↑1.74a ↓0.68 ↓0.50 ↓0.23 0.00

Char-
lotte-
town

Observed ↓0.56 0.00 ↓0.67

NORESM2-
MM ↓0.17 ↓0.58 ↓0.03 ↓0.26 ↑0.85 ↑0.21 ↑0.11 ↑0.49 ↓0.63 ↓0.32 0.00 ↓0.56

MPI-
ESM1.2-HR ↓1.00c ↓1.14c ↓0.23 ↓0.22 ↑0.76 ↑0.55 ↑0.15 ↑0.82c ↓0.65c ↓0.67 ↓0.27 ↓0.66

CanESM5 ↓0.70c ↓0.72c ↓0.73c ↓0.78 ↑1.19a ↑0.75 ↑0.54a ↑1.42a ↓0.05 ↓0.50 ↓0.25 ↓0.57

Ensemble-
Average ↓0.83c ↓1.00a ↓0.50 ↓0.67 ↑0.62c ↑0.75 ↑0.07 ↑1.28c ↓0.50a ↓0.46 ↓0.14 ↓0.33

Sum-
merside

Observed ↓0.31 ↑0.27 ↓0.09

NORESM2-
MM ↓0.26 ↓0.35 ↓0.21 ↓0.13 ↑0.36 ↑0.58 ↑0.29 ↑0.80 ↓0.79 ↓0.67 ↓0.11 ↓0.16

MPI-
ESM1.2-HR ↓0.80 ↓0.57c ↓0.39 ↓0.16 ↑0.87c ↑0.73c ↑0.20 ↑1.11a ↓0.73 ↓0.75a ↓0.33 ↓0.58c

CanESM5 ↓0.25 ↓0.45 ↓0.25 ↓0.71 ↑0.81c ↑0.71c ↑0.80 ↑1.27b ↓0.23 ↓0.36c ↓0.13 ↓0.45

Ensemble-
Average ↓0.46 ↓0.71b ↓0.76 ↓0.50 ↑0.76c ↑0.97b ↑0.46 ↑1.25a ↓0.63b ↓0.51a ↓0.25 ↓0.17

North 
Cape

Observed ↓1.12a ↑0.50b ↓0.28

NORESM2-
MM ↓0.28 ↓0.26 ↓0.08 ↓0.23 ↑0.34 ↑0.77 ↑0.12 ↑1.00 ↓1.00c ↓0.69 ↓0.12 ↓0.27

MPI-
ESM1.2-HR ↓0.50 ↓0.06 ↓0.59 ↓0.14 ↑1.13b ↑0.71b ↑0.27 ↑1.33b ↓0.53 ↓1.00b ↓0.59 ↓0.59

CanESM5 ↓0.26 ↓0.08 ↓0.38 ↓0.52 ↑1.00c ↑1.00 ↑0.82 ↑1.42b ↓0.22 ↓0.48a ↓0.26 ↓0.32

Ensemble-
Average 0.10 ↓0.22 0.00 0.00 ↑1.03c ↑1.19a ↑0.22 ↑1.14c ↓0.65 ↓0.53a ↓0.12 ↓0.36
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Table 5.  Changes per year and trends of the Daily Temperature Range (DTR), Growing Degree Days (GDD), 
and Growing Season Length (GSL) for observed (1989–2014) and two future periods: FP1 (2026–2050) and 
FP2 (2051–2075), under two shared socioeconomic pathways SSP2-4.5 and SSP5-8.5. ↑ Increasing trend, ↓ 
Decreasing trend, aSignificant at 0.001 level (99.9%); bSignificant at 0.01 level (99%); cSignificant at 0.05 level 
(95%).

Stations

DTR (°C/year) GDD (Degree-days/year) GSL (days/year)

OBS

FP1 FP2

OBS

FP1 FP2

OBS

FP1 FP

SSP2-
4.5

SSP5-
8.5

SSP2-
4.5

SSP2-
4.5

SSP2-
4.5

SSP5-
8.5

SSP2-
4.5

SSP5-
8.5

SSP2-
4.5

SSP5-
8.5

SSP2-
4.5

SSP5-
8.5

East 
Point

Observed ↑0.08a ↑2.90 ↑0.88c

NORESM2-
MM ↑0.07c ↑0.07c ↑0.08b ↑0.07b ↑2.23 ↑10.36 ↑4.34 ↑9.49c ↑1.38 ↑2.39c ↑1.40c ↑0.37

MPI-
ESM1.2-HR ↑0.08c ↑0.09b ↑0.06a ↑0.09c ↑17.66a ↑11.25c ↑7.94 ↑14.63c ↑1.23 ↑1.73b ↑0.58 ↑0.63

CanESM5 ↑0.07b ↑0.09c ↑0.08b ↑0.09a ↑13.18c ↑13.69c ↑10.32 ↑16.75b ↑0.63 ↑0.92 ↑1.39c ↑1.67a

Ensemble-
Average ↑0.08b ↑0.09b ↑0.08a ↑0.09b ↑12.93b ↑12.13a ↑11.02c ↑15.58a ↑1.88b ↑0.98 ↑2.04a ↑1.59c

Char-
lotte-
town

Observed ↑0.03b ↑5.78 ↑0.72c

NORESM2-
MM ↑0.01 ↑0.01 ↑0.02 ↑0.02 ↑0.64 ↑6.69 ↑3.30 ↑4.78 ↑0.66 ↑1.25 ↑1.38a 0.00

MPI-
ESM1.2-HR ↑0.02 ↑0.02 ↑0.02 ↑0.02 ↑16.10c ↑11.26 ↑6.74 ↑11.65c ↑0.54 ↑1.27 ↑1.00 ↑0.94

CanESM5 ↑0.01 ↑0.03 ↑0.02 ↑0.05b ↑8.42a ↑10.92c ↑7.93 ↑17.13c ↑0.30 ↑0.90 ↑0.63 ↑0.67

Ensemble-
Average ↑0.01 ↑0.02 ↑0.03 ↑0.04a ↑10.66a ↑10.17b ↑6.59 ↑14.48a ↑0.33 ↑1.32 ↑1.14c ↑1.27c

Sum-
merside

Observed ↑0.01 ↑3.49 ↑0.09

NORESM2-
MM ↑0.03c ↑0.04c ↑0.02c ↑0.04b ↑2.36 ↑7.39 ↑2.00 ↑8.51 ↑1.32 ↑0.09 ↑2.32c ↑0.03

MPI-
ESM1.2-HR ↑0.04 ↑0.03 ↑0.05c ↑0.03c v11.74 ↑7.61 ↑5.38 ↑11.43c ↑1.00 ↑1.27 ↑0.07 ↑0.61

CanESM5 ↑0.05a ↑0.05a ↑0.06a ↑0.06a ↑6.79 ↑7.51a ↑5.42 ↑13.07c ↑0.49 ↑1.17c ↑0.44 ↑1.35

Ensemble-
Average ↑0.04b ↑0.04b ↑0.04a ↑0.05a ↑6.33 ↑7.78c ↑4.29 ↑12.05b ↑0.18 ↑1.72a ↑1.38 ↑2.31b

North 
Cape

Observed ↑0.06a ↑2.73 ↑0.50c

NORESM2-
MM ↑0.07 ↑0.08 ↑0.05 ↑0.05 ↑0.88 ↑6.96 ↑5.41 ↑9.24 ↑0.20 ↑0.87 ↑0.92 ↑0.74

MPI-
ESM1.2-HR ↑0.08 ↑0.09 ↑0.05 ↑0.08 ↑13.42c ↑7.02 ↑4.76 ↑12.59c ↑0.73 ↑0.29 ↑0.76 ↑0.54

CanESM5 ↑0.06 ↑0.07 ↑0.05 ↑0.07 ↑6.16 ↑8.06 ↑4.94 ↑12.70 ↑0.17 ↑0.86 ↑0.37 ↑0.33

Ensemble-
Average ↑0.07 ↑0.08 ↑0.07 ↑0.07 ↑9.64b ↑9.40 ↑5.41 ↑11.71b ↑0.71 ↑1.37a ↑0.42 ↑2.20b
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Figure 14.  Projected changes in mean monthly Summer Days (SU) and Ice Days (ID) at East Point, 
Charlottetown, Summerside, and North Cape stations of Prince Edward Island during observed (1989–2014) 
and two future periods (FP1 (2026–2050) and FP2 (2051–2075)).
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Data availability
The datasets used and analyzed during this study are available from Junaid Maqsood and the corresponding 
author (Xiuquan Wang) upon reasonable request. The contact details can be found at the beginning of this article.
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Figure 15.  Projected changes in mean monthly Daily Temperature Range (DTR) and Frost Days (FD) at East 
Point, Charlottetown, Summerside, and North Cape stations of Prince Edward Island during observed (1989–
2014) and two future periods (FP1 (2026–2050) and FP2 (2051–2075)).
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