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Strength of selection in lung 
tumors correlates with clinical 
features better than tumor 
mutation burden
Ivan P. Gorlov 1,2*, Olga Y. Gorlova 1,2, Spyridon Tsavachidis 1,2 & Christopher I. Amos 1

Single nucleotide substitutions are the most common type of somatic mutations in cancer genome. 
The goal of this study was to use publicly available somatic mutation data to quantify negative and 
positive selection in individual lung tumors and test how strength of directional and absolute selection 
is associated with clinical features. The analysis found a significant variation in strength of selection 
(both negative and positive) among tumors, with median selection tending to be negative even 
though tumors with strong positive selection also exist. Strength of selection estimated as the density 
of missense mutations relative to the density of silent mutations showed only a weak correlation with 
tumor mutation burden. In the “all histology together” analysis we found that absolute strength of 
selection was strongly correlated with all clinically relevant features analyzed. In histology-stratified 
analysis selection was strongest in small cell lung cancer. Selection in adenocarcinoma was somewhat 
higher compared to squamous cell carcinoma. The study suggests that somatic mutation- based 
quantifying of directional and absolute selection in individual tumors can be a useful biomarker of 
tumor aggressiveness.

Single nucleotide substitutions (SNSs) are the major type of somatic variation in  tumors1,2. Even though the 
absolute majority of the point mutations are  neutral3, there are many examples of positive and negative selection 
of point mutations in  carcinogenesis4,5. The absolute majority of the analyses of selection in tumors has been 
done at the level of individual  genes5–7, while a quantitative assessment of the direction and strength of selection 
at the tumor level has never been addressed according to our best knowledge.

Quantifying of the strength of selection at the tumor level can be used for a better understanding of tumor 
biology and can reflect tumor aggressiveness because quickly evolving tumors can better adapt to the host 
immune response and chemotherapy, and as a result, survive better and proliferate more  quickly8.

The most commonly used global somatic mutation-based biomarker is tumor mutational burden (TMB). 
TMB is a tumor feature that predicts  survival9, risk of metastasis,  progression10,11, and response to treatment, 
especially to  immunotherapy12–14. We hypothesized that aside from TMB, strength of selection in a tumor may 
also reflect the speed of tumor evolution and therefore can be associated with clinically relevant features.

We hypothesized that assessment of the global selection based on somatic mutations in a tumor is associated 
with clinical features and potentially could be used as a biomarker of cancer aggressiveness. Tumor develop-
ment is an evolutionary process comprising differential survival and proliferation of genetically different cell 
lineages (clones)15,16. Cancer cells that survive better and proliferate faster have a selective advantage and over 
time become a predominant clone of genetically heterogeneous  tumor17. This evolution happens even before 
any treatment is applied, though treatment itself is a very strong selective factor that drives tumor  evolution18.

Individual tumors as well as clones inside a tumor differ by their intrinsic propensity to produce somatic 
mutations, which depends on their DNA repair capacity as well as environmental exposures which is especially 
relevant to lung  cancer19,20. These factors contribute to the tumor’s ability to evolve through Darwinian selec-
tion. Fast-evolving tumors tend to be more aggressive since they better adapt to the host immune response and 
proliferate more quickly compared to slowly evolving  tumors21.

The direction and strength of selection in coding regions of the human genome can be quantified by the 
ratio of substitution rates at non-synonymous and synonymous sites, dN/dS. Even though it is not  perfect22, 
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this metric is widely used across different research  fields23. The measure was first based on the comparison of 
homologous sequences to estimate selection strength in species divergence, and recently the approach became 
a popular tool to quantify selection strength in  tumor4,24,25. Nonsynonymous to synonymous mutation ratio was 
used to estimate strength of selection in individual genes across cancer  types26–28. A study by Persi et al.29 used 
dN/dS ratio for a pan-cancer analysis of selection in 6,721 tumors representing 23 cancer types. They found that 
strength of selection in tumor is associated with tumor fitness and found “likely clinical implications” of dN/dS.

The goal of our study is to quantify global selection in individual lung tumors and to test if the strength of 
selection is clinically relevant. Clinical relevance is assessed by the analysis of correlation of the strength of posi-
tive, negative and absolute selection in individual lung tumors with clinical features.

Methods
Description of the approach
We have estimated the direction (negative or positive) and strength of selection by a comparison of the densities 
of nonsynonymous (missense) to synonymous (silent) mutations. In this respect our approach is similar to the 
commonly used ratio on nonsynonymous to synonymous substitutions dN/dS22,30,31. Our approach, however, dif-
fers from dN/dS method in the manner of how the normalization of the mutation numbers is done. Our goal was 
to quantify the strength of positive and negative selection at genome level while dN/dS estimates are designed for 
an assessment of selection in individual genes. At the genome level, exactly the same single nucleotide substitu-
tion may produce nonsynonymous or synonymous mutation depending on what transcript is considered. This 
ambiguity stems from the fact that the absolute majority of the genes in the human genome undergo alternative 
 splicing32. Together with the common (up to a quarter of all genes) cases of overlapping  genes33 this leads to a 
quite common situation when the same nucleotide substitution results in either a nonsynonymous or a synony-
mous substitution depending on what transcript is analyzed. The key parameter in our analysis is the number 
of potential sites for missense and silent mutations in the human genome. To estimate the number of potential 
sites for silent and missense mutations in the human genome we computationally “mutated” each nucleotide 
in coding regions into 3 possible single nucleotide substitutions and ran the “mutated” sequence against all 
known transcripts to see if it produced a silent or a missense  mutation34. Therefore, we counted the total num-
ber of missense and silent mutations that can be produced by all possible single nucleotide substitutions in the 
human genome in the context of all existing transcripts. This approach fits well with how somatic mutations are 
reported in the Catalog Of Somatic Mutations In Cancer (COSMIC) database which we have used as the data 
source for the study. In COSMIC the same point mutation may be reported as missense or silent depending on 
the transcript. The other difference of our approach from dN/dS method was that we have used the logarithm of 
the ratio instead of the simple ratio of nonsynonymous to synonymous mutations. This was done to make the 
distribution more symmetrical and therefore more suitable for statistical comparisons.

Estimation of the number of potential sites in the human genome for missense and silent 
mutations
We used the latest build of the human genome project—GRCh38 to estimate the number of potential sites 
for missense and silent mutations. We first identified all nucleotide positions in the consensus protein coding 
sequence (CCDS)  database35. Then we computationally mutated each nucleotide into the three possible single 
nucleotide substitutions (SNSs) and checked if a given SNS led to a missense or a silent mutation. If the SNS 
produced both missense and silent mutations it was counted both ways: as a potential site for both missense 
and silent mutations. This way we have estimated the total number of potential sites for missense and nonsense 
mutations in the human genome to be equal to 74,038,110 and the total number of potential sites for silent 
mutations to be 22,654,380.

Quantifying of negative and positive selection
The number of missense mutations in a tumor can be used to detect the type of selection (negative or positive) 
and to quantify the strength of selection. Negative selection against missense mutations will result in their lower 
number while positive selection will increase their number, and both affect the missense mutation density. 
However, selection is not the only factor influencing the number of somatic mutations in tumor. Environmental 
exposures, for example, tobacco smoke, dramatically increase the number of somatic mutation in lung  tumors36. 
One needs to take into account the overall mutability when estimating direction and strength of selection of 
missense mutations. Silent mutations can be used to adjust for tumor-specific mutability. Despite anecdotal 
examples of  functionality37,38, silent mutations are generally selectively  neutral39 and, therefore, silent mutations 
can be used as a reference group.

As a measure of selection we used the logarithm of the ratio of the densities of missense to silent mutations, 
that is, the number of missense mutations per million of potential sites to the number of silent mutations per 
million of potential sites. Negative log ratio values of relative selection indicate selection against missense muta-
tions (negative selection), and positive log ratios indicate positive selection for missense mutations. To estimate 
strength of selection regardless of its direction we used the absolute value of the log ratio. We also estimated 
tumor mutation burden (TMB) for each tumor. TMB was defined as the number of missense mutations detected 
in a given tumor by whole exome sequencing.

Somatic mutation data
We used somatic mutation data from the Catalog Of Somatic Mutations In Cancer (COSMIC)40. COSMIC is 
the largest repository of somatic mutations detected in tumor samples. COSMIC is updated quarterly, with 
the sample size increasing 5–10% with each new version. We used the latest version (V98) of the database. We 
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focused on lung cancer because it has one of the highest numbers of reported somatic mutations compared to 
other  cancers41–43. The summary of the data used in this study can be found in Supplementary Table S1.

We tested the association of (1) strength of positive selection, (2) strength of absolute selection regardless of 
the direction, and (3) tumor mutation burden with three clinically relevant tumor features: tumor stage, patient 
age at diagnosis and a comparison between primary and metastatic tumors. We used the Spearman rank-order 
correlation coefficient (rho) to test the association of selection strength with age at diagnosis. To test the asso-
ciation between selection and tumor stage we used nonparametric Spearman’s rank correlation coefficient, and 
t-test to compare strength of selection between primary and metastatic tumors. The clinical characteristics were 
downloaded from COSMIC website. Stage information was available for 26% of tumors, the age at diagnosis for 
85% of all patients, and primary (82%) versus metastatic (18%) for 60% of COSMIC samples .

Analysis of global selection in lung tumors stratified by the presence of driver mutations in 
EGFR or KRAS
We stratified tumor samples by the presence/absence of driver mutations in EGFR and KRAS genes. We used 
these genes because the largest number of samples harbored driver mutations in them: 69 samples with an EGFR 
driver mutation and 160 samples with a KRAS driver mutation. For EGFR we considered as a driver any of the 
following COSMIC reported mutations: p.L858R, p.L813R, p.T790M, p.T745M, p.R521K, and p.R476K44. For 
KRAS the following COSMIC reported mutations were considered as drivers: p.G12C, p.G12V, p.G12D, p.G12A, 
p.G13C, p.G12S, and p.G13D45.

Results
Quantifying selection in individual tumors: joint analysis of all cell types
Figure 1 shows the distribution of log ratios of the density of missense over the density of silent mutations in 
individual lung tumors. Denote MmD as the missense mutation density estimated as the number of missense 
mutation per million of potential sites for missense mutations, and SmD, the silent mutation density, as the 
number of silent mutations per million of potential sites for silent mutations. We found that the mean log(MmD/
SmD) in all cell types analyzed together was equal to -0.034 ± 0.007. Single sample t-test against mean log(MmD/
SmD) = 0 (no selection) was -5.1, which is highly statistically significant with p = 7 ×  10−7. The result indicates 
that global selection on missense mutations in lung tumors is negative.

The association of global tumor selection with clinically relevant features.
Table 1 shows the results of statistical analyses of the association of directional and absolute selection with clini-
cally relevant features available. The table also shows the association between clinically relevant features and 
tumor mutation burden. The total number of missense mutations detected in a given tumor was used as TMB. 
Directional selection was significantly associated with age at diagnosis and primary versus metastatic tumors. 
Absolute global selection was significantly associated with all clinically relevant features while TMB does not 
show any significant association with clinically relevant features.

The shape of the association of directional selection with clinically relevant features
To study the shape of the associations between clinically relevant features and selection we have stratified all 
tumors into five categories based on the selection strength: (1) strong negative selection—log ratio < -0.2 (total 189 
tumors), (2) weak negative selection, -0.02 ≤ log ratio < -0.05 (total 661 tumors), (3) no obvious selection, -0.05 ≤ log 

Figure 1.  The distribution of the log ratio of the density of missense to the density of silent mutations. The 
vertical red line marks the relative density expected when the global selection is zero, that is, the density of 
missense mutations equals the density of silent mutations. The median log ratio is shown as a vertical line on the 
box plot. The standard deviation SD = 0.268 is shown as a horizontal box. Vertical bars show the 95% confidence 
interval.
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ratio < 0.05 (total 461 tumors), (4) weak positive selection, 0.05 ≤ log ratio < 0.2 (total 157 tumors), and (5) strong 
positive selection, log ratio ≥ 0.2 (total 97 tumors). The categorization was based on the following considerations: 
(i) to facilitate the interpretation, categories needed to be distributed symmetrically relative to zero (as zero means 
no selection); (ii) the categories were made maximally similar in size, to make the comparisons more robust. 
That was not a simple task because the whole distribution is shifted to the left relative to zero.

The upper panel of the Fig. 2 shows the positions of the five categories (colored boxes) relative to the distribu-
tion of the strength of directional selection. The four lower panels of the Fig. 2 show the results of the analysis. For 
the study of the shape of association between directional selection and stage (second row, left panel), stage was 
treated as ordered numbers reflecting tumor progression, with Stage I being least and Stage IV most advanced. 
For all analyzed clinically relevant traits we observed a U-shaped or an inverse U-shaped association between 
directional selection and the analyzed features. The results indicate that the absolute strength of the selection 
rather than the direction of selection is clinically relevant.

Histology-specific analysis of the global selection in lung tumors
Figure 3 shows the distributions of log(MmD/SmD) in three major lung cancer cell types: adenocarcinoma—685 
tumors, squamous cell carcinoma—713 tumors, and small cell lung cancer—167 tumors. In all cell types com-
bined the mean log ratio was lower than zero, indicating global negative selection. The mean log ratio for 
adenocarcinoma was -0.06 ± 0.01 which is significantly lower than zero: t = 5.9, p = 6.1 ×  10−9. For squamous cell 
carcinoma the mean log ratio was -0.070 ± 0.005, t = 15.1, p <  10−24, and for small cell lung cancer the mean ratio 
was positive: 0.23 ± 0.04, t-test = 6.0, p =  10−8. The positive mean global selection in small cell lung cancer is due 
to the presence of a cluster of tumors with strong positive selection (see the far right part of the distribution). 
However, the median value of the log ratio for small cell lung cancer was negative − 0.02, along with the median 
values for adenocarcinoma and squamous cell carcinoma, -0.06 and -0.07, correspondingly.

Association of global tumor selection with three clinically relevant features: histology specific 
analysis
Table 2 shows the results of the statistical analysis of the associations between selection and clinically relevant 
features in analyses stratified by histology. The absolute selection shows four significant associations across histol-
ogy. TMB has three and directional selection—two significant associations with clinically relevant characteristics.

Analysis of the strength of global selection in lung tumors stratified by the presence 
of common driver mutations
Table 3 describes the results of the analysis of the strength of selection in lung tumors stratified by presence/
absence of driver mutations in EGFR and KRAS. Log(dN/dS) in tumor samples with EGFR driver mutations 
was -0.13 ± 0.01 which is significantly lower compared to the strength of global selection in samples without 
EGFR driver mutations − 0.06 ± 0.01; t-test = 4.54, p = 3.1 ×  10−6. For KRAS we observed the opposite difference: 
log(dN/dS) for samples with KRAS driver mutations was 0.01 ± 0.01 and for samples without a KRAS driver 
mutation − 0.06 ± 0.01 : t-test = 5.81, p = 2.5 ×  10−11. The differences in the direction of the effect can be related 
to the fact that EGFR is an  oncogene46 and wild type KRAS is a wild type tumor  suppressor47 (see Discussion 
section for details).

Discussion
Somatic mutations play an important role in cancer  development48–50. Missense and silent mutations are the 
two most common types of somatic mutations. Though most missense mutations are  neutral48–51, some of them 
are functional and play an important role in  tumorigenesis52,53. As for silent mutations, the absolute majority of 
them are neutral, with only rare examples of  functionality54, and for this reason they can be used as a reference 
group to quantify strength and direction of selection on missense mutations. If the density of missense mutations 
in a tumor is lower compared to the density of silent mutations, the global selection is negative. Conversely, if 
the density of missense mutations is higher than the density of silent mutations, the global selection is positive.

Strength of selection is an indicator of how quickly a tumor evolves: tumors with signs of strong selection 
evolve more quickly compared to the tumors that do not show signs of strong  selection4,55,56. Quickly evolving 
tumors better survive and propagate faster and generally tend to be more aggressive compared to slower evolving 
 tumors15,57. It is important, therefore, to quantify strength of global selection in individual tumors as a potential 

Table 1.  Strength of the statistical association of clinically relevant characteristics with the strength of 
directional selection (expressed as log(MmD/SmD)), the strength of absolute selection (expressed as its 
absolute value ABS{log(MmD/SmD)}), and with tumor mutation burden. Significant values are in [bold].

Predictor

Clinically relevant feature

Age at diagnosis Stage Metastatic versus primary

Directional selection rho = − 0.07, N = 1.565, p = 0.007 Spearman R = − 0.01, N = 309, p = 0.91 (0.582 + − 0.086 versus − 0.052 + − 0.007) 
t-test = 17.77, df = 912, p < 10^ − 12

Absolute selection regardless of direction rho =  − 0.10, N = 1.565, p = 0.00007 Spearman R = 0.14, N = 309, p = 0.01 (0.726 +  − 0.059 versus 0.13 +  − 0.006) t-test = 21.66, 
df = 912, p < 10^ − 24

Tumor mutation burden (TMB) rho =  − 0.05, N = 1.885, p = 0.05 Spearman R =  − 0.06, N = 500, p = 0.15 (128.5 +  − 18.9 versus 121.3 +  − 5.4) t-test = 0.33, 
df = 1,137, p = 0.74
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biomarker of tumor aggressiveness. The goal of this study is to introduce somatic mutation-based quantitative 
measure of selection in individual tumors and provide its initial validation as a biomarker of tumor aggressive-
ness. We also compared strength of selection (both directional and absolute) with tumor mutation burden by 
studying their associations with select clinically relevant characteristics.

We found that lung tumors are very diverse in terms of strength and direction of selection. In the “all histol-
ogy together” analysis we found that the average global selection is negative; however, some tumors bear strong 
signs of positive selection. We used three clinically relevant features available from COSMIC database: clinical 
stage, age at diagnosis, and source of the tumor tissue (primary versus metastatic) which can be useful to assess 
the role of selection in metastasizing. We found that in the “all histology together” analysis all clinically relevant 
features show U-shaped or inverse U-shaped associations with the directional selection. This observation sug-
gests that absolute selection will be a better predictor of clinically relevant features than directional selection. 
This is exactly what we have found (Table 1).

Many studies have been published on the utility of somatic mutations as predictors of tumor progression, 
recurrence, metastasizing and response to  treatment58–62. Tumor mutation burden is the most commonly used 
somatic mutation-derived  biomarker63. TMB is associated with survival and response to treatment in many 
cancer types including lung  cancer64–66. The goal of our study was to define global absolute selection in individual 
tumors and introduce it as a potential biomarker that is different from TMB. One of the drawbacks of TMB is that 
it depends not only on strength of selection but also on the overall mutability of the tumor. We take into account 
the overall mutability by using the ratio of the density of missense to the density of silent mutations. We believe 
that the absolute logarithm of the ratio of mutation densities better reflects strength of selection than TMB does. 

Figure 2.  Upper panel shows stratification of tumors into five categories of strength of directional selection. 
Vertical red line marks the point of zero global selection. The middle and low rows show distributions of values 
of clinically relevant features in tumors categorized by strength of the directional selection. Note U-shaped or 
reverse U-shaped associations with the clinically relevant features.
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The results of this analysis indicate that the absolute selection may be a complementary biomarker of cancer 
aggressiveness to TMB. Even though we found a significant positive correlation between TMB and directional 
selection, the correlation was relatively small: rho = 0.12, n = 1.565, p = 0.00002. The correlation between TMB 
and absolute (non-directional) strength of selection was also significant but negative: rho = -0.06, n = 1.565, 
p = 0.01. These results suggest that global selection in tumor can be used as an independent predictor of cancer 
aggressiveness. The relative utility of TMB and strength of selection as biomarkers is a topic of future studies.

Histology-stratified analysis of selection demonstrated significant differences in selection among the three 
major lung cancer cell types. The cell types differ by absolute strength of selection, with squamous cell carcinoma 
showing the weakest, adenocarcinoma showing intermediate, and small cell carcinoma—the strongest absolute 
selection. Interestingly, the variation in absolute strength of selection followed aggressiveness, with squamous cell 
carcinoma considered to be slow growing and the least aggressive form of lung  cancer67, small cell lung cancer 
considered most  aggressive68, and adenocarcinoma showing intermediate  aggressiveness69. This supports the 
idea that absolute strength of selection in tumor can be an indicator of tumor aggressiveness.

One of the possible reasons why absolute strength of global selection in tumor can be a better biomarker 
compared to tumor mutational burden is its dependency of copy number variation (CNV). CNVs, especially 
those involving whole chromosomes and large chromosomal regions, directly influence the total number of 
somatic mutations and, as a result, directly influence TMB. Since estimates of global selection in tumor are based 
on the ratio of non-synonymous to synonymous substitutions, the measure is less sensitive to the copy number 
variation than TMB and therefore may be more reliable.

We found that the presence of driver mutations in lung tumors was associated with significant changes in 
the strength of the global selection, which is not surprising taking into account the profound effect of driver 
mutations on clonal evolution and tumor growth  rate70,71. Interestingly, oncogenic driver mutations in EGFR 
are associated with more negative while oncogenic driver mutations in KRAS are associated with more positive 
selection. This can be explained by different effects of EGFR and KRAS driver mutations on DNA repair. Driver 

Figure 3.  The distribution of the ratio of the density of missense to the density of silent mutations in 
adenocarcinoma (top panel), squamous cell carcinoma (middle panel), and small cell lung cancer (lower panel). 
The vertical red line marks the relative density expected in the absence of selection. Median log ratio is shown as 
the vertical line on the box plot.
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mutations in EGFR are associated with decreased DNA repair capacity in non‐small cell lung  cancer72. KRAS 
driver mutations, on the other hand, are associated with more efficient DNA repair in lung  tumors73 which may 
contribute to poor response of KRAS driver mutation-positive tumors to  radiotherapy74. Since the absolute 
majority of de novo mutations tend to have negative effect on fitness at both the  population75 and cellular  levels76, 
one can expect that higher mutability associated with EGFR drivers will result in stronger negative selection, 
while improved DNA repair associated with KRAS drivers will have an opposite effect: reduced negative selec-
tion as it was observed in this study.

Conclusion
To conclude, we propose to use the absolute value of the logarithm of relative densities of missense to silent 
mutations as a quantitative measure of selection in tumor. We hypothesize that the strength of absolute selection 
reflects tumor aggressiveness and may be used as a biomarker of tumor aggressiveness.

Data availability
All data generated or analyzed during this study are included in this published article (and its supplementary 
information files). The corresponding author will share any additional relevant data upon request (ivan.gorlov@
bcm.edu).
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