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Automatized self‑supervised 
learning for skin lesion screening
Vullnet Useini 1,2, Stephanie Tanadini‑Lang 2,3, Quentin Lohmeyer 1, Mirko Meboldt 1, 
Nicolaus Andratschke 2,3, Ralph P. Braun 4 & Javier Barranco García 2,3*

Melanoma, the deadliest form of skin cancer, has seen a steady increase in incidence rates worldwide, 
posing a significant challenge to dermatologists. Early detection is crucial for improving patient 
survival rates. However, performing total body screening (TBS), i.e., identifying suspicious lesions 
or ugly ducklings (UDs) by visual inspection, can be challenging and often requires sound expertise 
in pigmented lesions. To assist users of varying expertise levels, an artificial intelligence (AI) decision 
support tool was developed. Our solution identifies and characterizes UDs from real‑world wide‑field 
patient images. It employs a state‑of‑the‑art object detection algorithm to locate and isolate all skin 
lesions present in a patient’s total body images. These lesions are then sorted based on their level of 
suspiciousness using a self‑supervised AI approach, tailored to the specific context of the patient under 
examination. A clinical validation study was conducted to evaluate the tool’s performance. The results 
demonstrated an average sensitivity of 95% for the top‑10 AI‑identified UDs on skin lesions selected 
by the majority of experts in pigmented skin lesions. The study also found that the tool increased 
dermatologists’ confidence when formulating a diagnosis, and the average majority agreement 
with the top‑10 AI‑identified UDs reached 100% when assisted by our tool. With the development 
of this AI‑based decision support tool, we aim to address the shortage of specialists, enable faster 
consultation times for patients, and demonstrate the impact and usability of AI‑assisted screening. 
Future developments will include expanding the dataset to include histologically confirmed melanoma 
and validating the tool for additional body regions.
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Malignant melanoma, the most serious form of skin cancer, is known for its ability to metastasize and rapidly 
spread to other organs. However, if diagnosed early enough, it can be removed through surgical intervention. 
Projections worldwide indicate an expected increase of 50% in incidence and 68% in the death rate by 2040 1. 
This scenario, combined with a shortage of dermatologists to meet such demand, requires new solutions to assist 
experts in fighting this growing pandemic. Accurate diagnosis of skin cancer requires specific skills and experi-
ence that can only be acquired through proper training, limiting the number of professionals who can perform it 
effectively. A study funded by the Swiss Cancer League 2 demonstrated that dermatological training significantly 
improved the performance of general practitioners (GPs) in diagnosing skin cancer. However, this improvement 
was temporary 3, with its benefits fading within 12 months following the intervention. To assist dermatologists 
in the most time-consuming and error-prone task, total body screening (TBS), it is crucial to develop a reliable 
tool with high diagnostic accuracy. Such a tool would not only sustain long-term improvement but also enable 
the involvement of additional non-experts, such as nurses, technicians, or GPs. Artificial Intelligence (AI) has 
garnered significant interest in the analysis of dermoscopic images, as evidenced by competitions organized by 
the ISIC foundation 4 and numerous high-impact publications. A benchmark study in the field 5 underscores the 
effectiveness of AI-based tools in diagnosing skin cancer through dermoscopic imaging of individual lesions. 
Despite surpassing board-certified dermatologists in certain scenarios, the application of AI in routine consulta-
tions still faces substantial challenges, particularly when performing TBS and incorporating the patient’s context 
into the analysis. During TBS, the expert visually inspects the entire body and selects a few suspicious lesions 
or ugly ducklings (UDs) for further dermoscopic evaluation. The concept of a UD, a potential melanoma candi-
date that deviates from the individual’s nevus pattern, was first introduced in 6. However, it is only recently that 
AI-based research studies have begun to address the screening process by identifying and isolating suspicious 
lesions or UDs, including the patient’s context, as demonstrated in 7. This pioneering study presents a significant 
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limitation regarding generalization and real-world application, as it relied on experienced dermatologists to 
manually label every single skin lesion to train the model. Given that each patient’s context is unique and manual 
labeling is both costly and time-consuming, it is clear that an alternative, labeling-independent approach is neces-
sary. To address this issue, a proposal by 8 suggests the use of a Variational Autoencoder (VAE) for outlier (ugly 
duckling) detection. This approach has several identified limitations. These include the non-uniformity of the 
dataset, which was obtained from multiple sources, and the pretraining of the Variational Autoencoder (VAE) 
on a small patient data pool, which could potentially introduce bias into the predictions. Additionally, validat-
ing the algorithm against a single dermatologist is suboptimal. These concerns highlight issues such as limited 
generalizability, a lack of sample diversity, the potential for single participant bias, and limited error detection.

To tackle these limitations, we propose a self-supervised architecture that is trained on real-world data 
(RWD). This data was acquired during routine consultations at the Dermatology Clinic of the University Hospital 
Zurich (USZ). Furthermore, we suggest validating this approach against multiple experienced dermatologists, 
who are currently considered the gold standard for melanoma diagnosis. Lastly, we present a clinical validation 
that involves diverse groups of interest. The main contributions of this study can be summarized as follows:

• Use of real-world data of total body screening (RWD TBS) acquired in a standardized manner during routine 
consultations at the Dermatology Clinic of the USZ for training, validation and testing;

• Adoption and development of a self-supervised approach for UD sign characterization based on analysis of 
a single patient’s context;

• The clinical validation of the algorithm’s predictions against various groups of interest, and an evaluation of 
its impact as an AI-based decision support tool for melanoma screening;

Methods
A self-supervised AI algorithm was developed for the automatic detection and characterization of UDs in high-
risk patients (i.e., those with more than 100 nevi lesions). Established collaboration with the Dermatology Clinic 
of the USZ and the UZH Clinical Research Priority Program, provided access to a real-world dataset and medical 
experts. These resources were essential for the reliable clinical validation of AI-assisted total-body screening.

For the sake of simplicity, we have broken down the complete pipeline into several distinct stages. First, wide-
field images were acquired during routine consultations at the USZ Dermatology Clinic. Second, all individual 
skin lesions were identified and extracted. Finally, the extracted lesions were transformed into a meaningful 
representation in which similar lesions were grouped together and scored based on their similarity to the average 
appearance of the lesions. In the final step, the AI pipeline was validated against medical experts.

End‑to‑end pipeline description
Data acquisition, analysis and preprocessing
The recruitment process was conducted at the USZ Dermatology Clinic. All participants provided informed 
consent, specifically for this research study, which was approved by the Swiss Ethics Committee under project 
number 2020-01937. We used FotoFinder© ATBM devices to semi-automatically capture high-resolution, polar-
ized, total-body images. For this study, we acquired a total of 90 full-body dossiers from high-risk patients at the 
Dermatology Clinic of the USZ. To maintain patient confidentiality, these images were anonymized to contain 
only the dorsal region of each patient. Additionally, patients’ names were coded to further ensure privacy.

Due to time constraints for clinicians, we preprocessed only a randomly chosen subset of 33 total body images 
from the original set of 90. Out of these 33 refined dorsal images, 11 were randomly selected for the evaluation 
of our end-to-end pipeline. The remaining 22 images served as the data source for training the supervised skin 
lesion detection algorithm. These 22 images were randomly divided into subsets: 15 images for training, 3 for 
validation, and 4 for testing. While the data cannot be released due to privacy considerations, we present some 
descriptions in Fig. 1. Figure 1A and C show histograms representing the number of lesions per patient in our 
labels batch for the skin lesion detection and test batch for the clinical validation study, respectively. Although 
the labels batch was limited to 22 subjects, the distribution of the number of lesions is similar across splits, with 
only the validation set representing a lower mean due to the absence of subjects with more than 500 lesions 
(Fig. 1A). Figure 1B and D depict the pixel areas of the respective bounding boxes for each batch, showing that 
all evaluation splits have similar, right-tailed distributions.

Skin lesion detector
To identify UDs within a patient’s context, it is essential to first identify all lesions. This task can be modeled as 
an object detection problem. For our specific application, we initially favored one-stage detection models due 
to their real-time applicability. Our model selection strategy prioritized high inference speed, with a contin-
gency plan to shift to two-stage detection models if accuracy was compromised. Among the available options, 
 YOLOR9 emerged as the architecture that best fit our criteria, as outlined below and benchmarked against the 
general MS COCO dataset. Our criteria included reliance solely on existing training data, optimized inference 
for high-resolution imagery, superior accuracy in detecting small objects measured through Average Precision 
for Small Objects (APS), and a backbone architecture adept at identifying intricate local patterns inherent in 
Convolutional Neural Networks (CNNs).

To tailor the official YOLOR architecture to our specific needs, we implemented strategic modifications. These 
involved restructuring the model architecture from 80 target classes to a single class, ensuring precise alignment 
with our application’s context. We customized aspect ratios for anchor boxes using K-nearest neighbors (KNN) 
algorithms derived from our unique training data. Additionally, we disabled color channel normalization to 
prevent undesired predictions within shadowed areas, increased the maximum allowable bounding boxes per 
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image for heightened sensitivity, and deactivated the Non-Maximum Suppression (NMS) mechanism during 
inference mode, a deliberate choice made in the pre-merging phase. Furthermore, in our efforts to tailor the 
YOLOR architecture to meet our unique requirements, we utilized the official GitHub repository provided by 
the author, incorporating the previously mentioned modifications.

In the first step, we split our dataset into training, validation, and test sets. The next step consisted of creating 
labels for the supervised model. After consulting with a medical expert, it was decided to label anything that 
could potentially be considered a skin lesion, such as freckles, since it is difficult even for experts to know in 
advance what might be of interest. Additionally, it is critical to provide the AI algorithm with as much patient 
context as possible, to be able to accurately characterize the UDs.

The labeling process can be quite lengthy in patients with many skin lesions. To speed up the labeling process, 
a blob detector such as the one from OpenCV  10 was used before starting the manual process.

One of the challenges in our application is detecting small objects within high-resolution images. Most deep 
learning approaches scale down the images to lower resolution to make them computationally feasible. However, 
this method usually results in a loss of information due to the lower input resolution. The common practice 
to overcome this problem in aerial  imagery11, also adopted by  others12, is to create overlapping regions of the 
original images and labels before sending them to the AI model for training or inference. This approach was also 
followed in our study to ensure that all skin lesions were detected.

After successful training and optimization of our object detection model, the predictions from the extracted 
regions are merged back together for testing, and NMS is applied to the aggregated results, with an Intersection 
over Union (IoU) threshold of 10%. The final version of the model was trained for 900 epochs on the aforemen-
tioned subset of 15 patients, validated on 3, and tested on 4. We calculated test results using established object 
detection metrics, including Recall, Precision, Average Recall (AR) and Average Precision (AP). The training was 
done using a Tesla®P100 16GB GPU, provided by the Swiss National Supercomputing Center (CSCS), without any 
pre-trained weights initialization and required 9 h to complete. After successfully training our model, we applied 
it to the data batch of 11 unseen patients, specifically reserved for the clinical validation study. Together with the 
UD labels created by the participants during the clinical validation study, these predictions enabled us to evalu-
ate further the model’s capability to detect skin lesions using a score metric that is less biased towards the more 
frequently appearing freckles, placing greater emphasis on UDs.

Finally, we implemented a filtering process to eliminate unwanted lesions, particularly those that were poorly 
illuminated as they influenced the UD selection by generating high outlier values. We excluded these lesions for 
the sake of this study, however they could be captured from different perspectives under better illumination 
conditions in future practical applications. A probabilistic approach was used to identify and exclude poorly 

Figure 1.  (A) Patient-wise distribution of skin lesions. (B) Lesion-wise pixel area distribution of the labels 
created for the skin lesion detector. (C) Patient-wise distribution of skin lesions. (D) Lesion-wise pixel area 
distribution based on post-processed predictions for 11 unseen test patients.
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illuminated lesions. This was achieved by utilizing a hand-crafted feature, specifically the mean intensity level of 
the frame pixels of the lesions. Given that the predicted bounding boxes always encompassed a portion of the 
skin surrounding the lesions, the frame pixels served as an ideal candidate for detecting suboptimal illumination 
conditions. The histograms of this feature generally exhibited a left-tailed Gaussian distribution. The probabilistic 
method was set up to identify lesions below a two-sigma event from their mean as poorly illuminated. This led 
to an average discard rate of 1.8% for lesions. These lesions were predominantly located in shadowed areas of 
patients, such as the armpits or shoulder edges. These findings were obtained using the 3 validation patients 
from the batch of 22 patients.

Ugly duckling detector
The primary objective was to develop an informative feature representation for the skin lesions extracted from 
the 11 unseen patients. This process was designed to mimic the workflow of dermatologists, who rely on compar-
ing lesions based on their similarity. To effectively sort these identified skin lesions by their level of suspicion, 
it was necessary to embed them into a latent space that could provide a meaningful representation reflective of 
lesion similarity. In this context, distinguishing UDs required embedding them further away from the majority 
of lesions within this latent space. Utilizing a self-supervised approach proved instrumental in addressing the 
challenges outlined in our introduction. This approach was particularly effective in mitigating biases arising from 
mislabeled data or the context of the training patients, given the absence of publicly available labeled total body 
images. We explored various potential models to achieve this objective, emphasizing two main criteria: limited 
model parameters due to training solely on lesions from our test patient to circumvent contextual biases, and high 
accuracy in K-nearest neighbors (KNN) image classification tasks on broad datasets like ImageNet. Considering 
these requirements, DINO was selected for our representation task with ResNet18 as the backbone  architecture13.

In deep learning approaches, the input dimensions must be identical for each data instance. If this is not the 
case, the model scales the dimensions to match. Most of our extracted lesions have a square shape. However, 
in the other cases, we need to ensure that there is no scaling taking place that could mislead the UDs selection, 
for example, by changing the width to height ratio. As a solution, constant padding using the mean frame pixel 
values of the shorter dimension was proposed for lesions that do not have a width to height ratio of 1.

The next phase of the self-supervised approach for UDs detection involved the initiation of a pretext task 
to generate pseudo labels. To align with our task requirements, several modifications to the data augmentation 
processes outlined in the official DINO publication were made. First, we ensured that each lesion image was 
upscaled to 224x224 pixels, thereby preventing any lesions from being downscaled. Next, we employed random 
brightness jittering to counteract further poor illumination conditions. This was followed by the adoption of 
DINO’s general augmentation strategy, which includes random rescaling and cropping. Finally, to increase the 
significance of color differences, we adjusted the rescaling of each color channel by a factor of 10.

The model was explicitly trained on the test patient’s lesions for a minimum of 200 epochs to ensure a robust 
initial convergence. This approach was adopted to avoid potential biases that could emerge from the contexts of 
different patients. For instance, some patients may predominantly have darker lesions, while others may have 
lighter or unusually shaped ones. These variations can influence the model’s learning and prediction capabili-
ties to generalize for an unseen case. By training the model exclusively on the test patient’s lesions, we eliminate 
this bias, ensuring that the model’s predictions are tailored specifically to their unique lesion characteristics. 
This comprehensive approach enhances the model’s precision and reliability, and effectively adapts the DINO 
methodology to our specific task. After 200 epochs, a specific stopping criterion was applied, i.e., when the rank-
ing of the top-10 UDs no longer changes, the model is considered to be converged, and training is terminated. 
The maximum number of epochs was limited to 300 epochs for this study. During the inference mode, only the 
preprocessing steps on the image resolution and color channels were performed. The embeddings of the lesions 
were created using the teacher backbone. Using cosine similarity distance, a min max normalized UD score was 
calculated for each lesion embedding from the median of the lesion embeddings. The top-10 scoring lesions were 
then proposed as our AI UDs. In Fig. 2, a complete overview of our proposed approach is shown.

Leveraging the PyTorch implementation provided by the Lightly  14 framework with its default model param-
eterisation, we integrated the previously mentioned modifications of DINO and all model varations such as 
MoCov2 or different backbones used for the modal comparison. Each individual model, specific to the test 
patients, was trained on a Tesla®P100 16GB GPU without using any pre-trained weights, generously made avail-
able by CSCS. The duration of the training process was on average approximately 30 minutes per patient, pre-
dominantly influenced by the number of detected lesions.

Clinical validation study design
For the clinical validation study, we instructed participants to identify suspicious-looking lesions on dorsal 
images of 11 patients. They were asked to prioritize lesions that, in their opinion, needed further examination 
with a dermascope for melanoma screening, starting with the most suspicious ones. After examining each image, 
participants rated their confidence on a scale from 1 to 5, with 5 indicating a very confident selection. Unlike 
other AI studies on the UD sign, our study aimed to include an assessment of the impact of AI as a support tool 
for screening. For this purpose, participants were asked to repeat the task with the same 11 patient images, this 
time with the aid of AI predictions. The patient images were displayed alongside their UD scores, with the top-10 
AI UDs highlighted in red and the rest in green. However, for the sake of transparency we need to mention that 
for one patient only the top-9 AI UDs were highlighted in red.

The study aimed to include a diverse range of participants to gauge the impact of AI on decision-making 
across various pigmented diagnosis expertise levels. Our participant pool consisted of 4 dermatologists with 
≤ 5 years of experience, 2 dermatologists with ≤ 10 years of experience, 3 dermatologists with > 10 years of 



5

Vol.:(0123456789)

Scientific Reports |        (2024) 14:12697  | https://doi.org/10.1038/s41598-024-61681-4

www.nature.com/scientificreports/

experience, 2 GP, and 6 non-clinicians, namely non-medical students. This diversity in expertise allowed us to 
explore how individuals with different backgrounds and levels of experience interacted with AI-driven decision-
making processes.

To facilitate the participation in the clinical validation a web tool was developed. The web tool allowed par-
ticipants to select lesions by drawing bounding boxes around them and included an instructional video at the 
beginning explaining the task to accomplish. Upon completion of the validation process, it was noticed that 
some participants had not accurately drawn the bounding boxes around the lesions. As a result, we manually 
cleaned the data to ensure a correct match between the bounding boxes drawn and the lesions detected by our 
AI. This correction process was solely undertaken to automate the evaluation, and we took great care to ensure 
that no corrections influenced the participants’ choices in any way. Subsequently, we created a binary array for 
each participant, marking the lesions they selected with ones and the others with zeros. Lesions ranked above 
20 and those poorly illuminated were excluded from this evaluation. The agreement of our AI algorithms was 
measured primarily by calculating sensitivity values, defined as follows:

Any lesion selected by a participant is considered a UD from their perspective. Thus, True Positives (TP) are 
the UDs found by the AI algorithm among the top-u ranked lesions. False Negatives (FN), accordingly, are the 
UDs ranked below the top-u ranked lesions by the AI algorithm or were not detected at all. Similarly, we define 
the average sensitivity for each participant using the majority voting of experts, namely lesions selected by at least 
2 of the 3 dermatologists with >10 years of experience, as the ground truth. For each participant and each patient 
image, the sensitivity value for the majority selection of experts was calculated and averaged at the end. TP are 
the lesions that were selected by the participant in question and were part of the respective majority selection 
of experts. FN are the lesions that were not found by the participant in question and were part of the respective 
majority selection of experts. The average sensitivity for individual experts with respect to their majority selec-
tion was included as well. The absolute values and differences in confidence levels and number of selected lesions 
with and without the AI-assistance of each participant were additionally evaluated.

Results
Skin lesion detector
The YOLOR-P6 model was used to detect skin lesions on four unseen manually labeled patients. The model, 
with a resolution of 1280 px, achieved an average recall of 95% and precision of 75% at an IoU threshold of 50%. 
The recall and precision values were calculated for a selected confidence threshold of 20%. The AP and  AR at 
the same IoU threshold were 95% and 74% respectively. When the IoU threshold was increased to 75%, the AP 
and AR values slightly decreased to 87% and 69% respectively.

Visual inspection revealed that the FN were mainly caused by NMS filtering, which disregarded bounding 
boxes for lesions close to each other, or freckles that were scored below the 20% confidence level. Furthermore, 
False Positives were mainly caused by missing labels for freckles. The precision level for this confidence level is 

(1)Sensitivity =
TP

TP + FN

Figure 2.  Overview of the proposed AI-pipeline for self-supervised ugly duckling selection in wide-field 
imagery (top) and clinical evaluation (bottom).
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relatively high. Moreover, increasing the IoU threshold shows only a small decrease in the performance metrics. 
However, there were some patients for whom the model did not perform adequately, namely hairy patients, 
patients with tattoos, and patients with out of distribution lesions. This was apparent from visual inspection.

Ugly duckling detector
Skin lesion detector sensitivity with respect to ugly ducklings
We further evaluated the sensitivity of our lesion detector by analyzing all selected UDs identified by participants 
on the 11 patient images. We achieved a recall of 100% for our lesion detector.

Number of ugly ducklings
Figure3A shows that dermatologists typically choose on average 4 UDs per patient image without AI assistance. 
However, there is often significant variability in the number of selected lesions. In contrast, students selected an 
average of 7 to 8 skin lesions per patient image and even reached the technical limit of 20 lesions on some images. 
With AI assistance, all participants except GPs and dermatologists with ≤ 10 years of experience selected more 
skin lesions on average for further risk assessment.

Top‑10 AI sensitivity with respect to participants selection
In Fig.3B, we show that without any assistance from AI, a top-10 AI sensitivity of 80 to 84% for dermatolo-
gists is achieved, while for the students and GPs lower averages of 63% and 68% resulted, respectively. With AI 
assistance, we achieve high values for dermatologists, ranging from 92 to 98%, and for students and GPs, we 
achieved an average sensitivity of 81% and 82%, respectively. When provided with AI assistance the interquartile 
range (IQR) for each group decreased, and for some dermatologists with >5 years of experience even an IQR of 
zero was achieved.

Average participants sensitivity with respect to majority selection of experts
The agreement among participants with respect to the majority selection of experts was one of the most intrigu-
ing questions explored. As shown in Fig. 3C dermatologists with ≤ 10 years of experience achieved an average 
sensitivity of 62% to 66% without AI assistance, and even decreased slightly with AI assistance for the majority 
selection of experts. Among the experts themselves, the average sensitivity was 85% without and 83% with AI 
assistance. Students had an average sensitivity of 67% without and 76% with AI assistance, while GPs had a 
relatively low average sensitivity of 57% without and 51% with AI assistance. Lastly, we provided the sensitivity 
values of the top-10 AI UDs. We can see that our AI predictions achieve on average a sensitivity value of 95% 
and reach even 100% on average when presented to the experts. The IQR of each group is quite large in both 
cases with and without AI assistance. With AI assistance, there is a slight decrease observable for the IQR for 
dermatologists with ≤ 10 years of experience . The AI predictions have, in both cases, an IQR of zero.

Confidence level
In Fig. 3D we show the absolute values found for each participant grouped by expertise. We see a clear difference 
in the confidence level between students and dermatologists. Interestingly, dermatologists ≤ 10 years experi-
ence exhibit a strong confidence level compared to the other dermatologists groups. We also noticed that for 
dermatologists with ≤ 5 years of experience the IQR of their confidence decreased to zero after being presented 
with AI predictions.

In Fig. 3E, we additionally show the relative differences in participants’ confidence levels before and after 
they were exposed to the AI predictions. A clear upward trend in the average is observed for all groups, with 
the greatest increase being shown by the experts and students. However, for some images, we noticed that the 
confidence level decreased after participants were shown the AI predictions.

Top‑u AI sensitivity with respect to participants selection
Figure3F displays the average top-u sensitivity of the AI system for different values of u, ranging from 1 to 50, 
across participant groups. Without the aid of AI, dermatologists achieved average sensitivity values between 65% 
and 69% for the top-5 AI UDs and 89% for more than 20 lesions. However, on average, students and GPs attained 
lower top-u AI sensitivity values, but their agreement with AI predictions increased after seeing them. With AI 
assistance, dermatologists quickly converged to AI sensitivity values above 90% at u = 8-9. Dermatologists with 
over 5 years of experience achieved 100% AI sensitivity at u = 23, whereas those with less than 5 years of experi-
ence had slightly lower agreement than their more experienced colleagues. Although the top-u AI sensitivity 
values for students and GPs with AI assistance were lower than those for dermatologists, there was a clear trend 
observable that they began to follow the AI predictions more if provided to them.

Model comparison of top‑u AI sensitivity with respect to majority selection of experts
In Fig. 3G, we compare the sensitivity of our chosen model architecture, DINO, to that of MoCo v2 with respect 
to the top-u AI sensitivity using majority selection of experts. Both models were tested for the same 3 backbones 
(ResNet18, ResNet34 and ResNet50). Our analysis shows that DINO outperforms MoCo v2, with DINO achiev-
ing over 90% sensitivity at u=8 for backbones ResNet18 and ResNet50, while MoCo v2 only achieves this level 
of sensitivity at u=12 for ResNet18 and ResNet34.
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Discussion
In the present study, a novel approach for total body melanoma screening incorporating self-supervised detection 
of suspicious lesions based solely on the patient’s context is proposed. The results presented evaluate the impact of 
this approach on clinicians’ decision-making and confirms its validity through comparison with the assessments 
of experienced pigmented lesion experts. Total body screening is the most time-consuming and error-prone task, 
therefore, a reliable support tool would enable dermatologists to better optimize consultation time.

Figure 3.  (A) Comparison of the number of UDs selected per patient image and group participant, with and 
without AI assistance. (B) Comparison of the top-10 AI sensitivity for each patient image with and without AI 
assistance, with respect to each participant. (C) Average sensitivity values of each group with respect to majority 
selection of experts, with and without AI assistance. Additionally, top-10 AI sensitivity values averaged over each 
patient image are also presented. (D) Comparison of the absolute and (E) the relative changes in confidence for 
participants, with and without AI assistance, across patient images. (F) Average top-u AI sensitivity values for 
each group, with and without AI assistance. (G) Comparison the average top-u AI sensitivity values for MoCo 
v2 and DINO models,  with respect to majority selection of experts, for each group without AI assistance.
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The architecture comprises two main high-level tasks: first, the automatic detection and extraction of lesions 
from wide field images, and second, the characterization of suspicious lesions through self-supervised clustering. 
A detailed scheme of the complete pipeline is presented in Fig. 2. The dataset for this study was collected ad-hoc 
during routine consultations at the Dermatology Clinic of the USZ and consisted of 90 patients. Due to timing 
constraints of our clinicians, the proposed AI pipeline was validated only on the dorsal region of 11 randomly 
chosen patients. To perform the skin lesion detection and extraction, a one-stage object detection model was 
employed. The model was trained and tested using a semi-automatic process that utilized a combination of a blob 
detector and manual labeling to accelerate the process on a different randomly chosen data batch consisting of 
22 patients. The approach used for lesion detection resulted in high recall rates for all four test subjects, reaching 
on average 95% with an IoU threshold of 50% at 20% confidence level. This is a critical factor in the detection of 
potential melanoma cases, ensuring that no lesions are missed. Furthermore, the deep learning model achieved a 
relatively high Average Precision rate, namely 87% AP75 , while maintaining a high Average Recall rate, namely 69 
% AR75 , highlighting its effectiveness in detecting skin lesions, even when higher IoU thresholds are used. Worst 
performance was observed with “atypical” patients, such as those with significant amount of hair. However, in all 
cases, the suspicious lesions or ugly ducklings (UD) selected by the experienced dermatologist were consistently 
detected by the object detector. These results reinforce the evidence presented  in12, affirming that deep learning 
techniques are effective in detecting skin lesions.

Regarding the characterization of suspicious lesions or UDs, we propose a self-supervised architecture which 
allows to evaluate possible outliers considering only the patient’s context. As illustrated in Fig. 4A, the algorithm 
visually presents to the user suspicious looking lesions by drawing a red bounding box around them. The model 
was able to distinguish UD more effectively compared to common freckles and other average-looking skin 
lesions. Moreover, visual representation in Fig. 4B using t-SNE shows a clear meaningful embedding of UDs 
versus average-looking lesions.

Despite minor illumination issues that require attention, the overall approach appears to be a promising 
option. The quantitative comparison of both architectures, DINO and MoCo v2, using 3 different backbones 
is shown in Fig. 3G. We conclude that DINO converged faster towards the mark of 90% sensitivity for fewer 
suggested AI ugly ducklings.

Finally, a clinical validation study was conducted to evaluate the performance of our tools and measure its 
impact in real-world consultation conditions. The study included different groups of interest with varying levels 
of melanoma screening experience, as introduced in the Clinical Design Study. The study demonstrated that our 
top-10 AI algorithms performed well for dermatologists, with an average accuracy of 82%. Furthermore, after 
reviewing our predictions, dermatologists’ trust in our algorithms increased, reaching an average agreement of 
95%. Therefore, we conclude that this algorithm if deployed in routine consultations with an initial training, 
nurses or non-experts could reach similar sensitivity values such as experts. Another noteworthy outcome is the 
number of ugly ducklings selected by experienced dermatologists for each patient. On average they went from 
4.52 to 5.42 UDs when being provided by the AI suggestions. This implies that the AI support drew attention to 
some lesions that were previously overlooked due to their location or the high number of lesions in the image. 
For two groups, dermatologists ≤ 10 years experience and GPs, the number of selected lesions did not increase 
with AI-assistance. However, they changed their initial selection by following more the algorithm proposals. 
Inexperienced students, due to their lack of experience and uncertainty with the task, chose more UDs. This also 
explains their high sensitivity values towards the majority selection of experts and low sensitivity towards AI.

Despite the promising results, we have identified several limitations. Although total body imaging was avail-
able for each patient for the sake of proof-of-concept, we restricted ourselves to the dorsal region of 11 patients. 
Therefore, the next steps should include validating the model in different body regions and on more patients. 

Figure 4.  (A) Illustration of the AI’s identification of the top-10 lesions with highest UD scores (red bounding 
boxes). Above each lesion are the corresponding UD scores is displayed, providing a quantified assessment of 
the AI’s confidence in each finding. (B) Showing 2D t-SNE visualization of our embeddings in the latent space. 
With green bounding boxes we see the lesions rating equal or less than 50% in overall UD score, in blue above 
50% and in red the top-10.
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The challenge of acquiring total body imaging makes our sample size relatively small, which impacts our capacity 
for evaluating the model’s generalization performance. However, the Dermatology Clinic of the USZ plans to 
extend the validation campaign to further evaluate the models robustness. Enlarging the number of patients and 
clinical validation should contribute to increasing the reliability and generalization capacity of our tool. Some 
patients presented a considerable amount of hair, which impacted both the detection and UD characterization. 
Despite the limited number of subjects, we should consider a proper way for handling such cases in the future. 
Additionally, an improved lighting setup will be implemented to prevent shadowed regions in the imaging, 
thereby avoiding potential detection issues.

Conclusion
We propose a novel AI-assisted total body screening tool that achieves expert-level accuracy in identifying sus-
picious lesions in wide field images, improving upon the results of previous studies  7. The architecture includes 
a state-of-the-art skin lesion detection system, followed by a self-supervised “ugly duckling” characterization 
module trained on real-world data acquired from the Dermatology Clinic of the USZ. By eliminating the need for 
time-consuming manual labeling of UDs and performing predictions on a patient-by-patient basis, we enhance 
the generalization capacity of our system. These tools ultimately enable the separation of total body screening 
from routine consultations and even facilitate the involvement of non-expert staff, who can assist dermatolo-
gists using reliable tools. The saved screening time can be then reallocated by dermatologists into single lesion 
assessment and discussions with patients.

Code availability
We are unable to release the image dataset used in the study due to the lack of written consent from the patients 
for data sharing. Code available upon request to PD Dr. Stephanie Tanadini-Lang (Stephanie.Tanadini-Lang@
usz.ch) for research purposes.
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