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On‑device query intent prediction 
with lightweight LLMs to support 
ubiquitous conversations
Mateusz Dubiel 1,2, Yasmine Barghouti 1, Kristina Kudryavtseva 1 & Luis A. Leiva 1,2*

Conversational Agents (CAs) have made their way to providing interactive assistance to users. 
However, the current dialogue modelling techniques for CAs are predominantly based on hard-
coded rules and rigid interaction flows, which negatively affects their flexibility and scalability. Large 
Language Models (LLMs) can be used as an alternative, but unfortunately they do not always provide 
good levels of privacy protection for end-users since most of them are running on cloud services. To 
address these problems, we leverage the potential of transfer learning and study how to best fine-
tune lightweight pre-trained LLMs to predict the intent of user queries. Importantly, our LLMs allow 
for on-device deployment, making them suitable for personalised, ubiquitous, and privacy-preserving 
scenarios. Our experiments suggest that RoBERTa and XLNet offer the best trade-off considering 
these constraints. We also show that, after fine-tuning, these models perform on par with ChatGPT. 
We also discuss the implications of this research for relevant stakeholders, including researchers and 
practitioners. Taken together, this paper provides insights into LLM suitability for on-device CAs and 
highlights the middle ground between LLM performance and memory footprint while also considering 
privacy implications.

Keywords  Conversational Agents, Design, Information retrieval, Graphical user nterfaces

When using cloud-based communication platforms, users often lose control over their privacy, as their data is 
processed by (and ends up being stored on) third-party servers, which may also be used for further training by 
service providers. Moreover, as indicated by prior work, users’ privacy intentions are often not in sync with their 
behaviour, which may lead to users unwittingly disclosing sensitive information1,2. This issue is pertinent when 
it comes to interaction with systems that are designed to mimic human-like interaction such as Conversational 
Agents (CAs)3,4, especially on mobile devices that can be considered as ‘intimate’ objects that users rarely part 
with5.

Nowadays, CAs are becoming increasingly ubiquitous. They come in many shapes and forms, such as digital 
assistants on smartphones (e.g., Apple Siri, Google Assistant, Samsung Bixby), stand-alone devices (e.g., Amazon 
Echo Show, Google Nest, and Tencent Tingting), or automotive systems (e.g., BMW Intelligent Personal Assis-
tant, Cerence Automotive Platform), just to name a few. Popular areas of CA applications include e.g. health and 
well-being6–8, tutoring9–11, and productivity6,12,13.

As hinted before, CAs that are running on a cloud service do not always provide good levels of privacy pro-
tection, since users have no guarantee that their voice or text commands will be safely handled there14. While it 
has been demonstrated that traditional CAs can run completely offline, even on low-resource devices such as a 
RaspberryPi14, this approach does not scale well. Specifically, traditional approaches for developing CAs involve 
use of predefined slot-filling mechanisms15,16 and rigid interaction flows17, consequently hindering flexibility and 
scalability to new tasks or domains18. For example, a user’s utterance “Show my savings account balance” indicates 
a “show-balance” intent with an “account-type” slot. Overall, training a slot-filling system is challenging, as it 
requires considerable manual encoding of multiple variations of user utterances for each slot and each intent. In 
fact, this approach is considered deprecated nowadays19,20, only suitable for very simple situations such as those 
were users have to choose between some given options; cf. the customer service of a call centre.

Machine Learning (ML) is an alternative approach that allows for the CA’s behaviour to be learned from data, 
without the need to program it explicitly, which makes it a more scalable and generalisable. More concretely, 
transfer learning has recently emerged as a de-facto ML method in Natural Language Processing (NLP), where 
pre-trained Large Language Models (LLMs) are adapted to new tasks by fine-tuning their hyperparameters on a 
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small but representative dataset. However, fine-tuning most modern LLMs (e.g. PaLM, LLaMA, or the GPT fam-
ily) is out of reach to many researchers due to high computational requirements21 and associated high monetary 
costs22. Therefore, quite often, the only option for many researchers and practitioners is to rely on a cloud-based 
service that provides an interface to those LLMs, thereby compromising the user’s privacy, especially for CAs 
that operate with sensitive information23 or are designed to encourage information disclosure24.

We should note that, in this paper, by ‘model’ we refer to ‘computational model’, i.e., a data-driven structure 
that is trained (through examples) to map inputs and outputs. Therefore, a computational model is both structure 
and data. As noted, without data, no model pre-training is possible. Furthermore, there is ample evidence that 
supports the claim that high-quality data makes better models, and not the other way around25,26. We elaborate 
more on this observation in the ‘Implications’ section at the end of this paper.

To bridge the gap between user’s privacy and scalability of LLM-based CAs, we investigate transfer learning 
on lightweight LLMs that can be deployed for on-device inference tasks, a fundamental pre-requisite for mobile 
and ubiquitous systems; see Fig. 1. Specifically, we look at predicting four query intent surrogates, described in 
‘Methods’ section. Intent surrogates are crucial to understand the context of interactive conversations, as they 
determine the efficiency of a CA when it comes to correctly interpreting user’s input and successfully addressing 
it. Our investigation taps into the “Conversations with GUIs” dataset27, as it provides an interesting testbed for 
mobile systems, as explained in ‘Materials’ section.

GUI datasets such as Rico28, Enrico29, VINS30, or WebUI31 can be useful during the early stages of design 
and development of applications by providing inspiration and insights into various app features. While such 
datasets contain rich information regarding GUI properties and relevant technical specification, querying them 
may require using developer expertise or sophisticated JSON-based APIs32, making them inaccessible for users 
without programming experience. In order to address this problem, Todi et al.27 proposed the use of a conversa-
tion modality to support users navigate complex GUI datasets using natural language. In this paper, we further 
explore this concept with a series of lightweight LLMs suitable for on-device NLP tasks. It should be noted that 
while prompt engineering allows for a more efficient use of LLMs through developing and optimising instruc-
tions to guide the model33, it is not supported by the lightweight LLMs that we explore in this paper. However, 
for comparative purposes we also assess the performance of a larger, state-of-the-art LLM, (ChatGPT) which is 
fine-tuned with prompt engineering.

While LLMs are becoming increasingly ubiquitous they are susceptible to data leakage34, posing a treat to end-
users’ privacy. In order to explore alternatives to regular LLMs that rely on external cloud services for deployment, 
here we investigate the performance of lightweight LLMs on tasks that involve predicting query intents while 
running on commodity mobile devices such as smartphones and tablets that can be used ‘on the go’. Following 
Stal et al.35 we define mobile device as, “a portable, wireless computing device, possible to carry without additional 
equipment and small enough to be used while held in the hand”. We formulate the following research questions:

•	 RQ1 concerns the performance of the models on intent prediction tasks:

–	 RQ1a: Which pre-trained models achieve the best performance after fine-tuning for predicting query intents 
in different tasks?

–	 RQ1b: Is there a model that performs best in all of the tasks?

•	 RQ2 concerns the relationship between model performance and fine-tuning time:

Figure 1.   Overview of some popular LLMs. Axes are in logarithmic scale to ease the visualization (almost a 
linear relationship between model size and model parameters). Each model has different variants available, such 
as Base and Large (see the plot annotations). As discussed in the next section, we set 2 Gb as the upper-bound 
for LLM size so that it can be deployed on commodity mobile and ubiquitous devices (see ‘Models’ section for 
more details). Therefore, in this paper, only the models below such an upper-bound are considered lightweight.
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–	 RQ2a: What is the minimum number of fine-tuning epochs for each pre-trained model?
–	 RQ2b: What is the optimal number of fine-tuned epochs for each model to achieve the best performance?

By addressing the above research questions, our work makes the following contributions:

•	 We provide insights into adequacy of lightweight LLMs for on-device NLP tasks and their fit for specific 
types of user queries in the context of GUI conversations. We also conduct additional experiments on other 
datasets, for completeness.

•	 We shed light on the performance versus privacy trade-off and demonstrate the feasibility of deploying 
LLMs-based CAs on mobile and ubiquitous devices. We show that lightweight LLMs require more fine-tuning 
epochs than previously assumed to reach their peak performance.

•	 We discuss the implications of our research for different types of stakeholders, including researchers, devel-
opers, designers, and end-users. While ChatGPT excels at zero-shot classification tasks, lightweight LLMs 
achieve similar performance (sometimes even better) after fine-tuning.

Overall, this work makes an empirical contribution to mobile and ubiquitous systems that need to effectively 
balance performance and memory footprint, while also considering privacy implications for end-users. More 
specifically, we make the selection of specific pre-trained models more informed, and help to avoid a trial-and-
error selection approach when applying lightweight LLMs to develop CAs. The main premise of this paper is that 
LLMs should be fine-tuned on commodity hardware, without the need to access High Performance Computing 
facilities or a cloud service provider.

Background and related work
We discuss the relevance of CAs to overcome the challenge of capturing users’ information needs, also know as 
the semantic gap, and explain how transfer learning is transformative to this challenge. We also discuss current 
privacy and sustainability issues of LLMs that may have an important impact on their widespread use.

Conversational Agents for GUI interactions
The ‘CA’ term is an umbrella term which includes two main types of automated dialogue systems, namely (1) task-
oriented agents designed to accomplish a specific goal (e.g., booking a flight) and (2) non-task-oriented agents17. 
In this paper, we focus on the former sense, considering an agent whose goal is to support a user in the task of 
GUI dataset exploration through natural language.

We can find recent examples of CAs that have been applied to GUI design and layout tasks such as: sketching36, 
creating task shortcuts to UI screens in apps37, and creating low-fidelity UI mock-ups from natural language 
phrases38. Most relevant to our investigation, however, is the work of Todi et al.27 who presented a CA prototype 
to explore a large body of visual designs from their “Conversations with GUIs” dataset. The prototype provided 
answers to users’ questions in the form of text, numbers, GUIs, or a part of their design. For example, users 
could issue queries such as “Show me examples of search bar designs” or “When was the app last updated?” to find 
information that can help them satisfy their search needs or provide a useful point of reference.

Recently, the topic of resolving user information needs through conversation has been receiving increasing 
interest, leading to development of several CA-based interactive systems39–41. For example, Jahanbakhsh et al.40 
built a human-in-the-loop AI question answering system to assist users with business documents. The system was 
well-aligned with the needs of actual users, as their questions were collected in-situ while users were working on 
their documents naturally (i.e., conducting their everyday work tasks). In another study, Wang et al.42 investigated 
the feasibility of enabling a versatile conversational interactions with mobile interfaces using an LLM. While they 
designed prompting techniques to adapt an LLM to mobile UIs, they barely explored informational queries for 
single-UI interactions. In our work, we also explore navigational queries and extend the study beyond GUIs to 
(i) full mobile applications and (ii) datasets.

Sentiment analysis with LLMs
Another research area that is relevant to our work is Sentiment Analysis, an NLP technique whose goal is to 
examine the emotional tone of an utterance or piece of text. Varia et al.43 proposed an unified framework for 
solving Aspect-based Sentiment Analysis (ABSA). ABSA is a sentiment analysis task that involves four elements 
from user-generated texts: aspect term, aspect category, opinion term, and sentiment polarity. Varia et al. fine-
tuned a T5 model with instructional prompts in a multi-task learning fashion covering all the sub-tasks, as well 
as the entire quadruple prediction task. They showed that the proposed multi-task prompting approach yielded 
a performance boost in a few-shot learning setting.

In a similar study, Simmering and Huoviala44 assessed the performance of GPT-3.5 in zero-shot and fine-
tuned settings on the ABSA task. They found that fine-tuned GPT-3.5 achieves a state-of-the-art F1 score of 
83.8% on both aspect term extraction and sentiment polarity classification of the SemEval-2014 Task 4, improving 
upon the state-of-the-art model InstructABSA45 by 5.7%. However, the performance came at the cost of 1000 
times more model parameters to fine-tune, with the associated costs, and an increased latency at inference time. 
Simmering and Huoviala’s results indicated that while detailed prompts improve performance in zero-shot and 
few-shot settings, they are not necessary for fine-tuned models.

Zhang et al.46 compared the capabilities of LLMs with small LMs trained on domain-specific datasets, on tasks 
such as conversational classification and multifaceted analysis of subjective texts. Overall, Zhang et al. evaluated 
performance across 13 tasks on 26 datasets and found that, while LLMs demonstrated satisfactory performance 
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in simpler tasks, they were outperformed in more complex tasks by small LMs where deeper understanding or 
structured sentiment information is required. Nonetheless, LLMs significantly outperformed smaller models in 
few-shot learning settings, suggesting their potential when data curation and labelling are limited.

Semantic gap
The semantic gap—the difficulty to articulate information needs in a way reliably understandable by a com-
puter—is a fundamental challenge in every information retrieval system47. CAs are increasingly being used to 
bridge this gap by allowing users to formulate their queries in natural language27,39–41.

In the context of GUI-related CAs, Todi et al.27 elicited over one thousand query intents that were manually 
labelled into different categories and were used to develop a CA prototype. While they presented how intelligent 
systems can be designed to interact with GUI datasets intuitively, their CA prototype was based on the popular 
Rasa framework [https://​rasa.​com] which relies on predefined handwritten rules and user stories. While rule-
based approach is highly interpretable and adaptable to new domains and languages, it does not fully capture the 
variability of natural language and depends on the quality and coverage of the rules, which is clearly not scalable. 
In order to address this constraint, in our work we employ pre-trained LLMs that offer great flexibility, which 
can be adapted to new tasks with little programming effort, and can be deployed on commodity mobile devices.

Transfer learning
Transfer learning is an ML method where a pre-trained model can be used as the starting point for a model on 
a new task or domain48. For example, a model trained on a general-purpose image dataset such as ImageNet49 
can be adapted to understand more specific images such as X-ray images. Similarly, a model trained on a lan-
guage disambiguation task can be repurposed for another task such as query disambiguation50. One of the main 
advantages of transfer learning is that a better performance can be achieved as compared to training with only 
a small amount of data from scratch. This is possible thanks to the adaptation (a.k.a fine-tuning) of the model 
hyperparameters on new data, which allows for rapid and more adequate optimisation. The intuition of fine-
tuning in NLP is that, during the pre-training phase, the model has learned rich representations of a language, 
which enables it to more easily learn (or ‘be fine-tuned to’) the requirements of a downstream language under-
standing task51 such as sentence classification. Interestingly, previous research has found that a well fine-tuned 
small language model can outperform large-scale ones52,53.

Pre-training of LLMs on diverse corpora of unlabelled text has led to several breakthroughs in the use of 
ML for NLP tasks54. Some of the most notable examples of such models include, BERT55, RoBERTa56, XLNet57, 
PaLM58, LLaMA53, and the GPT family59–61, including its recent and notably popular variant, ChatGPT62 and 
the open-source alternative BLOOM63. The main component for the success of these LLMs is the transformer 
architecture64. In this paper, as hinted before, we study a series of lightweight LLMs that can be deployed on 
commodity mobile devices in order to run inference tasks offline. Figure 1 and Table 2 provide an overview of 
these LLMs, together with the above-mentioned popular LLMs for comparison.

Privacy and sustainability issues of LLMs
As LLMs are becoming increasingly more ubiquitous, their impact on users’ privacy becomes more evident. 
Previous research indicated that LLMs can be susceptible to training data leakage, where sensitive information 
can be extracted from the models34. Due to high number of parameters and size of datasets that are processed 
during training, large-scale models are especially prone to unintentional memorisation of portions of their 
training data that could be regurgitated during usage65. In turn, CAs built on these models can be vulnerable 
to such privacy breaches66. However, as shown in a recent study, using smaller models can help to mitigate the 
LLM memorisation issue67.

Moreover, human-like interaction offered by present-day CAs opens up possibilities for user nudging, decep-
tion, and manipulation68. For example, users may disclose more information and/or excessively rely on a person-
alised agent when they confuse it with a human being69. Interestingly, people tend to perceive information sharing 
practices of a CA (e.g., sharing user’s data with third parties) less negatively if the CA is more socially interactive, 
and are more likely to make intimate, privacy-sensitive disclosures to such agents70. Results of a recent survey on 
smartphone usage indicate that users vary in their attitudes towards privacy based on personality traits—while 
some groups are risk-cautious, others are negligent regarding potential threats71 which may increase their likeli-
hood of unwittingly compromising their sensitive data. Further, users’ propensity to disclose private informa-
tion to CAs, combined with the lack of knowledge regarding information collection, the storage and disclosure 
practices72 seem to be at odds with their proclaimed need for transparency and control over their personal data73.

Training CAs based on large neural networks is associated with high energy consumption which, in turn, 
can have a long-term impact on the environment as highlighted in previous work74,75. Roller et al.76 mentioned 
that local, on-device, deployment of fine-tuned LLMs can offer a way to enhance privacy and reduce their envi-
ronmental footprint. Interestingly, Huggins et al.77 demonstrated that only 25 training examples are required to 
achieve a high intent recognition accuracy with a fine-tuned BERT model, showing feasibility of training small 
language models on a personal laptop. In this paper, we systematically analyse 8 lightweight LLMs in terms of 
size, performance, and overall fine-tuning time. We also discuss their suitability for deployment on mobile and 
ubiquitous devices; i.e., LLMs that can be loaded on device and run without the need to communicate with 
external servers.

https://rasa.com
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Materials
We used the “Conversations with GUIs” dataset27, which comprises of 1317 labelled user queries as a training 
material for our LLMs. The dataset has elicited example queries at four target variables (a.k.a intents: query score, 
query purpose, response format, and information feature) from three different user groups (end-users, designers, 
and developers) that were provided together with different GUI screenshots.

Our motivation for choosing this dataset is three-fold. First, it contains out-of-domain data for LLMs and 
hence model fine-tuning is expected for them to perform adequately. Second, it includes personalised user data 
that can be considered privacy-sensitive. Third, contrary to medical records datasets, it is publicly accessible. 
Overall, the dataset provides us with an interesting foundation to explore the trade-off between CAs performance 
and privacy considerations, which is essential to mobile and ubiquitous systems.

Sample queries for each user group are presented in Table 1. For example, the query “Show app rating” (id.227) 
is an example of an App-level intent whose goal is to obtain numeric information regarding app’s metadata, 
while the query “Is there a similar app” (sic, id.1154) refers to the dataset and its purpose is to filter information. 
Note that the query types differ in terms of difficulty and some of them were ambiguously labelled, resulting in 
different types of classification errors that we discuss in ‘Misclassification examples’ section. Also note that, as 
hinted earlier, even though this dataset was not meant to account for privacy-sensitive data, many queries can 
be considered as such (see e.g., id.957, id.792 and id.887).

Table 1.   Query examples (verbatim, in no particular order, chosen at random) for different user groups. We 
provide an id for each query that refers to the row number in the “Conversations with GUIs” dataset.

Group (id.) Example query Scope Purpose Format Info. feat.

Designers

79. Is there video support? UI Inform Binary Functionality

862. How can I make a profile? UI Educate Textual Settings

957. Show me security features Dataset Filter Image Privacy

Developers

227. Show app rating App Inform Numeric Metadata

854. where is the banner visible? UI Find Image Element

1154. Is there a similar app Dataset Filter Binary Metadata

End-users

16. How can I save a search? UI Educate Image Functionality

792. Can i see my credit balance? UI Inform Binary Element

887. show me all apps using my location! Dataset Filter Image Sensor

Figure 2.   Class distribution of the considered target variables in our study.

Table 2.   Description of the studied pre-trained lightweight LLMs. Model size is proportional to the number of 
Layers, Attention Heads, and trainable Parameters.

Model Layers Att. heads Parameters Size

BERT Base 12 12 110M 440 Mb

BERT Large 24 16 340M 1.2 Gb

ALBERT Base 12 12 11M 63 Mb

ALBERT Large 24 16 17M 87 Mb

RoBERTa Base 12 12 82M 499 Mb

RoBERTa Large 24 16 355M 1.6 Gb

XLNet Base 12 12 110M 565 Mb

XLNet Large 24 16 340M 1.57 Gb
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Methods
In the following, we define our four intent prediction tasks, according to the ground-truth labels provided by 
the “Conversations with GUIs” dataset, and the chosen models to conduct the tasks. We frame the query intent 
prediction task as classifying a user utterance (or query) under four different categories, which we will refer to 
as our target variables (or intents): 

1.	 Query scope (3 classes) Whether a query refers to an individual GUI, an application, or the entire dataset.
2.	 Query purpose (6 classes) The actionable goal behind the query; e.g. to filter based on some criteria, get more 

information, request suggestions, etc.
3.	 Response format (4 classes) The expected delivery format of the retrieved information: image, text, numeric, 

or binary.
4.	 Information feature (13 classes) Particular features that the query was referring to; e.g., related to the acces-

sibility or privacy of an application, its design, etc.

Finally, Fig. 2 provides the distribution of classes per target variable. As can be observed, we tackle four multi-
class classification problems in this paper. Also, we can see that many of the classes are imbalanced. Therefore, as 
explained later, we will factor in this observation when measuring intent classification performance.

Models
We tapped into the LLMs from the Ernie repository to conduct our study: https://​github.​com/​labte​ral/​ernie. The 
main reason for choosing Ernie is that it is publicly available and contains state-of-the-art lightweight LLMs 
suitable for on-device deployment. According to a recent survey78, the RAM capacity of low-end (< $ 150 ) to 
mid-end (< $ 550) mobile devices falls in the range between 3 and 8 Gb. Considering that most of the RAM will 
be occupied by background services and other running apps, we set 2 Gb as the upper-bound for LLM size so 
that it can be deployed on commodity mobile devices.

BERT (Bidirectional Encoder Representations from Transformers)55 is a Transformer-based model and the 
first-of-its-kind groundbreaking LLM. It combines left-to-right and right-to-left training together with a Masked 
Learning strategy, in which each word in a training sequence is replaced with a special token that the model has 
to predict. BERT was pre-trained on BookCorpus79, that consists of over 11k unpublished books, and on the 
English Wikipedia.

RoBERTa (Robustly Optimized BERT Approach)56 builds on BERT’s language masking strategy, where the 
model learns to predict intentionally hidden sections of text within otherwise unannotated language examples. 
RoBERTa was trained on the reunion of five datasets: (1) BookCorpus79, (2) English Wikipedia, (3) CC-News80 
which contains 63 million English news articles, (4) OpenWebText60, and (5) Stories81 which contains a subset 
of the CommonCrawl corpus82 filtered to match the story-like style of Winograd Schemas83.

ALBERT (A Lite BERT)84 is a Transformer architecture based on BERT, but it includes substantially less 
hyperparameters (10M vs 110M). To accomplish this goal, ALBERT shares same weights across different layers: 
it has one encoder layer that is applied twelve times on the input. Since ALBERT has about 10 times less hyper-
parameters than BERT, it puts significantly less strain on computational resources. ALBERT was pre-trained on 
the same data as BERT.

XLNet57 is an autoregressive pre-trained LLM that uses bidirectional contexts and maximizes the expected 
likelihood of a text sentence over all permutation orders, outperforming BERT on 20 different tasks. It incorpo-
rates ideas from the Transformer-XL architecture85 and overcomes the fixed-length context limitation of BERT 
and derivative models, resulting in a powerful tool for NLP applications. XLNet was pre-trained on the same 
datasets as BERT plus CommonCrawl, Giga586 (16 Gb of text), and ClueWeb 2012-B87.

Two remarks are worth mentioning. First, all models can be distinguished based on their size (e.g., Base vs 
Large) but they all comply with our established 2 Gb limit. Second, all models are case-sensitive, which means 
that they can disambiguate between common nouns and proper nouns; e.g., an apple (fruit) versus Apple (brand 
name). This is a convenient feature for any modern CA to be usable in practice.

In addition to these models, we also considered ChatGPT, a state-of-the-art proprietary LLM by OpenAI 
trained on an undisclosed vast amount of data; cf. https://​help.​openai.​com/​en/​artic​les/​67834​57. Our aim was 
to better understand how lightweight LLMs would compare against the most popular LLM at present. We used 
the gpt-3.5-turbo-1106 version of ChatGPT, which is available through a paid JSON-based API for custom 
fine-tuning.

Fine‑tuning procedure
We randomly split all the coded queries in the dataset into three partitions: 70% for training, 10% for validation, 
and 20% for testing. We use stratified sampling to ensure the same distribution of classes in each partition. The 
training and validation partitions are used for model fine-tuning, whereas the testing partition is held out for 
model performance evaluation, as this partition simulates unseen data.

We apply fine-tuning for an incremental number of epochs, from 1 to 20, using a batch size of 16 queries 
during training and 32 queries for validation. We employ the Adam optimiser88 with learning rate η = 2

−5 and 
exponential decays β1 = β2 = 0.9 . Finally, to stabilise training, we set a clipnorm value of 1. In total, we con-
ducted 720 fine-tuning experiments on the “Conversations with GUIs” dataset, corresponding to the combination 
of 9 models × 20 epochs × 4 query intent prediction tasks.

https://github.com/labteral/ernie
https://help.openai.com/en/articles/6783457
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All experiments, including the additional ones that we report in the Supplementary Materials, were performed 
in a single Tesla V100 (SXM2, 32 GB) GPU card. Note that, after fine-tuning, the models are ready to be deployed 
on commodity mobile devices. To ease replication and further follow-up work, we will share our code and model 
checkpoints upon publication. Please see the Supplementary Materials for details about ChatGPT’s fine-tuning 
procedure and experiments on other datasets.

Results
In the following plots we report performance results in terms of Balanced Accuracy and Area Under the ROC 
curve, as defined below. The dashed horizontal lines denote the classification performance of a random classifier 
(computed as 100/c, where c is the number of classes to predict in each case). The random classifier provides a 
theoretical lower bound, i.e. no LLM should perform worse than random after model fine-tuning. As we can see 
in the following plots, in all cases ChatGPT achieved the best zero-shot performance, but it was outperformed 
by other models after fine-tuning.

Balanced accuracy
Classification accuracy (defined as the number of correct predictions across all predictions) is the standard 
evaluation metric in classification problems, however it is very sensitive to imbalanced data, i.e., when one of the 
target classes appears more often than the others; see Fig. 2. Therefore, to account for this, we report Balanced 
Accuracy instead, which is the arithmetic mean of sensitivity (true-positive rate) and specificity (true-negative 
rate). Figure 3 summarizes the results.

In terms of query scope prediction, ALBERT models are clearly outperformed by all other models. Overall, 
RoBERTa Large is the best performer, with a balanced accuracy of 84% that is reached after 7 epochs. Notably, 
BERT Large achieves only slightly worse performance (83%) in just 4 epochs. As for query purpose, we can 
see that all models perform slightly worse than in case of query scope. Specifically, RoBERTa Large reaches the 
best result of 76% Balanced Accuracy at 6 epochs, however, its performance drops after a few more epochs. The 
performance degradation of all models in this task is likely explained by the fact that there are as twice as many 
target variables in this case (6 classes) and thus there may be more room for ambiguity than in the query scope 
case (3 classes).

Regarding response format prediction, this task involves 4 classes and leads to a similar model performance 
as in the case of query scope prediction. RoBERTa Base is the best performing model, with 89.9% Balanced 
Accuracy reached after 7 epochs, closely followed by BERT Large that reached the same result in 18 epochs. 
Overall, the behaviour of all models in this tasks bears a close resemblance to that of the query scope prediction 
experiments, with the exception of ALBERT Large that performs notably better in this case.

Finally, when it comes information feature prediction, the task seems to be the most challenging due to 
a substantially large number of target variables (13 classes). As can be observed, all models require way more 
training epochs to achieve their optimal performance. The best performing model for this task is RoBERTa Large 
with 62.8% Balanced Accuracy in 15 epochs, followed by ChatGPT, which achieved the same performance but 
after 20 epochs. It is worth pointing out that the performance of most models could have continued improving 
beyond 20 epochs.

Figure 3.   Balanced accuracy results.

Figure 4.   AUC ROC results.
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AUC ROC
The Area Under the ROC curve (AUC ROC) is a popular metric to assess the discriminative power of any 
classifier89. The ROC curve provides information regarding a model’s false-positive rate against its true-positive 
rate, across a range of classification thresholds, and the AUC ROC is the area under such a curve. Since AUC ROC 
is defined for binary classification problems and all our experiments have more than two classes, we compute it 
in a one-vs-all fashion, to account for multi-class classification. Figure 4 summarizes the results.

As can be seen, there is an analogous trend to the results observed in the Balance Accuracy experiments (cf. 
Fig. 3). In terms of query scope prediction, the best performance is achieved by the RoBERTa models, with mod-
els reaching 87% AUC ROC in 3 epochs, while the ALBERT models performed the worst. As for query purpose, 
the best performance is exhibited by RoBERTa Large, which reaches 86% AUC ROC in 6 epochs. Again, ALBERT 
models performed the worst. This is likely explained due to its substantially smaller number of hyperparameters 
as compared with the other models, making ALBERT unsuitable for fine-tuning to GUI-related tasks.

Regarding response format prediction, RoBERTa Large is the best performing model, reaching 93% AUC 
ROC in 7 epochs. ALBERT Large performed notably better (76% at 12 epochs) when compared to its perfor-
mance for the other target variables, where it did not achieve any improvement.

Finally, when it comes information feature prediction, RoBERTa Base converged the fastest and reached 
the best AUC ROC of 80% at 15 epochs. ChatGPT achieved its peak performance of 79.8% at 20 epochs. On 
the other hand, contrary to Balanced Accuracy, where there were larger discrepancies between XLNet Base and 
XLNet Large models, this time XLNet Base tended to perform better than its Large variant.

Summary of findings
We have seen a clear and interesting relationship between the number of classes and classification performance 
of all the studied LLMs. First, for a small number of classes the trend resembles a logarithmic curve with models 
saturating after just a few epochs. Then, as the number of classes increases, the curve gets flatter and the models 
take longer to reach optimal performance. While ChatGPT outperformed all other models initially (zero-shot 
classification), it exhibited the same fine-tuning trends. It was also interesting to notice that it was outperformed 
by other models after fine-tuning, in line with previous experiments performed by Zhang et al.46.

Our analysis underscores the importance of LLM fine-tuning for query intent prediction tasks, and highlights 
the need to select the appropriate model for the task at hand. Our analysis also helps to determine the opti-
mal model choice for predicting query intent based on the trade-off between model complexity and efficiency. 
Importantly, we fine-tuned all lightweight LLMs in a commodity GPU card, so researchers and practitioners 
can easily reproduce our findings.

The general trend we observed is that, over time, the models converged to an optimum or “sweet spot”. We 
should note that the small fluctuations observed in our performance metrics are attributed to fluctuations in 
the training loss over epochs. They are mostly due to (1) the stochastic nature of gradient descent, (2) the fact 
that we cannot fit all queries in a single batch, and (3) the large size of the models in proportion to the small 
size of the dataset.

For the sake of conciseness, Table 3 provides a summary of the top-3 performing models for the query intent 
prediction tasks considered. All models were ranked on the basis of the optimum value of Balanced Accuracy; 
i.e., when each model achieved maximum Balanced Accuracy in a minimum number of epochs. The table also 
reports the time (in minutes) to fine-tune each model until such an optimum state. We can see that RoBERTa 
Large is the only model that is systematically ranked among the top-3 for all tasks. Please note that, instead of 
reporting a summary of all models, by analysing the top-3 best performing models, we provide more concise 
and focused insights for researchers and developers interested in prototyping their chatbots. As a matter of fact, 

Table 3.   Summary of top performing models for each task after fine-tuning, based on the achieved balanced 
accuracy (higher is better) and number of epochs (lower is better). The ‘Zero-shot Acc.’ column denotes 
classification accuracy before fine-tuning. Fine-tuning times (lower is better) are computed until the best 
epoch reported in their respective row. ChatGPT only made it to the top-3 for the Information Feature task.

Task Top-3 models Zero-shot Acc. (%) Bal. Acc. (%) Epochs Time (min)

Query scope  (3 classes)

RoBERTa Large 33.3 84.2 7 6.59

BERT Large 33.3 82.8 4 3.75

RoBERTa Base 33.3 82.6 17 7.11

Query purpose  (6 classes)

RoBERTa Large 16.6 75.8 6 5.43

XLNet Base 17.9 75.3 10 4.91

BERT Base 15.8 75.0 15 6.85

Response format  (4 classes)

RoBERTa Base 24.2 89.0 14 5.88

RoBERTa Large 25.0 88.9 7 6.51

Bert Base 17.8 87.4 15 6.03

Information feature  (13 classes)

RoBERTa Base 7.1 62.8 15 6.41

ChatGPT 49.4 62.8 20 58.5

RoBERTa Large 8.1 54.4 16 14.67
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in the initial stages of research it may be more practical to experiment with a model that allows for faster itera-
tion cycles. For example, RoBERTa Base provides similar performance than RoBERTa Large, yet it takes half the 
time to be optimally fine-tuned.

To further contextualise our findings, we would like to highlight a longstanding discussion regarding the 
trade-off between model complexity and the availability of training data. As shown in previous work, having bet-
ter quality data rather than more data will lead to enhanced model performance, regardless of its complexity25,26. 
This relationship seems to be reflected in our experimental results as well, where larger models (e.g. BERT Large) 
or models trained on more data sources (e.g. XLNet) did not always lead to a better performance.

Discussion
We begin by answering our main research questions regarding model performance (RQ1) and the relationship 
between number of training epochs and performance (RQ2). We also provide some misclassification examples 
to better contextualise our findings. We then discuss the implications of our research to relevant stakeholders, 
consider the limitations of our study, and propose several possible avenues for future work.

Model performance
Before fine-tuning, all lightweight LLMs were able to capture general language features and patterns, but they did 
not exhibit adequate performance for any of the tasks at hand. After fine-tuning, however, the models learned 
from the training data and demonstrated much better performance, allowing them to better tackle each of the 
considered prediction tasks. It should be noted that only ChatGPT performed well at zero-shot classification, 
outperforming all lightweight LLMs initially, but it was later outperformed by other models after fine-tuning. 
ChatGPT’s excellent zero-shot performance is attributed to the fact that it is much more complex and has much 
more knowledge about the (written) world than any of the lightweights LLMs we have studied.

RQ1a: Which pre-trained models achieve the highest balanced accuracy after fine-tuning for predicting query 
intent in terms of: scope, purpose, response format, and information feature?

We observed that RoBERTa models perform the best in all of the four prediction tasks. Specifically, RoBERTa 
Large performed best for query scope (84.2%) and query purpose (75.8%), while RoBERTa Base was the best 
for response format (89%, outperforming RoBERTA Large by 0.1 points) and information feature (62.8%). It 
has to be noted however, that both models significantly differed in their fine-tuning time until convergence, as 
discussed in the next section.

RQ1b: Is there a model that performs best in all of the four tasks above?
Based on our previous discussion, we posit that while there is no single winner-takes-all model, except 

ChatGPT which excels at zero-shot classification tasks, RoBERTa Large is the most sensible model for all tasks. 
Strictly speaking, while RoBERTa Base achieved the best performance in predicting response format, it was by 
a negligible margin as compared to RoBERTa Large: 89% versus 88.9%, and the differences are not statistically 
significant. Therefore, for the best overall performance (i.e., highest accuracy), we recommend RoBERTa Large 
for development of CAs for GUI assistance.

Nonetheless, it should also be noted that despite its small size (almost one third of RoBERTa Large), RoBERTa 
Base performs exceptionally well in the most challenging task of information feature prediction which contains 13 
different classes (see Table 3 for performance details). Therefore, it should be considered for disambiguation tasks 
with large number of classes, especially given its short convergence time (6 min vs 16 min for RoBERTa Large).

Relationship between training epochs and performance
As hinted previously, each model has its preferred “fine-tuning sweet spot”. In the following, we discuss the vari-
ability observed in terms of epochs for each model to achieve their best performance.

RQ2a: What is the minimum number of fine-tuning epochs for each pre-trained model?
At least six to seven epochs are required to achieve competitive performance in all of the considered prediction 

tasks, except from information feature prediction, were at least fifteen epochs are usually required. Further, with 
the exception of information feature, beyond fifteen epochs some models started to overfit. This could be justified 
by the high complexity of this task which, compared to the other tasks, requires longer training times. Overall, 
it is advised not to fine-tune these models beyond fifteen epochs on a dataset like the one we have analysed.

RQ2b: What is the optimal number of fine-tuned epochs for each model to achieve the best performance?
We observed that this number is consistently in the 7–15 range for all tasks, with the exception of the chal-

lenging information feature prediction task, where all models needed more time to converge. We observed that 
all models apart from ALBERT family and XLNet Large required only 3–5 epochs to start approaching their 
optimum performance. This observation is in line with previous work that reported similar ranges for BERT 
models90,91. When it comes to information feature prediction, for BERT family models, 10–15 epochs were needed 
to reach optimal performance, while for RoBERTa models this range fell between 7 and 12 epochs. A notable 
exception here are the XLNet models, whose performance followed a trend that was likely to peak beyond 20 
epochs. Overall, we observed that a larger number of classes per intent implies a more gradual learning curve.

Misclassification examples
Table 4 contains examples of queries misclassified by the top-3 best performing models reported before. While 
overall the models performed quite well, some of the user queries proved to be difficult due to their ambiguous 
character. For example, “How to create a shopping basket?” (id.985) was predicted by RoBERTa Large as a ‘Sug-
gest’ rather than an ‘Educate’ purpose, which, given the limited context, could theoretically fall into both of these 
categories. Similarly, in ‘What data are we collecting” (id.581), RoBERTa models predicted information feature 
to be a ‘Metadata’ instead of a ‘Privacy’ class. Again, the query was possibly challenging to the model due to its 
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brevity and lack of more extensive contextual information. Another ambiguous example, which proved prob-
lematic to ChatGPT and RoBERTa Large, is “Where is the privacy?” (id.813), which was identified as a request 
for a ‘Binary’ or ‘Textual’ response rather than an ‘Image’ response format. It was again difficult to predict the 
ground-truth format since both are equally sensible candidates to resolve this query.

It also should be noted that the dataset contains some queries that are duplicated or near-duplicated but 
have different ground-truth labels. For example, “Is there a login page?” (id.21 and id.65) is labeled in terms of 
Information Feature as ‘Page’ for id.21 and as ‘Functionality’ for id.65. These cases, while were not frequent, may 
have introduced some noise in the models and thus made the prediction tasks a bit more challenging.

Implications
Overall, users are currently faced with two alternatives. They can either use ChatGPT without fine-tuning to 
achieve competitive classification performance (especially for intents having a large number of classes) yet at the 
expense of compromising their privacy and some monetary costs ($0.008 per 1K tokens, around $1 per intent 
category in the “Conversations with GUIs” dataset), or fine-tune lightweight LLMs on their own premises to 
achieve better performance.

In the following, we discuss the implications of our findings to relevant stakeholders, including developers, 
designers, end-users, and the mobile and ubiquitous multimedia community. It should be noted that these 
recommendations are mostly based on our findings on the “Conversations with GUIs” dataset, which is more 
challenging that other NLP datasets. We refer to the Supplementary Materials for additional experiments that 
highlight superior results for most of the models we have studied in this paper.

For developers
Without fine-tuning, all models except ChatGPT perform like a random classifier in most cases (see dashed 
lines in Figs. 3 and 4). It is clear thus that lightweight LLMs are not ready to support the users’ needs in a CA 
context without proper fine-tuning. This can be explained by the fact that all the studied lightweight LLMs were 
pre-trained on general-purpose data, whereas the “Conversations with GUIs” dataset27 is specific to user inter-
faces so it can be considered ‘out-of-domain’ data. Interestingly, right after just one epoch all lightweight LLMs 
exhibited a boost in their classification performance results. Moreover, we observed that smaller (Base) models 
do not necessarily require less number of fine-tuning epochs than larger models.

For designers and end‑users
CAs have potential to streamline interaction with GUIs by offering an additional channel of communication. For 
example, users can issue conversational queries (via text of voice) to quickly access information regarding an app’s 
privacy settings (e.g., GPS tracking) that would be otherwise hidden in a long-winded technical specification 
document. Knowing which model offers the best accuracy to memory footprint trade-off can help users decide 
if performance gains are worth the additional time spent on interacting with the model. It should be noted that 
hardware limitations may make fine-tuning of very large models infeasible for users without access to high-
performance computing. This point also applies to designers who work for companies that are concerned about 
economical use of the available assets. Effectively, on a global scale, our work can contribute to more reasonable 
and greener use of computational resources.

For mobile and ubiquitous computing
Ubiquitous applications are expected to operate in dynamic environments, in which mobile devices can oper-
ate seamlessly, without relying on data connectivity. Our work sets a cornerstone in this regard by allowing the 
interested researchers to deploy efficient lightweight LLMs on commodity hardware for CA-based applications. 

Table 4.   Examples of classifications errors committed by the top-3 performing models, highlighted in bold. 
The same query is tested cross-model.

Task Top-3 models (id.) Example query

Query intent

Predicted Ground-truth

Query purpose

RoBERTa Large Educate Educate

BERT Large 985. How to create a shopping basket? Educate Educate

RoBERTa Base Suggest Suggest

Query  scope

RoBERTa Large UI-level App-level

XLNet Base 916. Can I enlarge the app window? UI-level App-level

BERT Base UI-level App-level

Response  format

RoBERTa Base Image Image

ChatGPT 813. Where is the privacy? Binary Image

RoBERTa Large Textual Image

Information  feature

RoBERTa Base Metadata Privacy

RoBERTa Large 581. what data are we collecting Privacy Privacy

BERT Large Privacy Privacy
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Some examples of these applications include, for example, developing multi-party CAs92 or maintaining reading 
flow in e-readers93. Therefore, our work should be seen as an enabling technology for the mobile and ubiquitous 
computing community.

As highlighted by Mhlanga94, protecting data privacy not only is an ethical obligation that demonstrates 
respect for users’ rights but should also be a priority for company owners and developers that they employ. While 
the General Data Protection Regulation (GDPR) legislation requires companies and organisation to protect the 
personal data of end-users, in practice achieving a 100% compliance may be unlikely. In our investigation, we 
envision that end-users can run CAs based on lightweight LLMs locally on their own device to avoid sending 
queries to cloud-based services, thus protecting their privacy. Depending on the level of tech-savviness and the 
available resources (the GPU card we used in our experiments costs around $3k.), lightweight LLMs can be 
directly trained by end-users themselves or supplied as a one-off purchase chatbot plugin supplied by a company.

Limitations and future work
It should be noted that while we adopted 2 Gb of RAM as our upper-bound for model deployment, this size may 
exceed the capacity of some older mobile devices, so it is advised to work with models well below that threshold 
to ensure a wider range of compatibility. While, overall, larger models yielded best performance in our study, 
XLNet Base (for query purpose) and RoBERTa Base (for query scope) match the top performing models closely, 
offering a viable alternative while substantially reducing required RAM ( ∼60% reduction) for older mobile 
devices which have lower memory capabilities.

One aspect that we have not explored in this work is the analysis of runtime performance on low- and mid-
end devices, as we did not deploy our models. This implementation aspect should be explored in future work. 
In addition, it is advised to consider an online learning scenario, where new (unseen) queries are provided by 
end-users as they interact with the models with their devices. This can be implemented following the same 
fine-tuning methodology that we have presented, but using a batch size of 1, to ingest one new query at a time.

Future work could consider more advanced fine-tuning techniques such as delta tuning95 and low-rank 
adaptation96 in order to fine-tune LLMs that are prohibitively costly (in terms of computational resources) to 
many researchers, such as those depicted in Fig. 1. However, it should be noted that these techniques require 
much more data to converge compared to traditional fine-tuning25,97. Finally, future work should also explore 
runtime and battery consumption on specific models of low- and mid-end mobile devices to practical insights 
to provide practical insights regarding deployment of light weight LLMs on commodity devices.

Moving forward, we would like to propose three possible applications of privacy-preserving lightweight LLMs 
to existing products that can be developed in the future to support different groups of GUI users. Firstly, a CA 
can support developers who could use it on demand from the command line interface. Alternatively, such a CA 
can be also embedded in integrated development environments such as Visual Studio Code [https://​code.​visua​
lstud​io.​com/]. Secondly, designers can benefit from a CA integrated into interface design tools like Figma [https://​
www.​figma.​com/] or Sketch [https://​www.​sketch.​com/] to assist them in collaboratively creating new interfaces. 
In this context, the CA could aggregate anonymised user queries in an ethical way (e.g. removing brand names 
or entities using NLP methods) for users who opt-in to improve the CA functionality by informing a third party 
service. Thirdly, since end-users are mostly concerned about privacy features27, we suggest that CAs could be 
integrated in Google Play [https://​play.​google.​com/​store/​games] or the iOS App Store [https://​www.​apple.​com/​
app-​store/] so that users can query privacy and other metadata related features of specific applications.

To conclude this section, we would like to acknowledge that, despite its privacy-enhancing potential, fine-
tuning LLMs on our own premises can raise some ethical issues. Since there is no oversight regarding how the 
models will be deployed “in the wild”, they could potentially be applied to malicious activities such as stealing 
user credentials (cf. FraudGPT [https://​theha​ckern​ews.​com/​2023/​07/​new-​ai-​tool-​fraud​gpt-​emerg​es-​tailo​red.​
html], WormGPT [https://​www.​infos​ecuri​ty-​magaz​ine.​com/​news/​wormg​pt-​fake-​emails-​bec-​attac​ks/], and the 
like). Nonetheless, we believe that, all things considered, fine-tuning lightweight LLMs on premise brings more 
benefits to users than risks.

Conclusion
We have studied how to best fine-tune different lightweight pre-trained LLMs for on-device query intent predic-
tion to support users during GUI-related interactions with CAs. Our results indicate that there exists a middle 
ground between giving away our privacy to some third party cloud service in exchange for boosted performance 
(specially in zero-shot classification scenarios) and resorting to traditional CA developments that do not scale 
well. While RoBERTa Large was shown to be the best performer overall, among all the models explored, RoBERTa 
Base and XLNet Base offered the best trade-off between performance (intent prediction accuracy and AUC ROC) 
and memory footprint, and thus they may be equally suitable for on-device CA deployment. Taken together, our 
findings provide valuable insights for different stakeholders who use or work with GUIs, and who are interested 
in developing mobile and ubiquitous systems that need to balance performance and memory footprint while 
also considering privacy implications. Our model checkpoints and software are publicly available at https://​luis.​
leiva.​name/​llmgui/.

Data availability
The datasets used and/or analysed during the current study are available from the corresponding author on 
reasonable request.
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