
Article https://doi.org/10.1038/s41467-024-48819-8

Longitudinal multicompartment
characterization of host-microbiota
interactions in patients with acute
respiratory failure
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Critical illness can significantly alter the composition and function of the
human microbiome, but few studies have examined these changes over time.
Here, we conduct a comprehensive analysis of the oral, lung, and gut micro-
biota in 479 mechanically ventilated patients (223 females, 256 males) with
acute respiratory failure. We use advanced DNA sequencing technologies,
including Illumina amplicon sequencing (utilizing 16S and ITS rRNA genes for
bacteria and fungi, respectively, in all sample types) and Nanopore metage-
nomics for lung microbiota. Our results reveal a progressive dysbiosis in all
three body compartments, characterized by a reduction inmicrobial diversity,
a decrease in beneficial anaerobes, and an increase in pathogens. We find that
clinical factors, such as chronic obstructive pulmonary disease, immunosup-
pression, and antibiotic exposure, are associated with specific patterns of
dysbiosis. Interestingly, unsupervised clustering of lung microbiota diversity
and composition by 16S independently predicted survival and performed
better than traditional clinical and host-response predictors. These observa-
tions are validated in two separate cohorts of COVID-19 patients, highlighting
the potential of lung microbiota as valuable prognostic biomarkers in
critical care. Understanding these microbiome changes during critical illness
points to new opportunities for microbiota-targeted precision medicine
interventions.

Microbiota play a critical role in maintaining homeostasis and overall
health. However, during critical illness, such as acute respiratory failure
(ARF), microbial communities can be severely disrupted1,2. Such dis-
ruptions, characterized by deviations from a healthy microbial com-
position and diversity, may occur early in the hospital stay and have

been associated with worse clinical outcomes3–5. Previous research has
primarily focused on cross-sectional analyses of microbiota within
individual body sites, neglecting potential interactions between dif-
ferent compartments and the longitudinal evolution of microbial
communities. Moreover, the influence of patient-level factors and
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therapeutic interventions, including antimicrobial therapies, on the
microbiome of critically ill patients remains poorly understood, partly
due to limitations of scale in studies published to date.

Conversely, precision medicine approaches in ARF have pre-
dominantly focused on host factors6. For instance, identifying distinct
subphenotypes based on patterns of host response biomarkers mea-
sured in plasma samples (hyper- vs. hypo-inflammatory) has demon-
strated prognostic value7–9. Hyperinflammatory patients exhibit
elevated levels of injury and inflammation biomarkers, more severe
organ dysfunction, worse prognosis, and may have differential
responses to treatments8. However, the role of respiratory or intestinal
microbiota in modulating host responses and their contributions to
defined subphenotypes are still not well understood. Furthermore,
limited data are available regarding the potential influence of
respiratory microbiota on systemic host responses measured in
plasma or localized inflammation within the lungs10. To advance pre-
cision medicine approaches that take into account the microbial side
of the critically ill host, it is crucial to understand the dynamics of the
microbiome and its relationship with host biological factors, clinical
diagnoses, and therapeutic interventions in critical illness.

In this work, we conduct a longitudinal assessment of the micro-
biome in a large cohort of 479 ARF patients, specifically focusing on
three key body sites: the oral cavity, lungs, and gut. By integrating
bacterial and fungal community profiles with host response bio-
markers measured in plasma and lower respiratory tract (LRT) sam-
ples, we demonstrate progressive dysbiosis in all three body sites and
identify temporal associations between patient-level factors and
therapeutic interventions on microbial communities. We further
derive unsupervised clusters of microbiota and demonstrate sig-
nificant associations with host responses and clinical outcomes, with
lung microbiota clusters being the most predictive of survival. Finally,
we validate our findings in two separate cohorts with a total of 146
patients with COVID-19-associated ARF.

Results
Cohort Description
We performed discovery analyses in a cohort of 479 patients with ARF
who received invasive mechanical ventilation (IMV) via endotracheal
intubation in UPMC Intensive Care Units (ICUs) (UPMC-ARF cohort),
and then independent validation analyses in two cohorts of critically ill
patients with COVID-19 pneumonia (49 patients at UPMC [UPMC-
COVID cohort], and 97 patients at Massachusetts General Hospital
ICUs, MGH-COVID cohort).

In the UPMC-ARF cohort, we enrolled patients with non-COVID
etiologies of ARF between March 2015 and June 2022. We collected
baseline research biospecimenswithin 72hrs from intubation, including
blood for separation of plasma, oropharyngeal swabs (oral samples),
endotracheal aspirates (ETA) collected for research or excess bronch-
oalveolar lavage fluid (BALF) from clinical bronchoscopy (lung sam-
ples), and rectal swabs or stool (gut samples)3,11,12. We repeated research
biospecimen sampling between days 3–6 (middle interval) and
days 7−12 (late interval) post-enrollment for subjects who remained in
the ICU.We extracted DNA and performed next-generation sequencing
(bacterial 16S rRNA gene sequencing [16S-Seq] for all available samples;
fungal Internal Transcribed Spacer sequencing [ITS-Seq] targeting the
regions 1 and2of the ITS rRNAgene, andNanoporeDNAmetagenomics
for a subset of samples) to profile microbiota in the oral, lung and gut
communities, respectively3,12,13. We measured biomarker proteins in
plasma samples and a subset of ETA/BALF supernatants with Luminex
panels to profile systemic and regional (lung) host responses7,10.

Patients hadamedian (interquartile range) age of 59.6 (46.7–68.7)
years, 54.4% were men and 90.2% were white (Table 1). At the time of
enrollment, 25.0% of patients were diagnosed with Acute Respiratory
Distress Syndrome (ARDS per the Berlin definition14) 39.8% with
pneumonia, 86.8% were receiving systemic antibiotics, and 64.8%

received corticosteroids for various indications. By 60 days, 26.9% of
patients had died. Among the 350 patients who survived hospitaliza-
tion, 48.8% were discharged to their home, with the remainder
requiring additional longer-term care.

In the UPMC-COVID cohort from April 2020 through February
2022, we enrolled 49 patients with COVID-19 ARDS requiring IMV and
obtained longitudinal plasma and ETA samples at baseline,middle, and
late intervals (TableS1).Weperformed 16S sequencing for bacteria and
measuredhost response biomarkers inboth sample types. In theMGH-
COVID cohort from April 2020 to May 2021, we enrolled 97 hospita-
lized patients, obtained serial lung (sputum or ETA) and stool (gut)
samples (Table S1), and performed Illumina metagenomics15. To con-
textualize microbiota analyses from critically ill patients, we incorpo-
rated previously generated 16S-Seq data from upper respiratory tract
(URT), LRT, and stool samples collected from healthy volunteers
(Healthy Controls) that had been analyzed in smaller cross-sectional
studies from our group11,12.

Progressive dysbiosis of microbial communities in three body
compartments
By IlluminaMiSeq 16S-Seq, we analyzed a total of 2557 clinical samples
in the UPMC-ARF and UPMC-COVID cohorts and healthy controls, as
well as 233 experimental control samples obtained either during
patient sampling at the bedside or during sample processing in the
laboratory. In an initial quality control step, we demonstrated robust
detection of bacterial 16S reads in oral, lung, and gut samples in the
UPMC-ARF cohort compared to negative controls (Figure S1). We
considered clinical samples that generated ≥1000 quality 16S-Seq
reads and performed rarefaction at 1000 reads to control for uneven
sequencing depth between samples in the estimation of diversity
indices16–18 alpha diversity by Shannon index (Figure S1) and beta
diversity by Bray-Curtis similarity index in centered-log ratio (CLR)
transformed abundances. We also found that rectal swabs not coated
by stool (“unsoiled” swabs) had systematic differences inbacterial load
(16S rRNA gene copies by qPCR) and beta diversity compared to stool
or visibly “soiled” rectal swabs (Figure S1). Therefore, we excluded
“unsoiled” rectal swabs from further analyses because they may not
offer sufficient representation of gut microbiota11.

Following these quality-control steps, we first performed intra-
compartment comparisons of samples from critically ill patients from
the UPMC-ARF cohort to healthy control samples. At baseline,
critically-ill patients had significantly lower alpha diversity in each
compartment compared to corresponding healthy control samples.
Despite the low Shannon index at baseline for ICU patients, their
Shannon index further declined in all three body compartments in
longitudinal samples (Fig. 1A). Similarly, baseline ICU samples had
markedly significant differences inbeta diversity fromhealthy controls
(Fig. 1B). By taxonomic comparisons of CLR-transformed abundances
within each compartment at baseline, ICU patient samples showed
depletion of multiple commensal taxa, with significant enrichment for
Staphylococcus in oral and lung samples, and Anaerococcus and Sta-
phylococcus in gut samples (Fig. 1C).

We then performed inter-compartment comparisons among ICU
samples. Bacterial load quantification by 1 S qPCR confirmed that the
LRT (lungs) had significantly lower biomass compared to URT (oral)
and gastrointestinal tract (stool or soiled rectal swabs, Fig. 1D). By beta-
diversity comparisons (Bray-Curtis indices), oral and lung commu-
nities had high compositional similarity, whereas gut samples were
compositionally different compared to oral and lung microbiota
(Fig. 1E). Taxonomic comparisons of CLR-transformed abundances
between compartments revealed that no specific taxa were system-
atically different between oral and lungmicrobiota (Fig. 1F), whereas in
gut-lung comparisons, lung communities were enriched for typical
respiratory commensals (e.g. Rothia, Veillonella, Streptococcus) and
gut communities for gut commensals (e.g. Bacteroides,
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Lachnoclostridium, Lachnospiraceae_uncl) (Fig. 1F). In a limited com-
parison of two subjects with available synchronous ETA and BAL
samples, high compositional concordance was shown for one subject
in whom LRT community dominance by Achromobacterwas shown for
both ETA and BAL analysis, whereas for the other subject, taxonomic
overlap between ETA and BAL was more limited (Figure S2).

Motivated by prior research supporting the enrichment of the
lungs with gut-origin bacteria in ARDS19, as well as emerging evidence
for the role of a gut-lung axis in critical illness20, we specifically tested
whether certain patients had enrichment for gut-origin bacteria in
their oral or lung samples, despite the global dissimilarity of the lung
and gut compartments. We found that 4.5% and 8.3% of oral and lung
samples, respectively, had >30% relative abundance for gut-origin
bacteria (Fisher’s test p = 0.03, Figure S3A), with progressive enrich-
ment over time (Fisher’s test p =0.02, Figure S3B) in lung samples.
Importantly, the gut-origin taxa enrichment in these lung samples
could not be fully explained by oropharyngeal colonization with such
taxa (Figure S3C). Taken together, these multi-site analyses point to
the oral cavity as the primary source of lung microbiota, which could
be seeded by micro-aspiration along the respiratory tract’s gravita-
tional gradient. At the same time, our analyses also provided evidence
for gut-origin bacteria enrichment in the LRT in a subset of critically ill
patients.

We then sought to understand the longitudinal composition of
microbial communities when classified into clinically relevant cate-
gories of bacterial taxa. Recent evidence implicates loss of commensal
anaerobic bacteria from the gastrointestinal or respiratory tract with
adverse outcomes in critical illness12,21,22. Therefore, we classified bac-
teria in terms of their oxygen requirements (obligate anaerobes,
facultative anaerobes, aerobes, microaerophiles, variable or unclassi-
fiable, details in Table S2). Additionally, we classified bacteria by
plausible respiratory pathogenicity (oral commensals, recognized
respiratory pathogens, or other) due to their direct implications in
prevalent or incident pneumonia in the ICU (Table S3)12,23,24. In both

oral and lung communities, we found a progressive decline in the CLR-
transformed abundance of obligate anaerobes over time. There was,
however, no corresponding change in the gut composition of anae-
robic (obligate or facultative) bacteria over time (Fig. 2A, B). Stratified
by plausible pathogenicity, we found a progressive decline of oral
commensal bacteria in all three compartments, with a corresponding
increase in pathogen abundance (Fig. 2C, D). The top representative
taxa in each compartment are shown in Figure S4.

Beyond 16S-Seq, IlluminaMiSeq Fungal ITS-Seq showed that >50%
of communities in all three compartments were dominated by C.
albicans (defined as >50% relative abundance), with a progressive
decline in fungal Shannon index in oral and lung communities during
follow-up (Figure S5). Nanopore DNA metagenomics of lung samples
provided similar bacterial representations to 16S-Seq analyses and
confirmed a high abundance of C.albicans detected by ITS-Seq (Fig-
ure S5). Thus, our analyses revealed a pattern of compartment-wide
dysbiosis in ICU patients, with a progressive decline in diversity and
enrichment for plausible pathogenic bacteria and C.albicans. We then
sought to understand whether patient-level variables accounted for
baseline or longitudinal dysbiosis.

Clinical diagnoses and antibiotic exposure correlate with
microbial community diversity and composition
We constructed linear regression models with ecological metrics
indicative of dysbiosis as outcomes (baseline Shannon index, bacterial
load by 16S qPCR, obligate anaerobe and respiratory pathogen abun-
dance) and clinical variables as predictors (Figure S6). History of
COPD, immunosuppression, and clinical diagnosis of pneumonia
showed the most significant associations with dysbiosis features, e.g.
lower Shannon and anaerobe abundance in oral and lung communities
for patientswith COPD, and increasedpathogen abundance in oral and
gut communities for patients with a history of immunosuppression
(Figure S6). History of immunosuppression was also associated with a
higher abundance of C. albicans in oral and lung samples (Figure S5).

Table 1 | Baseline characteristics of enrolled mechanically ventilated patients in the UPMC-ARF cohort, stratified by 60-day
mortality

All Survivors Non-Survivors p

N 479 350 129

Age, years (median [IQR]) 59.6 [46.7, 68.7] 57.1 [44.1, 67.1] 65.3 [55.8, 72.2] <0.01

Men, n (%) 256 (54.4) 180 (52.6) 76 (58.9) 0.26

Whites, n (%) 425 (90.2) 307 (89.8) 118 (91.5) 0.67

BMI (median [IQR]) 29.4 [25.5, 36.0] 29.6 [25.5, 35.7] 28.6 [25.3, 36.6] 0.98

COPD, n (%) 104 (22.1) 75 (21.9) 29 (22.5) 1.00

Diabetes, n (%) 168 (35.7) 122 (35.7) 46 (35.7) 1.00

Alcohol use, n (%) 84 (17.9) 60 (17.5) 24 (18.9) 0.84

Immunosuppression, n (%) 105 (22.3) 71 (20.8) 34 (26.4) 0.24

ARDS, n (%) 117 (25.2) 81 (24.0) 36 (28.1) 0.23

WBC (median [IQR]) 12.0 [8.7, 16.8] 11.4 [8.1, 15.8] 14.4 [10.1, 18.7] <0.01

Creatinine (median [IQR]) 1.2 [0.8, 2.3] 1.1 [0.8, 2.0] 1.6 [0.9, 2.5] 0.01

Plateau Pressure (median [IQR]) 20.0 [16.0, 25.0] 19.0 [16.0, 24.0] 22.0 [18.0, 27.0] <0.01

PaO2:FiO2 ratio (median [IQR]) 164.0 [117.0, 206.0] 168.0 [121.5, 211.0] 157.0 [108.0, 205.0] 0.04

SOFA scores (median [IQR]) 6.0 [4.0, 9.0] 6.0 [4.0, 8.0] 8.0 [5.0, 10.0] <0.01

LIPS score (median [IQR]) 5.5 [4.0, 6.5] 5.0 [4.0, 6.5] 6.0 [5.0, 7.5] <0.01

Hypoinflammatory subphenotype, n (%) 344 (75.6) 254 (77.4) 90 (70.9) 0.18

VFD (median [IQR]) 22.0 [13.0, 25.0] 23.0 [20.0, 25.2] 0.0 [0.0, 19.0] <0.01

Wecompared continuous variableswith non-parametricWilcoxon tests andcategorical variableswith Fisher’s exact tests between the three groups. Statistically significantdifferences (p < 0.05) are
highlighted in bold. Source data are provided as a Source Data file.
IQR Interquartile Range, BMI bodymass index,COPD chronic obstructive pulmonary disease, LIPS lung injury prediction score,WBCwhite blood cell count, PaO2 partial pressure of arterial oxygen,
FiO2 Fractional inhaled concentration of oxygen, SOFA sequential organ failure assessment, VFD ventilator free days, ARDS acute respiratory distress syndrome. Immunosuppression was broadly
defined as receipt of chronic steroids, alkylating agents, antimetabolites, biologics, calcineurin inhibitors, mycophenolate, active chemotherapy for cancer, or diagnosis of untreated
immunodeficiency.
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To further explore iatrogenic forces on microbiota composition, we
focused on two common treatments in the ICU: antibiotics and ster-
oids. We assessed antibiotic usage by i) anaerobic coverage, ii) a
numerical scale that included duration, timing, and type (convex
antibiotic score)25, and iii) the Narrow Antibiotic Treatment (NAT)
score12,26. We quantified steroid use as the daily equivalent dosage of
prednisone in milligrams. Antibiotic usage was associated with bac-
terial burden in oral samples, as well as anaerobe and pathogen
abundance in baseline gut samples (Figure S6). To explore the effects
of antibiotics and steroids over time, we employed mixed linear
regression models using longitudinal samples. In all three compart-
ments, the receipt of anaerobic spectrum antibiotics was associated
with a progressive decrease in obligate anaerobe abundance, aswell as
increased abundance of pathogens in the gut compartment (Table S4).
Notably, antibiotic exposure quantified by the NAT and the convex
antibiotic score was also significantly associated with a reduction in

anaerobe abundance and an increase in pathogen abundance within
the gut microbiota.

Microbial communities in each compartment form distinct
clusters of diversity and composition
We next examined the microbial communities independent of clinical
variables to capture important features directly from microbiome
data. Within each compartment, we used Dirichlet Multinomial Mix-
ture (DMM) models for 16S-Seq data (“bacterial DMM clusters”) and
defined that a three-class model offered optimal classification in each
compartment, with striking differences in alpha diversity and com-
position between clusters (Fig. 3A). Cluster 1 in each compartment had
high Shannon index in the range of healthy controls (referred to as
High-Diversity cluster), cluster 3 had low Shannon index (Low-Diver-
sity cluster), and cluster 2 had intermediate diversity (Intermediate-
Diversity cluster). Low-diversity clusters had a markedly higher
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abundance of pathogens and a lower abundance of anaerobes
(Fig. 3B, C). In cross-compartment comparisons, DMM cluster mem-
bership was strongly associated between oral and lung communities
(odds ratio of membership in the Low-Diversity cluster in both com-
partments 7.67, 95% confidence interval [4.22–14.25], p <0.0001),
whereas lung and gut clusters were less strongly associated although
statistically significant (p =0.04, Fig. 3D). Representative taxa in each
cluster are shown in Figure S7. In longitudinal analyses, cluster mem-
bership showed relative stability for all compartments, with most
samples assigned to the Low-Diversity cluster at baseline being
assigned to Low-Diversity in the middle interval as well (75% of oral,
79% of lung, and 84% of gut samples, respectively, Figure S8). We next
examined how these microbial communities related to host responses
and clinical outcomes.

Lung microbiota correlate with systemic host responses
We examined host-microbiota interactions with two independent
approaches, a microbiota- and a host-centric approach. In the
microbiota-centric approach, we correlated the top 20 abundant taxa
in each compartment with systemic (plasma) and lung-specific (ETA/
BALF supernatants) host response biomarkers. We found several sig-
nificant correlations (Figure S9A–C), with typical pathogens correlating
with ETA or plasma inflammatory biomarkers, such Klebsiella or Sta-
phylococcus genera positively correlating with ETA fractalkine and Ang-
2 levels, whereas Escherichia-Shigella abundance correlating with
plasma TNFR1 and IL-6 levels. Conversely, typical oral commensals (e.g.
Rothia, Streptococcus, Prevotella etc.) were inversely correlated with
plasma sTNFR1 or sRAGE. In cluster comparisons, the bacterial DMM
Low-Diversity cluster in the lungs was significantly associated with
higher plasma sTNFR1, sRAGE and procalcitonin levels (Figure S9D).

In the host-centric approach, we applied a widely validated fra-
mework of host-response subphenotypes based on plasma
biomarkers7,27.With a 4-biomarker parsimoniousmodel (using sTNFR1,
Ang2, procalcitonin and bicarbonate levels)27, we classified individuals
at baseline into a hyperinflammatory (22.9%) vs. a hypoinflammatory
(77.1%) subphenotype. We found no significant relationship between
host subphenotypes and DMM microbiota clusters in any compart-
ment (Figure S10), but hyperinflammatory patients had higher
pathogen abundance in lung communities (p =0.02). To further
investigate this association, we stratified patients by pneumonia
diagnosis. We discovered that hyperinflammatory patients without
pneumonia had higher pathogen abundance in lung samples com-
pared to hypo-inflammatory patients (p =0.008, Figure S10). These
notable associations between lung pathogen abundance and the
hyperinflammatory subphenotype imply that systemic subphenotypes

might stem, at least in part, from undiagnosed pneumonia or
respiratory dysbiosis.

Lung microbiota clusters predict survival independent of clin-
ical variables and host responses
Comparisons of microbial communities between survivors and non-
survivors at 60-days post-ICU admission showed highly significant
differences in Shannon index, obligate anaerobe and pathogen abun-
dance in lung samples both at baseline and in the middle follow-up
interval (p <0.05, Figure S11). Additionally, lung samples with gut-
origin taxa enrichment at baseline (defined as >30% relative abun-
dance) showed markedly worse survival (p = 0.004, Figure S3). Survi-
vors had a higher abundance of anaerobes and a lower abundance of
pathogens in baseline oral samples (all p < 0.0.5, Figure S11), but no
differences in gut profiles. Oral and lung communities of survivors
were also found to have a lower abundance of C.albicans by ITS-Seq
(Figure S5).

Beyond these cross-sectional comparisons of dysbiosis features,
we sought tounderstand the impact of longitudinal changes onpatient
survival. To that end, we employed joint modeling28, a powerful
approach that combines longitudinal and survival analysismodels. We
examined longitudinal quantitative exposures of dysbiosis features
(Shannon index, bacterial load, anaerobe, and pathogen abundance -
details in Methods) in mixed linear regression models in each com-
partment, and then assessed the impact of longitudinal changes on 60-
day survival. Mixed linear regression models demonstrated a pro-
gressive decline of the Shannon index in all three compartments, with
progressive depletion of anaerobes and enrichment for pathogens in
the oral and lung compartments (Fig. 4). By Cox proportional hazards
models adjusted for age, baseline Shannon index and anaerobe or
pathogen abundance in the oral and lung compartments were sig-
nificantly associated with 60-day survival. Integration of longitudinal
and survival analyses with joint modeling showed borderline sig-
nificant effects for pathogen abundance in the oral compartment and
anaerobe abundance in the lung compartment. Nonetheless, baseline
microbiota features had stronger effect sizes associated with survival.

Apart from individual features, we also examined the impact of
the global classification of microbial profiles by bacterial DMM clus-
tering. In both oral and lung compartments, the Low-Diversity clusters
were associated with worse 60-day survival in Kaplan-Meier curve
analyses, whereas gut clusters had no survival impact (Fig. 4A–C).
Notably, the prognostic effects of the Low-Diversity bacterial DMM
cluster in the lungs remained significant after adjustment for age, sex,
history of COPD, immunosuppression, severity of illness by SOFA
scores, and host-response subphenotypes (adjusted Hazards Ratio-

Fig. 1 | Intra- and inter-compartment comparisons of microbiota profiles by
Illumina 16S-Seq reveal features of dysbiosis in all three body compartments in
critically ill patients. Panels A–C: Intra-compartment comparisons between
ICU patients and healthy controls. A Samples from critically ill patients had sig-
nificantly lower alpha diversity (Shannon index obtained post-rarefication with
random subsampling of reads in samples with ≥1000 16S rRNA gene reads) com-
pared to corresponding healthy control samples in each compartment (Wilcoxon
test p <0.001), with a further decline of Shannon index over time in longitudinal
samples in critically ill patients (Wilcoxon test p <0.001). B Baseline samples from
critically ill patients had markedly significant differences in beta diversity (Bray-
Curtis indices in centered-log ratio transformed [CLR] abundances following ran-
dom subsampling of reads in samples with ≥ 1000 reads) compared to healthy
controls (visualized with Principal Coordinates Analysis [PCoA] and statistically
compared with permutational analysis of variance [permanova] p values < 0.001,
adjusted for multiple comparisons with the Bonferroni method). C Taxonomic
composition comparisons with the limma package showed high effect sizes and
significance thresholds (threshold of log2-fold-change [logFC] of CLR-transformed
abundances >1.5; Benjamini-Hochberg adjusted p value < 0.05), revealing depletion
for multiple commensal taxa in critically ill patients samples, with significant

enrichment for Staphylococcus in oral and lung samples, and Anaerococcus and
Staphylococcus in gut samples (significant taxa shown in red in the volcano plots).
PanelsD–F: Inter-compartment comparisons among ICU patients.D Lung samples
had lower bacterial burden compared to oral and gut samples by 16S rRNA gene
qPCR (all Wilcoxon test p <0.001). E PCoA plot of beta-diversity shows composi-
tional similarity for the oral and lung compartments, which were compositionally
dissimilar to gut samples (permanova p <0.001). F Taxonomic comparisons
between compartments revealed that no specific taxawere systematically different
betweenoral and lungmicrobiota above the threshold of logFC≥1.5, whereas ingut-
lung comparisons, lung communities were enriched for typical respiratory com-
mensals (e.g. Rothia, Veillonella, Streptococcus) and gut communities for gut
commensals (e.g. Bacteroides, Lachnoclostridium, Lachnospiraceae). Source data
are provided as a Source Data file. Displayed data include 583 oral, 543 lung, and
343 gut samples from ICU patients, as well as 23 oral, 32 lung, and 7 gut samples
from healthy controls. Data displayed as boxplots with individual dots have their
median as the line inside the box, interquartile range (25th–75th percentile) as the
box itself, whiskers extend to 1.5 times the interquartile range, and individual dots
beyond whiskers signify outlier observations. All statistical tests were two-sided.
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HR= 2.22 [1.07–4.63], p =0.03). Furthermore, by examining the long-
itudinal evolution of lung DMM clusters, patients who remained in the
low diversity cluster from the baseline to the middle interval (“Low
Diversity Persisters”, Fig. 4) had significantly worse survival than other
patients with available follow-up samples (age-adjusted HR = 2.73
[1.19–6.42], p = 0.02). Thus, we found evidence that lung microbiota
dysbiosis predicted survival beyond the information provided by

clinical predictors, commonly used organ dysfunction indices, and
biological subphenotyping.

Derivation of a dysbiosis index and external validation in
patients with COVID-19
Motivated by the robust, independent prognostic impact of micro-
biota clusters on patient survival, we constructed predictivemodels to
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classify bacterial profiles into the corresponding DMM clusters within
each compartment. Such predictive models could serve as dysbiosis
indices beyond the derivation cohort with our DMM analysis. We used
probabilistic graphical modeling (PGM)29 to predict the DMM clusters
in each compartment based on the CLR-transformed abundanceof the
top 50 taxa and the corresponding Shannon index. By splitting the
dataset into training and testing subsets (80% and 20% of data points,
respectively), we developed separate multinomial regression models
for DMM cluster predictions in each compartment (i.e. compartment-
specific Dysbiosis Index), which showed accuracy of 0.80, 0.80 and
0.82 for oral, lung and gut clusters, respectively. We verified that
patients classified in the low diversity clusters by the Dysbiosis Index
for the oral and lung compartments hadworse survival, similarly to the
DMM-derived clusters.

We next applied the derived Dysbiosis Indices to two indepen-
dent cohorts of hospitalized patients with COVID-19 pneumonia. In
the UPMC-COVID cohort of patients with COVID-19 ARDS on IMV
(n = 49), the Lung Dysbiosis Index classified ETA samples into three
clusters with significant differences in Shannon index and bacterial
load by qPCR (Fig. 5A), but no difference in ETA SARS-CoV-2 viral
load by qPCR. Patients assigned to the low diversity cluster at base-
line had higher ETA levels of sTNFR1, as well as higher plasma Ang-2
compared to the high diversity cluster (p < 0.05, Fig. 5B). By indivi-
dual taxa abundance, typical pathogen abundance was correlated
with intensified ETA inflammation (e.g. Klebsiella correlated with
higher levels of ETA sTNFR1 and IL-6), several oral commensals were
correlated with higher ETA levels of sRAGE (such as Streptococcus,
Rothia and Veillonella) potentially indicating higher degree of lung
epithelial injury, whereas Prevotella abundance was inversely corre-
latedwith plasma levels of inflammatory and tissue injury biomarkers
(Figure S12). Notably, low diversity cluster patients at baseline had
numerically worse outcomes of liberation from mechanical ventila-
tion and 60-day survival, although these effects did not reach sta-
tistical significance.

In the MGH-COVID cohort (n = 97), we performed Illumina
NovaSeq metagenomic sequencing in longitudinal lung (ETA for
patientsonIMVorexpectoratedsputuminspontaneouslybreathing
patients) and gut (stool) samples obtained upon enrollment and
then daily up to day 4. We found no significant changes over time in
Shannon Index and anaerobe/pathogen abundance in either com-
partment on serial samples through day 4 (data not shown). We
classified baseline lung and gut samples by our Dysbiosis Index
models, which showed significant differences in Shannon index and
anaerobe abundance in lung samples (Fig. 5D, E). Importantly, the
low diversity cluster in both the lung and gut compartment was
strongly associatedwith COVID-19 pneumonia severity classifiedby
oxygen support requirements (odds ratios 18.07 [1.92–992.5] and
4.08 [1.56−11.2], for lung and gut clusters, respectively Fig. 5F-G).
Thus, the application of the Dysbiosis Indices to lung and gut sam-
ples of patients with COVID-19 provided similar findings to the ones
obtained in the UPMC-ARF derivation cohort, supporting the pre-
dictive value of microbiota profiling.

Discussion
We conducted a longitudinal, integrative assessment of host-
microbiota interactions in a large cohort of ARF patients across
three body sites (the oral cavity, lungs, and gut) and up to three-time
points in the ICU. These analyses offered insights into the temporal
relationships between patient-level factors, therapeutic interven-
tions, microbial communities and patient-centered outcomes, which
has not been possible in previous smaller scale investigations30. The
progressive dysbiosis of microbial communities observed in all three
body compartments highlights the impact of critical illness on the
globalmicrobiota. We found reduced alpha diversity and deviation in
composition compared to healthy controls at the onset of IMV, with
further reduction in diversity and alterations in composition for
patients supported on ventilators over time. Unsupervised analyses
of microbiota composition revealed distinct communities in all three
body compartments, yet the lung microbiome emerged as the
strongest independent predictor of important clinical outcomes. We
developed parsimonious models for dysbiosis classifications in each
compartment and found that lung dysbiosis was significantly asso-
ciated with host-response profiles and clinical severity in patients
with COVID-19.

The large sample size and granular clinical data in our derivation
cohort allowed for a detailed investigation of the relationships
between patient-/treatment-related factors with the composition of
microbiota. Clinical diagnoses (e.g. pneumonia) and comorbidities
explained variation in diversity and composition at baseline. Despite
the self-evident biological plausibility of antibiotic pressures on alter-
ing themicrobiomes of critically ill patients, empirical evidence to date
has been limited21,31,32. Here we modeled antibiotic exposure thor-
oughly with different methodologies from prior studies focused on
cystic fibrosis or pneumonia25,26,33, and studied antibiotic effects on
longitudinal communities and features of dysbiosis. We found that the
NAT score and a simple categorical classification with regard to
anaerobic spectrum coverage captured important effects on long-
itudinal composition. Recent epidemiologic and molecular evidence
supports the disruptive effects of anti-anaerobic antibiotics in gut
microbial communities21,22. Our data are consistent with the idea that
anaerobe-targeting antibiotics are associated with anaerobic bacteria
depletion in the respiratory and intestinal tracts, and furthermore, our
study suggests that such depletion is associated with worse clinical
outcomes. Our results thus highlight the importance of rational use of
anti-anaerobic antibiotics34, as directed by proper clinical indications,
because such antibiotics can have important yet under-recognized
adverse clinical implications.

The biogeography of the intubated respiratory tract has been
extensively investigated for prevention of secondary ventilator-
associated pneumonia (VAP)35,36. Clinical trials have examined oro-
pharyngeal decontamination with chlorhexidine rinses or the more
aggressive selective digestive decontamination (SDD) of the gastro-
intestinal tract as means of reducing bacterial burden in the probable
source compartments that seed the LRT microbiota. While rando-
mized clinical trials have shown that both decontamination

Fig. 2 | Longitudinal analysis of bacterial composition showed a progressive
loss of obligate anaerobes in oral and lung communities as well as enrichment
for recognized respiratorypathogens in all threecompartments.TopPanels (A,
B): Relative abundance barplots for oral, lung, and gut samples with the classifi-
cation of bacterial genera by oxygen requirement into obligate anaerobes (anae-
robes), aerobes, facultative anaerobes, microaerophiles, genera of variable oxygen
requirement and unclassifiable. Comparisons of centered-log ratio (CLR) trans-
formed relative abundances for the three main categories of bacteria (obligate
anaerobes, aerobes, and facultative anaerobes) by follow-up interval (baseline,
middle and late). Data in boxplots (B) are represented as individual values of
untransformed relative abundances, with their median as the line inside the box,
interquartile range (25th–75th percentile) as the box itself, whiskers extend to 1.5

times the interquartile range, and individual dots beyond whiskers signify outlier
observations. Comparisons between intervals were done by non-parametric Wil-
coxon tests, with p-values adjusted for multiple comparisons by the Bonferroni
method. Bottom Panels (C, D): Relative abundance barplots for oral, lung and gut
samples with the classification of bacterial genera by plausible pathogenicity into
oral commensals, recognized respiratory pathogens, and “other” category. Com-
parisons of CLR-transformed relative abundances for these categories of bacteria
by follow-up interval (baseline, middle, and late) in boxplots (D), with p-values
adjusted for multiple comparisons. Source data are provided as a Source Data file.
Displayed data include 583 oral, 543 lung, and 343 gut samples from ICU patients.
All statistical tests were two-sided.
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Fig. 3 | Unsupervised clustering approaches revealed differences in bacterial
alpha diversity and composition in three body compartments of critically ill
patients. Panels A–D demonstrate bacterial Dirichlet Multinomial Mixture
(DMM) modeling results for each compartment separately. DMM clusters had
significant differences in alpha diversity (A, Shannon index, derived from all
reads in each sample) and composition (obligate anaerobe relative abundance
in shown in panel B and pathogen relative abundance shown in panel C, with
comparisons performed in abundances post centered-log ratio transforma-
tion), with cluster 3 in each compartment showing very low Shannon Index
and enrichment for pathogens (Low-Diversity cluster). Oral and lung cluster

assignments were strongly associated with each other (Odds ratio for assign-
ment to the Low-Diversity cluster: 7.67 (422–14.25), Fisher’s test p < 0.0001),
whereas membership to lung and gut clusters was associated significantly with
borderline statistical significance (Fisher’s test p = 0.04, panel D). Source data
are provided as a Source Data file. Displayed data include 380 oral, 393 lung,
and 216 gut samples from ICU patients obtained at baseline. Data displayed as
boxplots with individual dots have their median as the line inside the box,
interquartile range (25th–75th percentile) as the box itself, whiskers extend to
1.5 times the interquartile range, and individual dots beyond whiskers signify
outlier observations.
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approaches are effective in preventing VAP37,38, safety concerns39,40

have led to limited uptake of SDD worldwide and de-adoption of
chlorhexidine rinses. Indiscriminate application of chlorhexidine rin-
ses in all patients on IMV may in fact deplete commensal organisms
from the URT and reduce colonization resistance against pathogens.
We found significant correlations between the abundance of oral-
origin commensals, such as Prevotella, in URT and LRT samples, with
lower levels of plasma inflammatory biomarkers, suggesting a poten-
tial regulation of innate immunity by such taxa41–43. Our comparative
analyses between compartments revealed a much higher similarity
between the oral and lung microbiota compared to the similarity lung
and gut microbiota. This suggests that the oral cavity is the main
source of microbial seeding in the lungs. However, we did observe a
small subset of patientswhohadenrichment for gut-origin commensal
or pathogenic organisms in their LRT. Such enrichment could not be

fully accounted for by URT colonization with similar taxa. These
patients with gut-origin bacteria enrichment in their lungs (8.3%) had
muchworse survival than the rest of the cohort. This subset of patients
may have experienced gut-to-lung bacterial translocation19,20. To fur-
ther investigate the possibility of gut-to-lung translocation, it would be
beneficial to have a wider availability of BAL samples to investigate the
alveolar spaces more closely. Our non-invasive ETA samples showed
that such translocation, if present, affects a small subset of patients at
least within the first week of IMV. Therefore, efforts focused on pre-
venting lung dysbiosis and pathogen colonization will need to con-
sider primarily the URT-to-LRT ecosystem and secondarily, the
possibility of gut-to-lung translocation.

Unsupervised clustering revealed distinct microbial communities
within and across body compartments. Low-diversity bacterial clusters
were enriched with pathogens and depleted in anaerobes in all three

Fig. 4 | Lungdysbiosis features and clusters predict 60-day survival. A,B: Forest
plots of effect sizes (point estimates and 95% confidence intervals) for dysbiosis
features (Shannon index, bacterial load, anaerobe and pathogen abundance) in
three different models: (i) mixed linear regression models with random patient
intercepts for the longitudinal change of dysbiosis features during follow-up
sampling, (ii) the age-adjusted hazards ratios from Cox-proportional hazards
models for the baseline values of each feature on 60-day survival, and (iii) joint-
modeling with adjusted beta-coefficient for the effect of each longitudinally-
measured feature on survival. Joint modeling showed that pathogen abundance in
the oral compartment and anaerobe abundance in the lung compartment had
borderline statistically significant effects on 60-day survival. Joint-models for bac-
terial load by qPCR did not converge due to low number of longitudinal

measurements. C. Kaplan-Meier curves for 60-day survival from intubation strati-
fied by oral (A), lung (B) and gut (C) bacterial DMMclusters. The Low-Diversity lung
DMM cluster was independently predictive of worse survival (adjusted Hazard
Ratio = 2.22 (1.0.7-4.63), Cox regression p =0.03), following adjustment for age,
sex, history of COPD, immunosuppression, severity of illness by sequential organ
failure assessment (SOFA) scores and host-response subphenotypes. Longitudinal
analysis of lung DMM clusters showed that patients who remained in the low
diversity cluster from the baseline to the middle interval (“Low Diversity Persis-
ters”) had significantly worse survival than other patients with available follow-up
samples (age-adjusted HR= 2.73 [1.19–6.42], Cox regression p =0.02). Source data
are provided as a SourceDatafile. Displayeddata include 380oral, 393 lung and 216
gut samples from ICU patients obtained at baseline.
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compartments. Membership in the low-diversity cluster was strongly
associated with the oral and lung compartments, suggesting shared
patterns of dysbiosis. The overall stability of longitudinal cluster
membership indicated that specific microbial profiles may persist
throughout critical illness, influencing the disease trajectory. Integra-
tion of fungal sequencing data further enhanced our view of the
microbial communities, revealing patients who had enrichment for
C.albicans and experienced worse outcome. The presence of

C.albicans in the LRT may not signify clinical pneumonia by conven-
tional criteria44, yet may represent a state of dysbiosis with potential
adverse effects from C.albicans on host epithelial integrity and
immune response. Taxonomic concordance between amplicon
sequencing approaches (Illumina 16S-Seq and ITS-Seq) with rapid
metagenomic sequencing with the MiNION device (Oxford Nanopore
Technologies, UK) suggests that such microbial profiles could be
generated in clinically relevant turnaround times45.
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Survival analyses based on microbiota clusters yielded significant
findings. First, when comparing microbiota from three distinct body
compartments to predict survival, the lung microbiome emerged as
the strongest predictor compared to oral or gut microbiota. This
finding is not surprising given that previous research had shown that
baseline lung microbiota profiles were predictive of survival3.
Expanding on these prior observations, we analyzed microbiota in
three compartments at various time points during IMV and found that
the lung microbiota continued to be the most predictive, both at
baseline and also in follow-up samples. Notably, we modeled the
longitudinal change in dysbiosis features and its impact on survival
with joint modeling. Joint modeling is a flexible approach that can
mitigate some of the effects of informative censoring28. The latter is
particularly relevant for translational studies in the ICU because
patients who experienced early mortality or those who improved
quickly and were discharged from the ICU could not contribute later
follow-up samples46. Our joint models revealed that baseline features
in the lung compartment (Shannon index and anaerobe or pathogen
abundance) were predictive of survival, whereas their longitudinal
changes were not, except for marginal effects of anaerobe abundance.
Such results may indicate that the communities formed by host-
microbiota interactions early post-intubation are already representa-
tive of an LRT infection or dysbiosis state. Therefore, subsequent
changes among those who remain intubated in the ICU may be less
consequential for the overall outcome compared to their starting
state. Nonetheless, longitudinal observations were limited by a lower
number of observations, which has likely limited the statistical power
of jointmodels, as indicated by the wide CI in effect estimates. Overall,
our inter-compartment comparisons highlight the clinical relevance of
lungmicrobiota analysis in critical illness, and underscore the need for
dedicated sampling of the LRT47.

Theprognostic valueof lungmicrobiota clusterswas independent
not only from clinical predictors and validated organ dysfunction
metrics, such as the SOFA score but also from the systemic host-
response subphenotypes. Extensive evidence has established the
prognostic value and generalizability of plasma biomarker-based
subphenotyping of patients with ARF8,48. Hyperinflammatory patients
had higher pathogen abundance in lung samples compared to
hypoinflammatory patients. Notably, the hyperinflammatory pheno-
type has been associated with a higher burden of bacteremia and cir-
culating microbial cell-free DNA49,50. Our adjusted Cox proportional
hazardsmodels revealed significant hazard ratios for the Low-Diversity
lung cluster. Beyond the significant taxa-biomarker associations we
observed, these survival analyses demonstrate that lung microbiota
may influence patient outcomes in ways that are not captured by
current host-response subphenotyping approaches. An integrative,
host- and lung microbiome-aware subphenotyping framework may
thus augment our ability to better prognosticate and target ther-
apeutic interventions in ARF51.

Our study has several limitations. First, we mainly focused on
bacterial and fungal components of the microbiome, and thus could
not assess the role of the virome, especially with regards to respiratory
RNA viruses. The consistent pattern of results relating elements of the

bacterial microbiome to host response and illness severity in the
COVID-19 cohorts supports the generalizability of our findings,
although we could not investigate contributions from individual viru-
ses. The observational nature of our study prevents us from estab-
lishing causality between the microbiome and clinical outcomes,
which could be addressed by future interventional studies or animal
modeling with microbiome manipulation. Longitudinal sample avail-
ability was limited by informative censoring, which we attempted to
mitigate with mixed linear regression and joint modeling approaches.
Our longitudinal analysis findings should be interpreted with caution
and considered as applicable to patients who remain on IMV for the
first 1–2 weeks of critical illness.

For patient safety and practical purposes of subject participa-
tion in our observational research study, we relied on non-invasive
biospecimens (ETA) for LRT microbiota profiling, as opposed to
reference standard BAL47. Our non-invasive approach allowed us to
enroll a large cohort of LRT specimens, follow serial samples over
time and is congruent with clinical practice guidelines for VAP
diagnosis52. Recent research has shown the ability to derive robust
microbiota signatures from ETA samples in patients on IMV53. How-
ever, we may have missed important microbiota variability closer to
the alveolar space, including potentially stronger deviation fromURT
microbiota, a higher signal of gut-to-lung microbiota translocation,
as well as better delineation of longitudinal host-response bio-
markers in BAL fluid20. In a limited comparison of two subjects with
synchronous ETA-BAL sampling, we found that in a case of Achro-
mobacter xylosidans pneumonia, both ETA and BAL samples showed
community dominance (>90% relative abundance) by Achromobacter
genera, whereas in a case of culture-negative pneumonia diagnosis,
taxonomic concordance between ETA and BAL sample was more
limited. These results are consistent with a previous comparison of
ETA vs. mini-BAL metagenomics, in which case higher taxonomic
concordance was seen for cases with culture-positive pneumonia54.
Thus, the reliability of ETA biospecimens for profiling airspace
microbiota may be context dependent, and further research is nee-
ded with BAL biospecimens when available55. Additionally, we had a
smaller effective sample size for gut microbiota analysis, which may
have limited our ability to identify prognostic variation within the gut
compartment. Last, our derivation cohort had limited racial/ethnic
diversity consistent with the demographics of the catchment popu-
lations for our ICUs; therefore, our results require independent
validation in more diverse patient populations.

In conclusion, our study provides important insights into the
predictive value of microbiota clusters derived from different body
compartments in critically ill patients. The lung microbiome emerged
as themost powerful predictor of survival, surpassing the oral and gut
microbiota. These findings emphasize the clinical relevance of inves-
tigating the lungmicrobiota and highlight its potential as a prognostic
marker in critical illness. Moreover, our study underscores the
importance of considering organ-specific microbial communities in
critical care settings and expands our understanding of the micro-
biome’s role in determining patient outcomes. Further research in this
area has the potential to shape clinical decision-making and facilitate

Fig. 5 | Lung and Gut Microbiota Associations with COVID-19 Severity in Two
Independent Cohorts. A Application of the dysbiosis index in lung (ETA) micro-
biota profiles in the UPMC-COVID cohort classified subjects in three clusters, with
significant differences in Shannon index and bacterial load by 16S qPCR. B The low
diversity cluster in lung samples from UPMC-COVID subjects was significantly
associated with higher ETA levels of sTNFR1 and plasma levels of Ang-2. C COVID-19
patients classified to the low diversity cluster had numerically worse time-to-
liberation from invasive mechanical ventilation and survival. D, E Application of the
dysbiosis indexmodels in lung (sputum or ETA) and gut (stool) samples in theMGH-
COVID cohort classified subjects in three clusters, with significant differences in
Shannon index and anaerobe abundance between clusters. F, G Cluster assignments

in theMGH cohort were strongly associatedwith clinical severity.Membership in the
Low-Diversity cluster in the lungs was associated with an odds ratio of 18.07 (1.92-
922.5) for severe disease (black belt connecting the Low-Diversity cluster and Severe
Disease perimetric zones in the chord diagram). Membership in the low diversity gut
cluster was also significantly associatedwith clinical severity of COVID-19 pneumonia
(odds ratio of 4.08 [1.56–11.2]). Source data are provided as a Source Data file.
Displayed data include 47 baseline lung samples fromUPMC-COVID, and 75 baseline
lung and 88 stool samples fromMGH-COVID cohort. Data displayed as boxplots with
individual dots have their median as the line inside the box, interquartile range
(25th–75th percentile) as the box itself, whiskers extend to 1.5 times the interquartile
range, and individual dots beyond whiskers signify outlier observations.
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the development of personalized medicine strategies for critically ill
patients.

Methods
Our research complies with all ethical regulations in accordance with
the Declaration of Helsinki, and as directed by the University of Pitts-
burgh Institutional Review Board (IRB) (protocols STUDY19050099,
STUDY19060243, and STUDY20060312) and the Mass General Brig-
ham IRB (protocol #2020P000804).

UPMC-ARF cohort
Following admission to the ICU at UPMC (Pittsburgh, PA, USA) and
obtaining informed consent from patients or their legally authorized
representatives (University of Pittsburgh IRB protocol
STUDY19050099), we collected baseline research biospecimens
within 72 hours from intubation. We collected blood for separation of
plasma, oropharyngeal (oral) swabs to profile upper respiratory tract
(URT) microbiota, endotracheal aspirates (ETA) for LRT (lung) micro-
biota and host biomarker measurements, and rectal swabs or stool
samples for gut microbiota analyses. We also captured leftover
bronchoalveolar lavage fluid (BALF) from clinically indicated bronch-
oscopies, when available.We repeated researchbiospecimen sampling
between days 3–6 (middle interval) and days 7−12 (late interval) post-
enrollment for subjects who remained in the ICU. No patients in the
UPMC-ARF cohort were known to be infected by SARS-CoV-2 at the
time of enrollment.

UPMC-COVID cohort
Following admission to the ICU and obtaining informed consent from
patients or their legally authorized representatives (University of
Pittsburgh IRB protocol STUDY19050099), we collected baseline
research biospecimens (ETA and blood) within 72 hrs from intubation.
We repeated research biospecimen sampling between days 3-6 (mid-
dle interval) and days 7−12 (late interval) post-enrollment for subjects
who remained in the ICU, as per the UPMC-ARF protocol. All patients
were known to have positive SARS-CoV-2 qPCR prior to enrollment.

MGH-COVID cohort
From April 2020 to May 2021, we prospectively enrolled 97 hospita-
lized patients aged ≥18 years with confirmed COVID-19 at the Massa-
chusetts General Hospital (Boston, MA, USA) in a longitudinal COVID-
19 disease surveillance study15. The Study protocol #2020P000804
was approved by the Mass General Brigham IRB. All participants or
their healthcare proxy provided written informed consent to partici-
pate. Patients were categorized as having severe COVID-19 if they
required admission to the intensive care unit with acute respiratory
failure (the need for oxygen supplementation ≥15 liters per minute
(LPM), non-invasive positive pressure ventilation, or mechanical ven-
tilation) or other organ failure (such as shock requiring vasopressors).
Otherwise, they were categorized as having moderate COVID-19.
Expectorated sputum, ETA, or fresh stool was collected and refri-
gerated at 4 °C until aliquoting/freezing at −80°C (typically within
4 hours of collection) from adult patients enrolled in the prospective
biospecimen collection study. Participants were able to provide sam-
ples as frequently as once daily for up to four days, as well as declining
donations on any given day (while remaining in the study).

Healthy controls
To contextualize the findings on microbiota from critically ill patients
with what is expected for the healthy respiratory and gastrointestinal
tract, we also included data from 24 healthy volunteers who had
contributed URT and LRT microbiome data in a previously published
cohort (Lung HIV Microbiome Project – University of Pittsburgh IRB
STUDY19060243)56, as well as stool from 15 healthy donors for fecal
microbiota transplantation (University of Pittsburgh IRB -

STUDY20060312)11. We designated these healthy volunteers as Heal-
thy Controls.

Clinical data recording
We obtained clinical data directly from the electronic medical record.
We captured biological sex and race as recorded in themedical record.
A consensus committee reviewed clinical and radiographic data and
performed retrospective classifications of the etiology and severity of
acute respiratory failure without knowledge of microbiome sequen-
cing or biomarker data. We retrospectively classified subjects as hav-
ing ARDS per established criteria (Berlin definition), being at risk for
ARDS because of the presence of direct (pneumonia or aspiration) or
indirect (e.g., extrapulmonary sepsis or acute pancreatitis) lung-injury
risk factors although lacking ARDS diagnostic criteria, having acute
respiratory failure without risk factors for ARDS, or having acute-on-
chronic respiratory failure. We followed patients prospectively for
cumulativemortality and ventilator-free days (VFDs) at 30 days, aswell
as survival up to 60 days from intubation.

We systematically reviewed administered antibiotic therapies
sincehospital admission and recorded the antibiotic exposure for each
subject according to the following three metrics:
1. Anaerobic coverage (yes/no): whether antibiotics with anaerobic

coverage were given on the day of sampling.
2. The Antibiotic Exposure score by Zhao et al.25: a numerical scale

with antibiotic weighting based on dosing duration, the timing of
administration relative to sample collection, and the antibiotic
type and route of administration. We utilized the convex
increasing weighting scheme and modeled the antibiotic expo-
sure from hospital admission until the day of sampling.

3. The Narrow Antibiotic Treatment (NAT) score was developed for
community-acquired pneumonia treatment studies26,33. We calcu-
lated the daily NAT score from -5 days from sampling to post-10
days after sampling on day 1.

Research sample collection
Within the first 48 hours of intubation (baseline time-point), we col-
lected aposterior oropharyngeal (oral) swabvia gentle swabbingof the
posterior oropharynx next to the endotracheal tube with a cotton tip
swab for 5 secs, and an endotracheal aspirate (ETA) via suctioning
secretions from the endotracheal tubewith the in-line suction catheter
and without breaking seal in the ventilatory circuit1,4. Rectal swabs
were collected according to a standard operating procedure (i.e.,
placing the patient in a lateral position, inserting the cotton tip of the
swab into the rectal canal, and rotating the swab gently for 5 secs),
unless clinical reasons precludedmovement of the patient (e.g., severe
hemodynamic or respiratory instability). Stool samples were collected
when available, either by taking a small sample from an expelled bowel
movement (before cleaning of the patient and disposal of the stool) or
from a fecal management system (rectal tube) placed formanagement
of diarrhea and liquid stool collection. We also collected simultaneous
blood samples for centrifugation and separation of plasma. Samples
were delivered to the processing laboratory within minutes from
acquisition, and then aliquoted and stored in −80 °C until conduct of
experiments. For samples that underwent host DNA depletion for
Nanopore sequencing, an aliquot remained in 4C for processing
before freezing for up to 72 hrs from acquisition. ETA Samples
obtained from COVID-19 subjects inactivated by 4-fold dilution in
DNA/RNA Shield (Zymo Research) under biosafety level 2+ conditions
and then stored at −80 °C. For patients who remained intubated in the
ICU, we collected follow-up samples at a middle time-point (days 3–6)
and a late follow-up interval (days 7−11 post-intubation).

For Healthy Controls, an oralwash andBAL samplewere collected
with a standardized protocol56. Subjects were asked to fast and refrain
from smoking for at least 12 hrs before sample collection. Oral washes
were performed by having participants gargle with 10ml sterile 0.9%
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saline immediately before bronchoscopy. BAL was performed
according to standardized procedures developed to minimize oral
contamination. Participants were gargled with an antiseptic
mouthwash (Listerine) immediately before topical anesthesia. The
bronchoscopewas then inserted through themouth and advanced to a
wedge position quickly and without the use of suction. BAL was per-
formed in the right middle lobe or lingula up to a maximum of 300ml
0.9% saline. Healthy donors of stool for fecal microbiota transplant
collected a stool sample in a specialized container and brought the
stool sample on the day of collection to the processing lab.

Laboratory and bioinformatics analyses
Microbiome assays in UPMC cohorts. From all available oral swabs,
ETAs, left-over BALF, rectal swabs and stool samples, we extracted
genomic DNA and performed quantitative PCR (qPCR) of the V3-V4
region of the 16 S rRNA gene to obtain the number of gene copies per
sample, as a surrogate for bacterial load. From a separate aliquot of
extracted DNA from oral swabs, ETA, rectal swabs, and stool samples,
we performed amplicon sequencing for bacterial DNA (16S-Seq of the
V4 hypervariable region) and fungal DNA (ITS) on the Illumina MiSeq
platform at University of Pittsburgh Center for Medicine and the
Microbiome laboratories3,23 We used extensive experimental negative
controls in all processing steps to rule out contamination, as well as
mock microbial community positive controls (Zymo) to ensure target
amplification success. We processed derived 16S sequences with a
custom Mothur-based pipeline57 (v1.44.1) (available at https://github.
com/MedicineAndTheMicrobiome/AnalysisTools/tree/master/16S_
Clust_Gen_Pipeline). In brief, we deconvoluted sequences from the
Illumina MiSeq and processed them through an in‐house sequence
quality control pipeline, which includes dust low complexity filtering,
quality value (QV< 25) trimming, and trimming of primers used for 16S
rRNA gene amplification, andminimum read length filtering. Trimmed
reads shorter than 75 bp or thosewith less than 95% of the bases above
a QV of 25 were discarded. Forward and reversed paired reads were
merged into contigs and processed for 16S rRNA gene sequence
clustering and annotation pipeline. Sequence taxonomic classifica-
tions were performed with the Ribosomal Database Project’s (RDP)
naïve Bayesian classifier with the SILVA 16S rRNA database58 (v138). ITS
rRNA gene sequences from the pooled sequencing run were demulti-
plexed into individual sample/replicate fastq files. The variable-length
reads were processed, trimmed, and quality filtered with a quality
control pipeline utilizing the DADA2 package in R, v4.2.0. Paired
sequences with forward and reverse reads passing the quality filtering
and trimming steps were merged. Chimeras were removed and the
Unite database was utilized to classify reads into amplicon sequence
variants (ASVs) using the naïve Bayesian classifier method, defined at
the species level.

From a random subset of 130 available ETA samples, we per-
formed metagenomic Nanopore sequencing (following human DNA
depletion) with a rapid PCR barcoding kit (SQK-RPB004) on the
MinION device (Oxford Nanopore Technologies-ONT, Oxford, UK) for
six hours59,60. We analyzedmicrobial metagenomic sequences with the
EPI2MEplatform (ONT) and the “What’s InMyPot” [WIMP]workflow to
quantify the abundance of microbial species61. We filtered FASTQ files
with a mean quality (q-score) below a minimum threshold of 7.

Host-response assays. We measured 10 plasma biomarkers of tissue
injury and inflammation with custom Luminex multi-analyte panels
from plasma samples and ETA supernatants, when available. Specifi-
cally, we used a 10-plex Luminex panel (R&DSystems,Minneapolis,MI,
United States) to measure interleukin(IL)-6, IL-8, IL-10, soluble tumor
necrosis factor receptor 1 (sTNFR1), suppressor of tumorigenicity-2
(ST2), fractalkine, soluble receptor of advanced glycation end-
products (sRAGE), angiopoietin-2, procalcitonin and pentraxin-37.

Microbiome assays in MGH-COVID cohort
Samples were extracted and sequenced at Baylor College of Medicine
according to their standard established platforms. DNA was prepared
for sequencing using the Illumina Nextera XT DNA library preparation
kit. All libraries were sequenced with a target of 3 GB output at 2 x 150
bp read length using the Illumina NovaSeq platform15. Taxonomic
profiles were generated using the bioBakery 3 shotgun metagenome
workflow 3.0.0, the details of which have previously been described62.
Briefly, human reads were filtered using KneadData 0.10.0, and
species-level taxonomic profiles were generated using MetaPh-
lAn 3.0.063.

Quantification and statistical analysis
We performed non-parametric comparisons for continuous (descri-
bed as median and interquartile range – IQR) and categorical variables
between clinical groups (Wilcoxon and Fisher’s exact tests, respec-
tively). For microbial community profiling, we included samples that
produced ≥1000 high-quality microbial reads for 16S-Seq. In the
UPMC-ARF cohort, we considered 1520 unique clinical samples (593
oral swabs, 578 ETA/BALF [lung], and 349 stool or soiled rectal swabs
[gut]). Filtering at 1000 reads resulted in elimination of 112 clinical
samples (24 oral swabs, 77 lung samples, and 11 gut samples). We
performed 16S-Seq analyses at the genus level, which were filtered for
singletons and low abundance taxa (i.e. those with relative abundance
<0.0001 in <5% of samples), resulting in a final set of 214 unique genera
for analyses. We analyzed ITS-Seq at species level for fungi, and
Nanopore metagenomics at species level for DNA reads of bacteria,
fungi, and viruses. We calculated alpha diversity with the Shannon
index following rarefaction at 1000 reads, with 100 random sub-
samplings to obtain the average Shannon index for each available
sample. Rarefaction curves showed that all clinical samples had
reached a plateau for calculation of the Shannon index by 1000 reads
(Figure S1). We applied rarefaction to allow for between-sample type
comparisons because sequencing depth and yield varied between
sample types. We conducted between-group comparisons of alpha
diversity with two-sided non-parametric tests at a significance level of
0.05 to draw inferences on systematic differences of alpha diversity
between groups as a measure of relative community fitness1. We con-
ducted beta diversity analyses (Bray-Curtis indices) on centered log-
ratio (CLR) transformed abundances, analyzed via permutation ana-
lysis of variance (Permanova), and visualized via principal coordinates
analyseswith theR vegan andmiapackages64.We adjusted all reported
p-values from Permanova tests formultiple testing with a conservative
Bonferroni correction. We examined for differentially abundant taxa
between groups following CLR transformations with the limma pack-
age to fit weighted linear regressionmodels, performed tests based on
an empirical Bayesmoderated t-statistic, and obtained False Discovery
Ratio corrected p-values. We examined for correlations between CLR-
transformed abundances and host response biomarkers with the
Pearson’s correlation co-efficient. Examination of the taxonomic
compositionofnegative control samples revealed very lownumbers of
reads for commonly detected taxa (Figure S1). Examination of the
taxonomic composition of negative control samples revealed very low
numbers of reads for commonly detected taxa (mean <100 reads,
Figure S1) and we did not filter any taxa from clinical samples.

We then examined the discovered bacterial taxa at the genus level
and classified themby twodifferent classification schemeswith clinical
relevance. First, we considered the oxygen requirements of each
bacterial taxon, given the relevance of oxygen metabolism in critically
ill patients on invasive mechanical ventilation who receive variable
amounts of inspired oxygen. Recent research has investigated the
impact of hyperoxia in LRT microbiota65, as well as the association
between anaerobic spectrum antibiotics with anaerobe bacteria
abundance in the respiratory and gastrointestinal tract12. We thus
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classified the analyzed taxa by oxygen requirements for bacterial
metabolism (details in Table S3):
1. Obligate aerobes (referred to throughout as aerobes): bacteria

that require oxygen to grow and survive, as they use oxygen as a
final electron acceptor in their respiratory chain.

2. Obligative anaerobes (referred to throughout as anaerobes):
bacteria that areunable to grow in the presenceof oxygen, as they
are unable to use oxygen as a final electron acceptor and are killed
in the presence of oxygen.

3. Facultative anaerobes: bacteria that can grow in the presence or
absence of oxygen. They can use both aerobic and anaerobic
respiration, depending on the availability of oxygen in their
environment, switching from aerobic to anaerobic metabolism.

4. Microaerophiles: bacteria that require a low level of oxygen to
grow and survive, as they can grow at oxygen concentrations
lower than those required by obligate aerobes but higher than
those tolerated by obligate anaerobes.

5. Variable: genera that included both aerobes and anaerobes and
could not be classified further with confidence.

6. Unclassifiable: taxa that were not classified at the genus or family
level with confidence to allow assessment of their
metabolic needs.

Next, we classified organisms based on their plausible patho-
genicity. Prior research has examined the associations between oral-
origin bacteria in the LRT (i.e. lung commensals) with innate immunity
and clinical outcome42, as well as the importance of detecting highly
abundant typical respiratory pathogens as causal factors of LRT
infection in critically ill patients3,5. We therefore utilized operational
definitions of plausible pathogenicity of detected taxa as follows
(details in Table S4):
1. Common respiratory pathogens: bacteria considered to be typical

pathogens when isolated in LRT microbiologic cultures.
2. Oral-origin commensal bacteria: bacterial taxa that have been

characterized as typical members of the lung microbiome in
health and originate from the oral cavity.

3. Other: taxa with unclear clinical significance that do not fall into
categories 1 or 2 above.

To agnostically examine our samples for distinct clusters of
microbial composition (“metacommunities”), we applied unsu-
pervised Dirichlet multinomial models (DMMs). We used Laplace
approximations66 to define the optimal number of clusters in our
dataset, and a prevalence criterion, requiring that each additional
cluster would contain ≥10% of observations to merit clinical relevance
for inclusion. We then examined for associations between DMM clus-
ters with clinical parameters and outcomes. We classified subjects into
a hyper- vs. hypo-inflammatory subphenotype based on predictions
from a parsimonious logistic regression model utilizing plasma levels
of sTNFR1, Ang-2, and procalcitonin (research biomarkers measured
with Luminex panel), as well as serum bicarbonate levels measured
during clinical care.

We followed patients prospectively and constructed Kaplan-
Meier curves and Cox-proportional hazard models for 60-day survi-
val, adjusted for the predictors of age and sex, as well as plausible
confounders of microbiome associations diagnosis based on our
findings (history of COPD, history of Immunosuppression), severity
of illness as per the SOFA score, and host-response subphenotypes.
To examine the impact of mechanical ventilation, steroids, and
antibiotics pressure on longitudinal microbiota profiles, we con-
structed mixed regression models with random patient intercepts
and adjusted for the number of days post-intubation that each
sample was taken (as a proxy for the exposure to the hyperoxic
environment of the ventilator) and the antibiotic exposure and
steroids metrics by the day of sampling.

In each body compartment (oral, lung, and gut), we examined for
the impact of dynamic changes in microbiota features (rarefied
Shannon Index, bacterial load by 16S qPCR, CLR-transformed Anae-
robe abundance, and CLR-transformed Pathogen abundance) on 60-
day survival using joint modeling. The joint models combined amixed
linear regressionmodel with random patient intercepts for measuring
the longitudinal changes of each feature during sampling follow-up,
and a Cox-proportional hazards model adjusted for age. Joint model-
ing offers the advantage of providing estimates of time-related asso-
ciations with outcome and can handle informative censoring, which
mayhave impactedour follow-up sample availability (e.g. in the case of
patients with early mortality or patients with rapid clinical improve-
ment and discharge from the ICU). We built joint models with the
joineR package, and reported in graphical format: i) the beta-
coefficients with 95% confidence intervals (CI, estimated via boot-
strapping at 100 iterations) for the longitudinal change of the micro-
biota variables during follow-up from the mixed linear regression
models, ii) the age-adjusted hazards ratios with 95% confidence inter-
vals from Cox-proportional hazards models for the baseline values of
eachmicrobiota variable on 60-day survival, and iii) the joint-modeling
adjusted beta-coefficient for the effect of each variable on survival. We
performed all statistical analyses in R v.4.2.067.

Following the derivation of the DMM clusters in each com-
partment of the UPMC-ARF cohort and the demonstration of
significant associations with patient outcomes, we proceeded to
develop multinominal logistic regression models for the predic-
tion of classification of bacterial 16S profiles from new samples
into predicted cluster assignments. We considered these new
classification models as a Dysbiosis Index for each compartment.
To develop these models in each compartment (oral, lung, and
gut), we used probabilistic graphical modeling (PGM)68 by con-
sidering the 50 most abundant taxa (expressed by CLR-
transformed relative abundance) in each compartment along
with the Shannon Index. We divided the samples of each com-
partment into two random subsets: 80% of data points for train-
ing and 20% for testing. The training set was used to generate a
PGM using the FCI-MAX algorithm with an Alpha of 0.1 to examine
which variables (50 taxa abundance and Shannon Index) were
associated with the cluster assignments in each compartment.
The variables that appeared in the Markov blanket of the DMM
cluster assignment variable were used to create a multinomial
logistic regression (MLR) model to predict the cluster assignment
of future samples. The MLR model equations were written as
follows for the different cluster assignments (Low, Intermediate,
and High Diversity):

Model equations

ln
P Intermediateð Þ
P HighDiversityð Þ

� �
=b10 +b11:f 1 + . . . +b1n:f n ð1Þ

ln
P LowDiverityð Þ
P HighDiversityð Þ

� �
=b20 + b21:f 1 + . . . +b2n:f n ð2Þ

f : f eature

b1 &b2are model coef f icients

By rewriting the equations, we get the following:

P Intermediateð Þ
P HighDiversityð Þ = e

ðb10 +b11 :f1 + ...+b1n :fnÞ ð3Þ

Article https://doi.org/10.1038/s41467-024-48819-8

Nature Communications |         (2024) 15:4708 14



P LowDiverityð Þ
P HighDiversityð Þ = e

ðb20 +b21 :f1 + ...+b2n :fnÞ ð4Þ

We rewrote the names of the model parameters as:

P HighDiversityð Þ=PðHÞ

P Intermediateð Þ= P Ið Þ

P LowDiverityð Þ= P Lð Þ

eðb10 +b11 :f1 + ...+b1n :fnÞ =X

eðb20 + b21 :f1 + ...+b2n :fnÞ =Y

We know that

PðHÞ+PðIÞ+PðLÞ= 1 ð5Þ

Then

PðHÞ= 1� P Ið Þ � PðLÞ ð6Þ

From Eqs. 3 and 4

PðIÞ=X P ðHÞ

P ðHÞ= P ðLÞ
Y

Substituting in Eq. 6

PðLÞ
Y

= 1� X
PðLÞ
Y

� PðLÞ

PðLÞ
Y

+X
PðLÞ
Y

+P Lð Þ= 1

P Lð Þ 1
Y

+
X
Y

+ 1
� �

= 1

P Lð Þ 1 +X + Y
Y

� �
= 1

P Lð Þ= Y
1 +X + Y

� �

P Hð Þ= 1
1 +X + Y

� �

P Ið Þ= X
1 +X + Y

� �

The predicted cluster is the one with the highest probability. For
example, ifmaxðPðHÞ,PðIÞ,PðLÞÞ=PðIÞ, then the predicted cluster is PðIÞ.

The Intercepts and coefficients for the MLR models for each
compartment are provided below.

Oral

f b1 b2

Intercept 3.639385 15.535322

Pasteurellaceae_uncl −0.4745086 −2.3936493

Alloprevotella −0.384223 −1.086375

Anaerovoracaceae_ge −0.5694409 −1.0899032

Centipeda −0.5507802 −1.7643090

Fusobacterium −0.2282283 −1.2268803

Streptococcus 0.3062403 −0.1848412

Veillonella −0.1108369 −0.9535763

Lung

f b1 b2

Intercept 6.314866 11.631919

ShannonIndex −2.064372 −3.663621

Porphyromonas −0.2249019 −1.0790556

Peptostreptococcus 0.0226691 0.6814249

Gemella 0.03023337 −0.23503918

Actinomyces 0.1083389 −0.6340821

Rothia 0.3937065 0.5838788

Treponema −1.120237 −1.605860

Bergeyella −0.1974596 −0.6481431

Alloprevotella −0.3517737 −0.7556098

Solobacterium −0.2284961 −0.8208410

Atopobium −0.2868991 −0.3039660

Neisseriaceae_uncl −0.3906575 −2.6100531

Gut

f b1 b2

Intercept −0.469294 5.715458

ShannonIndex 0.05286898 −2.57213563

Campylobacter 0.183625542 0.006264282

Fenollaria 0.1631794 −0.4952786

Ezakiella 0.19868003 −0.08232344

Enterococcus 0.5214449 0.6635925

Blautia −1.217537 −0.795908

We tested the MLR model using three datasets: The 20% testing
set for estimating model accuracy, and the ALIR-COVID samples and
the MGH-COVID samples for examining associations between the
Dysbiosis Index with clinical variables and endpoints.

Applications of the MLR models (Dysbiosis Index) in the three
compartments showed the following accuracy statistics (95% con-
fidence intervals) for prediction of the DMM clusters:

Oral Dysbiosis Index: 0.8026 (0.6954, 0.8851)
Lung Dysbiosis Index: 0.8 (0.6917, 0.8835)
Gut Dysbiosis Index: 0.8222 (0.6795, 0.92)

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The Sequencing data collected for the study have been deposited
to the Sequencing Resource Archive, through the following
Accession numbers:-PRJNA595346 for 16S data of UPMC-ARF and
UPMC-COVID cohorts, available at https://www.ncbi.nlm.nih.gov/
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bioproject/PRJNA595346. -PRJNA726955 for ITS data of UPMC-
ARF cohort, available at: https://www.ncbi.nlm.nih.gov/
bioproject/726955- PRJNA554461 for Nanopore data of UPMC-
ARF cohort, available at: https://www.ncbi.nlm.nih.gov/
bioproject/PRJNA554461-PRJNA940725 for 16S data of the Heal-
thy Controls, available at https://www.ncbi.nlm.nih.gov/
bioproject/PRJNA940725-PRJNA976404 for Metagenomic data of
the MGH-COVID cohort, available at https://www.ncbi.nlm.nih.
gov/bioproject/PRJNA976404 De-identified clinical and processed
microbiome data for the replication of analyses are available on
the GitHub repository (https://github.com/MicrobiomeALIR/
MultiCompartmentMicrobiome). Source data are provided in
this paper for all figures and Tables. Source data are provided in
this paper.

Code availability
Primary code is available on the GitHub repository (https://github.
com/MicrobiomeALIR/MultiCompartmentMicrobiome), with an
archive of the code including a Digital Object Identifier available
through Zenodo at https://doi.org/10.5281/zenodo.11109543.
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