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SUMMARY
We present an integrated single-cell RNA sequencing atlas of the primary breast tumor microenvironment
(TME) containing 236,363 cells from 119 biopsy samples across eight datasets. In this study, we leverage
this resource for multiple analyses of immune and cancer epithelial cell heterogeneity. We define natural killer
(NK) cell heterogeneity through six subsets in the breast TME. Because NK cell heterogeneity correlates with
epithelial cell heterogeneity, we characterize epithelial cells at the level of single-gene expression, molecular
subtype, and 10 categories reflecting intratumoral transcriptional heterogeneity. We develop InteractPrint,
which considers how cancer epithelial cell heterogeneity influences cancer-immune interactions. We use
T cell InteractPrint to predict response to immune checkpoint inhibition (ICI) in two breast cancer clinical trials
testing neoadjuvant anti-PD-1 therapy. T cell InteractPrint was predictive of response in both trials versus
PD-L1 (AUC = 0.82, 0.83 vs. 0.50, 0.72). This resource enables additional high-resolution investigations of
the breast TME.
INTRODUCTION

Breast cancer is the most common cancer among women.1 The

development of breast cancer is driven by both cancer

epithelial cell-intrinsic factors2–4 and the tumor microenvironment

(TME).5,6 Themedical treatment of breast cancer therefore targets

these diverse cell populations and includes traditional chemo-

therapy, targeted agents inhibiting cancer cell hormone receptors,

kinases, cell cycle entry, and immune cell modulators. To further

improve these therapies, a deeper understanding of the cellular

and molecular composition of breast tumors is required.

Single-cell RNA sequencing (scRNA-seq) technology has

been applied to better characterize tumor microenvironments.

For breast cancer, several scRNA-seq studies have been per-

formed to identify key immune, cancer cell, and stromal popula-

tions of the breast TME.7–14 These studies provided insight into

molecular phenotypes of cancer cells, multiple immune popula-
Cell Reports Medicine 5, 101511,
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tions, and other stromal cells. However, each study was limited

by the number of samples and cells analyzed. This poses chal-

lenges to performing comprehensive analysis of heterogeneous

cell populations and their cellular interactions in the TME.

For example, natural killer (NK) cells are innate lymphoid

immune cells critical to anti-tumor defense. In breast cancer, tu-

mor-infiltrating NK cells are rare,15–19 representing 1%–6%of to-

tal tumor cells in published scRNA-seq datasets of primary

breast tumors.7–9,11–14 Their cytotoxic activity is regulated by a

series of functionally activating and inactivating receptors. After

tumor exposure, the balance of NK cell-activating and -inactivat-

ing receptors can change, and they can lose their cytotoxic

activity or proliferative capacity or even become tumor promot-

ing.20–22 Because of the small numbers of NK cells processed in

most human studies, scRNA-seq analyses of NK cells are often

underpowered to capture their distinct functional phenotypes.

Additionally, breast cancer is known to have substantial
May 21, 2024 ª 2024 The Authors. Published by Elsevier Inc. 1
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 1. Integrated scRNA-seq dataset of primary breast cancer identifies six NK cell subsets in breast cancer

(A) Brief overview of the processing and integration pipeline for 8 primary breast cancer datasets.

(B) UMAP visualization of 236,363 cells across 119 samples from 88 patients analyzed by scRNA-seq.

(C) UMAP visualization showing major subsets of natural killer (NK) cells.

(D) Bubble heatmap showing expression of upregulated differentially expressed genes for each major NK cell subset (Bonferroni-adjusted p < 0.05).

(legend continued on next page)
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heterogeneity within the tumor of a single patient and between

patients of a clinical subtype.23,24 Therefore, comprehensive

analysis of cancer epithelial cell heterogeneity requires large

and diverse datasets with adequate numbers of samples from

all clinical breast cancer subtypes.

In this study, we created an integrated scRNA-seq atlas of the

breast TME, consisting of 236,363 cells from 119 biopsy sam-

ples across 8 publicly available datasets.7–14 This resource en-

ables separation of cell populations within primary breast tumors

and robust characterization of cellular heterogeneity at the sin-

gle-cell level. This integrated dataset is more statistically power-

ful than traditional meta-analyses of original source datasets and

enables evaluation of correlations with clinical features. We used

this resource to define immune and cancer epithelial cell

heterogeneity along with their interactions. It is the first, to our

knowledge, to define NK cell subsets in breast cancer and

provides evidence that cancer epithelial cell heterogeneity influ-

ences immune interactions and response to anti-PD-1 therapy.

This dataset provides a comprehensive resource to better un-

derstand the composition of the breast TME.

RESULTS

An integrated scRNA-seq dataset of breast cancer
samples reveals distinct NK cell subsets that exhibit
diverse functional characteristics
To develop a high-resolution atlas of the breast TME, we

analyzed scRNA-seq data from 119 samples collected from

primary tumor biopsies of 88 patients across 8 publicly available

breast cancer datasets (Figures 1A and S1A–S1C; Data S1).7–14

After processing each dataset separately to filter out low-quality

cells and doublets, we integrated a total of 236,363 cells across

all clinical subtypes and a wide spectrum of clinical features

(Data S1). We assessed batch effect to ensure no cluster was

driven by a single dataset or technology (STAR Methods;

Figures S1D–S1L and S2A–S2I). Cell types were identified by

taking the top call resulting from a three-step process that

labeled clusters based on a signature score of canonical cell

markers, marker count coupled with average expression, and

greatest average expression of the marker genes alone (Data

S2; STAR Methods). Uniform manifold approximation and pro-

jection (UMAP) visualization showed clustering of cells by line-

age. Immune and stromal cell populations clustered together

across clinical subtypes, while epithelial cells showed separation

by subtype (Figures 1B and S1F), which is consistent with other
(E) Boxplot showing expression of the rNK cell signature in each NK cell subset. N

with post hoc Dunn test p values shown; ****p < 0.0001).

(F) MA plot of differentially expressed genes between rNK and non-rNK cells (Bo

(G) Boxplot showing the expression level of the rNK signature by clinical subtype. N

(H) Circos plots showing representative predictive receptor-ligand pairs between

receptors across all subtypes are colored in red.

(I) Boxplot showing the Pearson correlations of rNK signature gene expression in

compared with rNK cells (across all clinical subtypes of breast cancer). Pearson c

cells and non-rNK cells (two-sided Wilcoxon test, ****p < 0.0001).

(J) Scatterplot showing the Pearson correlation of age and proportion of rNK cel

(K) Kaplan-Meier plot showing worse clinical outcome in breast cancer patients

(L) Bar plot showing relative proportions of NK subsets across tumor samples an

See also Figures S1–S5 and Data S1 and S4.
studies.11,13 For all datasets, single-cell copy number variant

(CNV) profiles were estimated to distinguish cancer from normal

epithelial cells (Figures S3A–S3D).

Because the number of cells in this dataset permits statistically

powered analysis of rare immune cell populations in human breast

cancers, we first leveraged the integrated dataset to better char-

acterize the heterogeneity of NK cells. While NK cells are key me-

diators of anti-tumor control, our understanding of their varied

phenotype and function in the breast TME is limited and incom-

plete. To our knowledge, there are no prior studies that dissect

NK cell subsets in the human breast TME. To address this gap,

we re-clustered NK cells from the integrated dataset (Figure S4A).

Unsupervised graph-based clustering uncovered 6 clusters of NK

cells, designated NK-0 through NK-5 (Figures 1C, S4B, and S4C).

Differential gene expression analysis between clusters re-

vealed upregulated genes defining each NK subset (Figures 1D

and S4D; Table 1; Data S3; STAR Methods). NK-0 and NK-2 ex-

press high levels of FCGR3A (CD16) and cytolytic molecules

(granzymes and PRF1), which suggests that they are similar to

CD56dim NK cells.25–29 NK-0 is enriched for KLRC2, ETS1, and

effector genes (GZMH and CCL5), which closely resembles

gene expression profiles described previously for ‘‘memory-

like’’ NK cells.25 NK-2 is defined by increased expression of cyto-

toxicity-related genes (GZMA, GZMB, PRF1, and SPON2) and

S1PR5, which has been described previously in CD56dim bone

marrow NK cells.25 NK-4 is predominated by genes involved in

interferon signaling (IFI6 and ISG15), suggesting that this subset

may be influenced by interferon-high tumor microenvironments

and consists of activated NK cells involved in the direct anti-tu-

mor response.30 NK-3 cells appear to have features of tissue-

resident NK cells, with upregulated expression of SELL, IL7R,

and GZMK as well as reduced expression of cytolytic genes

and FCGR3A (CD16).31 In contrast, genes of inactivity and

reduced cytotoxicity were upregulated in clusters NK-1 and

NK-5. Most notably, NK-1 was marked by genes related to the

NR4A family,32,33 JUN, FOS, and DUSP1. NR4A is a family of

orphan nuclear receptors that act as transcription factors;

they are thought to negatively regulate T cell cytotoxicity32 and

have been described as marking specific NK cells with reduced

interferon gamma production.29,33 NK-5 had reduced expres-

sion of cytolytic genes and FCGR3A (CD16) and increased

expression of KLRC1 and CD96, which are inactivators of NK

cell activity.34,35 To further define the function of NK cell subsets,

we performed gene set enrichment analysis of individual clus-

ters, which confirmed their functional phenotypes (Figure S4E).
K-1 was significantly different from all other clusters (Kruskal-Wallis p < 0.0001,

nferroni-adjusted p < 0.05).

o significant difference was found between subtypes (Kruskal-Wallis p > 0.05).

rNK cells and all cancer epithelial cells separated by clinical subtype. Shared

reprogrammed NK (rNK) cells compared with non-rNK cells versus rNK cells

orrelations between rNK cells and rNK cells are higher than those between rNK

ls by sample (p <0.01).

with high expression of the rNK cell gene signature (log rank test, p < 0.05).

d clinical subtypes.
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Table 1. Marker genes for 6 NK cell subsets

NK subset Gene

NK-0 FCGR3A

NK-0 PRF1

NK-0 FGFBP2

NK-0 GZMH

NK-0 ETS1

NK-1 NR4A1

NK-1 NR4A2

NK-1 DUSP1

NK-1 DUSP2

NK-1 FOS

NK-1 JUN

NK-2 FCGR3A

NK-2 PRF1

NK-2 FGFBP2

NK-2 GZMA

NK-2 GZMB

NK-2 CXCF1

NK-2 SPON2

NK-2 CX3CR1

NK-2 S1PR5

NK-3 GZMK

NK-3 SELL

NK-3 IL7R

NK-3 LTB

NK-4 ISG15

NK-4 IFI6

NK-4 IFIT3

NK-4 IFI44L

NK-5 CCL5

NK-5 HLA-DRB1

NK-5 KLRC1

NK-5 CD74

NK-5 MYADM

NK-5 HSPE1

See also Data S3.
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Reprogrammed NK cells are most similar to the NK-1
subset and are observed in patient samples
independent of subtype
Previously in ex vivo and mouse models, we observed that NK

cells can be ‘‘reprogrammed’’ after exposure to malignant mam-

mary epithelial cells to promote tumor outgrowth.20,21 To deter-

mine the human significance of this finding, we first generated a

signature of mouse reprogrammed NK (rNK) cells based on an

experiment20 comparing the transcriptomes of healthy NK cells

with tumor-exposed NK cells that we found to be tumor promot-

ing and reprogrammed (Figure S5A). We next converted the orig-

inal signature to the human analog (Figure S5B; Table 2) and

applied it to the NK cell subsets. NK-1 scored significantly higher

for the rNK signature than all other NK cell subsets (p < 0.0001)
4 Cell Reports Medicine 5, 101511, May 21, 2024
(Figure 1E). Differential gene expression analysis of rNK cells

compared with non-rNK cells revealed that the NR4A family

(NR4A1, NR4A2, and NR4A3), FOS, JUN, and DUSP1 were

among the most differentially expressed genes (Figure 1F;

Data S4; STAR Methods), similar to the transcriptional profile

of the NK-1 subset.

To test whether rNK cells were associated with a specific

breast cancer subtype, we examined the expression of rNK cells

across clinical subtypes. We found no significant differences in

rNK cell expression across all subtypes (p > 0.05, n = 3,720

NK cells total) (Figures 1G and S5C). Additionally, we found

shared receptor-ligand pairs between NK cells and cancer

epithelial cells across all subtypes (Figure 1H), including

LGALS3_SPN, RPS19_ICAM1, and HSP90B1_TNFRSF1B.

Further, the average Pearson correlation in gene expression

levels between rNK cells was greater than between rNK and

non-rNK cells (p < 0.0001) (Figures 1I and S5D). Together, these

findings demonstrate that rNK cells are not defined by specific

breast cancer subtype biology but suggest that a shared but still

unknown mechanism contributes to NK cell reprogramming.

To further investigate the clinical significance of rNK cells, we

observed that higher expression of rNK cells correlates with

older age (R = 0.33, p < 0.01) (Figure 1J). Survival analysis was

performed on patients in The Cancer Genome Atlas (TCGA)

breast cancer cohort, and we first confirmed that age was not

a confounder of this analysis (Figure S5E). Given the limitations

of applying the rNK cell signature to bulk RNA-seq samples

from TCGA, which include a substantial fraction of non-NK cells,

only samples with a relatively high fraction of tumor-infiltrating

NK cells were selected for analysis (STAR Methods). Increased

expression of the rNK cell signature in tumors with a high fraction

of NK cells correlates with worse overall survival (p < 0.05)

(Figures 1K and S5F).

We then asked whether NK cell subsets were uniformly

expressed across individuals and breast cancer subtypes. To

answer this question, we characterized the degree of NK cell

heterogeneity across patients in the integrated dataset. We

observed remarkable heterogeneity in the proportions of NK

cell subsets across patients (Figure 1L). Additionally, no NK

cell subset was driven by a single patient, and all NK cell subsets

were present across each breast cancer clinical subtype. How-

ever, NK cell subset heterogeneity as quantified using ROGUE

analysis was observed to be significantly higher in certain clinical

subtypes than others (Figure S5G). While there have been multi-

ple reports of NK cell subsets in other cancers,28,29 none have

yet explored the diversity of NK cell subsets within individual pa-

tient samples. Our findings provide further evidence of the

diverse phenotypes of NK cells within individual primary breast

tumors.

Individual breast tumors have varying degrees of cancer
epithelial cell heterogeneity
Because we observed that NK cell heterogeneity is associated

with certain clinical subtypes of breast cancer (Figure 1L), we

reasoned that heterogeneity within breast cancer subtypes

would be important when further characterizing the breast

TME. We then used our dataset to explore the heterogeneity of

cancer epithelial cells at different resolutions: at the level of



Table 2. rNK cell signature with upregulated and downregulated

genes

Upregulated rNK genes Downregulated rNK genes

ABCA1 AHRR

ALOX12 ALDH1B2

CALD1 ASB2

CAVIN2 ASNS

CCL4 ATF5

CLU AVIL

CMKLR1 BCAT1

CR2 CARS1

CX3CR1 CDH1

DTX1 CDKN1A

DUSP1 CEMIP2

F5 CHAC1

FAM81A CISH

FOS CLBA1

FOSB COX6A2

GAS2L1 CXCR6

GFRA2 EXYL1

GP6 FMNL2

HEATR9 GPT2

HES1 HMOX1

ITGAX HPGDS

JUN ISG20

KLRG1 ITGA1

LTBP1 LGALS3

MID1 LHFPL2

MPIG6B ME1

NHSL2 MTHFD2

NR4A1 NEK6

NR4A2 NQO1

NR4A3 OSBPL1A

NYLK OSGIN1

PARVB PACSIN1

PLXNA4 PMEPA1

RASGRP2 PPP2R2C

RHPN1 PYCR1

SCD RN7SL1

SLC6A4 SCN3B

THBS1 SH3PXD2B

TMTC1 SLC1A4

TNFAIP3 SLC6A9

TUBB1 SLC7A3

VWF SLC7A5

XDH SNORA23

SSTR2

TBC1D16

TRIB3

ZNF503

See also Data S4.
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single gene expression, molecular subtypes, and then 10 cate-

gories of cancer epithelial cells that reflect intratumoral tran-

scriptional heterogeneity (ITTH).

Cancer epithelial cells are well known to demonstrate sub-

stantial intertumoral and intratumoral heterogeneity in primary

breast tumors at the single-gene level.8,9,13,14,23,24 For example,

heterogeneous expression of therapeutic targets could have

clinical implications. Newer anti-HER2 and anti-TROP2 agents

have shown benefit in patients across heterogeneous RNA and

protein expression of their targets.36,37 This highlights an oppor-

tunity to better understand ERBB2 (HER2) and TACSTD2

(TROP2) expression heterogeneity in cancer epithelial cells using

transcriptomics data. In contrast to bulk RNA-seq, which aggre-

gates expression levels across all cell types and thus offers

limited resolution for studying intratumoral heterogeneity,38 the

integrated dataset can be used evaluate ERBB2 and TACSTD2

heterogeneity in cancer epithelial cells at the single-cell level

across tumor samples. To do so, epithelial cells in the integrated

dataset were re-clustered and re-integrated to account for

technology-driven batch effects (Figures S6A–S6C). Cancer

epithelial cells were distinguished from normal epithelial cells

(Figures S3A and S3B). Consistent with prior studies,11,13 epithe-

lial cells demonstrated stratification by patient (Figure S6A).

Previous bulk RNA-seq and immunohistochemistry (IHC)

studies have reported expression of the ERBB2 gene or HER2

protein in up to 70% of HER2-negative breast tumors.39,40 We

detect ERBB2 expression in 92% of samples independent of

clinical subtype at the single-cell level (Figures 2A and S6D).

For TACSTD2, we similarly observed notable heterogeneity

(Figures 2B and S6E). In particular, TACSTD2 expression was

observed across all subtypes in 94% of samples. This provides

additional evidence at single-cell resolution of what has been pre-

viously described in bulk RNA-seq and IHC studies, which report

TROP2 positivity in 50%–93% of breast cancer samples.41–43

Interestingly, the proportion of ERBB2Hi and ERBB2Med cells

and TACSTD2Hi and TACSTD2Med cells also varied between sam-

ples, reflecting heterogeneous RNA expression at the cellular

level. We next asked how other clinically relevant target genes

were related to ERBB2 expression. We found that PIK3CA,

ERBB3, and FGFR expression was highest in ERBB2Hi cells (Fig-

ure 2C). In contrast, TACSTD2 andCD274 expression levels were

highest in ERBB2Med cells and notably lower in ERBB2Hi cells.

Upon analysis of target genes related to TACSTD2, we found

that EGFR, CDK, and NTRK expression was elevated in

TACSTD2Hi cells (Figure 2D). ERBB2, ERBB3, PIK3CA, and AR

expression was highest in TACSTD2Med cells. Additionally, we

observed that TACSTD2Med cells highly express NECTIN2, a

ligand related to TIGIT, which hints at potential synergy with

anti-TROP2 therapeutics and immune checkpoint inhibition.

Next, we characterized the heterogeneity of molecular fea-

tures between ERBB2Hi, ERBB2Med, and ERBB2Lo populations.

We performed gene set enrichment analysis for the ERBB2 and

TACSTD2 groups to further characterize function (Figures S6F

and S6G) and differential gene expression analyses between

the groups (Figures 2E, S6F, and S6G). Of the upregulated

genes for ERBB2Hi cells, 47 genes have been shown to be direct

interactors with ERBB2 (Data S5). Differentially expressed

genes in ERBB2Med cells compared with ERBB2Hi and ERBB2Lo
Cell Reports Medicine 5, 101511, May 21, 2024 5
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Figure 2. Cancer epithelial cells demonstrate substantial ITTH

(A) Bar plot showing proportions of ERBB2Hi, ERBB2Med, and ERBB2Lo cells by sample.

(B) Bar plot showing proportions of TACSTD2Hi, TACSTD2Med, and TACSTD2Lo cells by sample.

(C) Heatmap of Z-scored average expression of clinically actionable targets in ERBB2Hi, ERBB2Med, and ERBB2Lo cells.

(D) Heatmap of Z-scored average expression of clinically actionable targets in TACSTD2Hi, TACSTD2Med, and TACSTD2Lo cells.

(E) MA plot showing differentially expressed genes between ERBB2Hi vs. ERBB2Med and ERBB2Lo cells (Bonferroni-adjusted p < 0.05).

(F) MA plot showing differentially expressed genes between TACSTD2Hi vs. TACSTD2Med and TACSTD2Lo cells (Bonferroni-adjusted p < 0.05).

(G) Boxplot showing the proportion of ERBB2-expressing cells per sample by nodal status (two-sided Wilcoxon test, p > 0.05).

(H) Boxplot showing the proportion of TACSTD2-expressing cells per sample by nodal status (two-sided Wilcoxon test, p < 0.05).

(I) Percentage of cancer epithelial cells by molecular subtype, sorted by sample score by the ROGUE metric.

(J) Plot showing discordance in predicted heterogeneity by molecular subtype and by ROGUE metric by sample. Samples with >50% difference between the

normalized ROGUE metric and the maximum percentage of cells within the sample that belonged to a single molecular subtype are classified as discordant.

See also Figures S6 and S7 and Data S5 and S6.
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cells may provide insight into molecular features associated with

ERBB2 heterogeneity and HER2-low tumors (Figures 2E, S6H,

and S6I). For instance, CEACAM6,44 DUSP6,45 and ITGB646

were found to be upregulated in in ERBB2Med cells, which is

consistent with prior reports of their expression in HER2+ cancer

cells (Figure 2E). For TACSTD2Hi, TACSTD2Med, and TACSTD2Lo
6 Cell Reports Medicine 5, 101511, May 21, 2024
cells, differential gene expression analyses (Figures 2F, S6J, and

S6K; Data S6) identified KRT14 and KRT17 as significantly upre-

gulated genes in TACSTD2Hi cells. These genes have been impli-

cated as markers for highly metastatic breast cancer cells.47

When assessing for correlation with clinical features, the propor-

tion of ERBB2-expressing cells (ERBB2Hi or ERBB2Med) within



Table 3. Gene lists consisting of 100 genes for 10 GEs

GE1 GE2 GE3 GE4 GE5 GE6 GE7 GE8 GE9 GE10

AC090498-1 ALDH3B2 A2M ANLN AIF1 ADIRF AC093001-1 ADIRF AC093001-1 AGR2

AC105999-2 ALOX15B ACTA2 ANP32E ALOX5AP ANAPC11 ADIRF AFF3 ADIRF APOD

ADIRF APOD ACTG2 ARL6IP1 ANXA1 ATP5ME AGR2 ALCAM AGR2 AREG

AGR2 AZIN1 ANGPTL4 ASF1B APOC1 AZGP1 AGR3 ANKRD30A AGR3 AZGP1

AGR3 B2M ANXA1 ASPM APOE BLVRB ANKRD37 ANXA2 APOD B2M

ALDH2 BNIP3 APOD ATAD2 AREG BST2 APOD AR AQP1 BST2

ANKRD30A C1orf21 APOE AURKA C1ORF162 CALM1 AQP3 ARFGEF3 AQP5 BTG2

ARL6IP1 CALD1 BGN BIRC5 C1QA CCND1 ARC ASAH1 AREG C15ORF48

ARMT1 CALU C6ORF15 BUB1B C1QB CD9 AREG ATP1B1 ASCL1 CCL20

ATAD2 CAPG CALD1 CCNB1 C1QC CETN2 ATF3 AZGP1 AZGP1 CD74

AZGP1 CD24 CALML5 CCNB2 CARD16 CISD3 AZGP1 BTG1 BMPR1B CEBPD

BATF CD59 CAV1 CDC20 CCL3 CLDN7 BAMBI CD59 C15ORF48 CHI3L1

BMPR1B CD74 CAVIN1 CDC6 CCL4 COX6C BTG1 CDK12 CALML5 CHI3L2

BST2 CD99 CAVIN3 CDCA3 CCL5 CRABP2 BTG2 CEBPD CCL28 CP

BTG2 CDKN2B CCL28 CDCA8 CD2 CRACR2B C15ORF48 CLDN3 CD55 CRISP3

C15ORF48 CFD CCN2 CDK1 CD27 CRIP1 CALML5 CLDN4 CEACAM6 CSTA

CCDC74A CKB CD24 CDKN2A CD37 CRIP2 CCDC74A CLTC CFD CTSC

CEBPD CLDN3 CDKN2A CDKN3 CD3D CSTB CCN1 CLU CLIC3 CTSD

CFD CLDN4 CHI3L1 CENPA CD3E CYB5A CD55 CNN3 CLU CTSS

CLDN4 CNN3 COL1A2 CENPE CD48 CYBA CDKN1A CTNNB1 COX6C CXCL1

CLU COL12A1 COL6A1 CENPF CD52 CYC1 CEBPB CTNND1 CSTB CXCL17

COX6C COX6C COL6A2 CENPK CD53 DBI CEBPD EFHD1 CTSD CYBA

CPB1 CRIP1 COTL1 CENPM CD69 DCXR CFD EGR1 CXCL14 DEFB1

CRIP1 CSRP1 CRYAB CENPU CD7 DSTN CLDN3 ELF3 CXCL17 FDCSP

CST3 CSRP2 CSTA CENPW CD74 EEF1B2 CLDN4 EPCAM DHRS2 GBP1

CTHRC1 CTNNB1 CXCL2 CIP2A CD83 ELOC CST3 ERBB2 DSCAM-AS1 GBP2

CXCL14 CTTN DEFB1 CKAP2 CELF2 EMP2 CTD-3252C9-4 ESR1 DUSP1 HLA-A

DHRS2 CYSTM1 DEPP1 CKLF COL1A2 FXYD3 CTSK EVL ERBB2 HLA-B

DSCAM-AS1 DDIT4 EFEMP1 CKS1B CORO1A GPX4 DHRS2 FOSB FADS2 HLA-C

ELF3 DHRS2 FABP5 CKS2 CREM GSTM3 DNAJB1 GATA3 FAM3D HLA-DMA

ELP2 DLX5 FBXO32 CTHRC1 CST7 H2AJ DUSP1 GRB7 FHL2 HLA-DPA1

ERBB4 DSC2 FDCSP DEK CTSL H2AZ1 EDN1 H4C3 GDF15 HLA-DPB1

ESR1 EFHD1 FGFBP2 DLGAP5 CTSW HINT1 EGR1 HES1 GLYATL2 HLA-DQA1

EVL EFNA1 FN1 DTYMK CXCR4 HMGB1 ELF3 HLA-B GPX1 HLA-DQA2

FABP3 ELF5 GABRP DUT CYBB HSPE1 ELOVL2 HNRNPH1 GSN HLA-DQB1

FHL2 ENO1 GSTP1 ECT2 CYTIP IDH2 ESR1 HSPA1A GSTP1 HLA-DRA

FKBP5 FAM229B HLA-A FAM111A DUSP2 JPT1 FHL2 HSPA1B HDC HLA-DRB1

FSIP1 FASN HLA-B FAM111B EMP3 KDELR2 FOS IGFBP5 HSPB1 HLA-DRB5

GJA1 GJA1 ID1 GGH FCER1G KRT10 FOSB INTS6 IGFBP5 HLA-E

GSTM3 GRIK1-AS1 IFI27 GTSE1 FN1 KRT18 GATA3 ITGB1 ISG20 ID3

HES1 GSTP1 IGFBP3 H1-2 FYB1 KRT19 GDF15 ITGB6 ITM2A IFI16

HSPB1 H2AJ IGFBP5 H1-3 GIMAP7 KRT7 GRB7 ITM2B KRT23 IFI27

IFI27 HILPDA IGFBP7 H2AZ1 GMFG KRT8 GSTM3 JUN KRT7 IFI44L

IFI6 HNRNPH1 IL32 H2AZ2 GPR183 LGALS1 H1-2 KLF6 LGALS1 IFI6

IFITM1 HSPA5 KLK5 H2BC11 GPSM3 LGALS3 HES1 KRT7 LGALS3 IFIT1

IFITM2 IFI27 KLK7 H4C3 GZMA LSM3 ICAM1 LDLRAD4 LY6E IFIT2

IFITM3 IFITM3 KRT14 HELLS GZMK LSM4 ID2 LMNA MARCKS IFIT3

IGFBP4 IGKC KRT15 HMGB1 HCST LY6E IER2 LRATD2 MFGE8 IFITM1

(Continued on next page)
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Table 3. Continued

GE1 GE2 GE3 GE4 GE5 GE6 GE7 GE8 GE9 GE10

INPP4B JPT1 KRT16 HMGB2 HLA-DPA1 MARCKSL1 IER3 MAGED2 MGP IFITM2

ISG15 KCNC2 KRT17 HMGB3 HLA-DPB1 MIEN1 IFITM1 MAL2 MS4A7 IFITM3

JUNB KRT15 KRT5 HMGN2 HLA-DQA1 MIF IGFBP4 MARCKS MT-ATP8 IGFBP7

KCNE4 KRT23 KRT6A HMMR HLA-DRA MPC2 IGFBP5 MT-ND4L MTCO2P12 IL32

KCNJ3 KRT7 KRT6B IQGAP3 HLA-DRB1 MRPL12 IRF1 MT2A MUC5B IRF1

KRT18 LAPTM4B KRT81 KIF20B IGSF6 MRPL51 JUN MUC1 MUCL1 ISG15

KRT19 LDHB LAMB3 KIF23 IL2RG MRPS34 JUNB MYH9 NDRG2 KRT15

LDLRAD4 LMO4 LCN2 KIF2C IL32 MTDH KLF4 NEAT1 NFKBIZ KRT19

MAGED2 LTF LTF KNL1 IL7R MUCL1 KLF6 NFIB NPW KRT5

MDK MAFB LY6D KPNA2 ISG15 NDUFB9 KRT15 PERP NR4A1 KRT7

MESP1 MAL2 MFAP5 LGALS1 ITGB2 NDUFC2 KRT18 PKM NUDT8 LCN2

MGP MAOB MFGE8 MAD2L1 KLRB1 NME1 LGALS3 PLAT PALMD LGALS1

MGST1 MFAP2 MGP MKI67 LAPTM5 PAFAH1B3 MAFB PMEPA1 PDZK1IP1 LGMN

MRPS30 MGST1 MIA MT2A LCK PFDN2 MAGED2 PSAP PERP LTF

MRPS30-DT MRPL15 MMP7 MYBL2 LIMD2 PFN1 MGP RAD21 PHGR1 LUM

MS4A7 MT1X MT1X MZT1 LSP1 PIP NAMPT RBP1 PIP LY6D

MT-ATP8 MUCL1 MT2A NEK2 LST1 POLR2K NCOA7 RHOB PLAT LYZ

NOVA1 MYBPC1 MYL9 NUF2 LTB PPDPF NFKBIA RUNX1 PRSS21 MAFB

PEG10 NME2 MYLK NUSAP1 LY96 PSMA7 NFKBIZ S100A10 PSCA MARCKS

PHGR1 NUPR1 NDRG1 PBK LYZ PSMB3 NR4A1 SAT1 PTHLH MGP

PI15 PCSK1N NDUFA4L2 PCLAF MEF2C PSME2 NR4A2 SCARB2 PYDC1 MIA

PIP PFN2 NFKBIA PCNA MNDA RAN PERP SCD RGS10 MMP7

PLAAT4 PHGDH NNMT PLK1 MS4A6A RANBP1 PLAT SDC1 RGS2 MRPS30-DT

PLAT PRSS23 PDLIM4 PRC1 MSR1 RBIS PMAIP1 SERHL2 RHCG MX1

PRSS23 PSMB3 PLS3 PRR11 NKG7 REEP5 PRSS23 SH3BGRL3 RP11-53O19-2 NNMT

PSD3 PTHLH POSTN PTTG1 PTPRC ROMO1 REL SHISA2 S100A1 PI3

PVALB PTPN1 PRNP RACGAP1 RAC2 RPS26 RHOV SLC38A2 S100A10 PIGR

RAMP1 RAMP1 PTN RAD21 RGCC S100A14 RND1 SLC39A6 S100A6 RAMP2

RBP1 RAMP3 RARRES1 RHEB RGS1 S100A16 S100P SLC40A1 S100A7 RARRES1

RHOBTB3 RBP1 RCAN1 RNASEH2A RGS2 SEC61G SAT1 SOX4 S100A8 RHCG

SCGB3A1 RSU1 RGS2 RPL39L RNASE1 SELENOP SLC39A6 SYTL2 S100A9 RNASE1

SCUBE2 S100A10 S100A2 RRM2 S100A4 SH3BGRL SLC40A1 TACSTD2 S100P RSAD2

SEMA3C S100A6 S100A4 SMC4 S100A6 SLC9A3R1 SOCS3 TCAF1 SAA2 S100A8

SERPINA1 SCUBE2 S100A6 SPC25 SEPTIN6 SMIM22 SOX4 TCIM SCGB1D2 S100A9

SH3BGRL SFRP1 S100A8 STMN1 SLC2A3 SNRPB SOX9 TFAP2B SCGB2A1 S100P

SLC39A6 SH3BGRL S100A9 TFDP1 SMAP2 SNRPG STC2 TIMP1 SCGB2A2 SAA2

SLC40A1 SLC39A4 SAA1 TK1 SOCS1 SPINT2 TACSTD2 TM4SF1 SDC2 SCGB1D2

SNCG SLC40A1 SAA2 TMEM106C SPARC SQLE TCIM TMC5 SERHL2 SCGB2A1

STC2 SOX4 SBSN TMPO SPP1 SRP9 TFF1 TMEM123 SERPINA1 SERPING1

TCEAL4 STC2 SERPING1 TOP2A SRGN STARD10 TIMP3 TPM1 SLC12A2 SLC39A6

TCIM STOM SFRP1 TPX2 STK4 TCEAL4 TM4SF1 TRPS1 SLC18A2 SOD2

TFF1 TCIM SGK1 TROAP TMSB4X TMCO1 TNFRSF12A TSC22D1 SLPI SPATS2L

TFF3 TFF3 SLC25A37 TTK TNFAIP3 TMEM14B TSC22D3 TSPYL1 SYNM TCIM

TIMP1 TMSB4X SLPI TUBA1B TRAC TPI1 TUBA1A TUBA1A TACSTD2 TFF1

TMC5 TTYH1 SPARC TUBA1C TRBC1 TPM1 VASN VEGFA TFF1 TFF3

TPM1 TUBA1A SPARCL1 TUBB TRBC2 TSPAN13 VEGFA WSB1 TFF3 TMEM45A

TPRG1 UBE2V2 TAGLN TUBB4B TREM2 TUBA1B VTCN1 XIST TM4SF1 TNFAIP6

VSTM2A VIM THBS1 TYMS TYROBP TUBB XBP1 YBX1 TMC5 TNFSF10

(Continued on next page)
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Table 3. Continued

GE1 GE2 GE3 GE4 GE5 GE6 GE7 GE8 GE9 GE10

VTCN1 YBX1 TPM2 UBE2C VIM UQCRQ ZFAND2A YBX3 TSC22D3 TXNIP

WFDC2 YBX3 TSHZ2 UBE2S WIPF1 XBP1 ZFP36 ZFP36L1 TSPAN1 WFDC2

XBP1 YWHAH VIM UBE2T ZEB2 YBX1 ZFP36L1 ZFP36L2 TXNIP XBP1

ZFP36L1 YWHAZ ZFP36L2 ZWINT ZNF331 ZNF706 ZFP36L2 ZNF292 XBP1 ZFP36
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non-HER2+ tumors did not show significant association with

nodal status (p = 0.25) (Figures 2G, S7A, and S7B). However, tu-

mors with an increased proportion of TACSTD2-expressing cells

were significantly associated with higher nodal status (p = 0.015)

(Figure 2H). When performing this analysis separately in each

cohort, the combined result by Fisher’s combined probability

was not statistically significant, though it trended toward signifi-

cance (X = 11.227, p = 0.08) (Figure S7C). This again highlights

the value of our data integration approach, which creates a

more statistically powered dataset and enables evaluation of

correlations with clinical features over traditional meta-analysis

methods.

Our study joins several reports noting the heterogeneous

expression of single genes within single tumors.48–51 Recog-

nizing that intratumoral heterogeneity occurs beyond single

genes, we next characterized the ITTH of cancer epithelial cells

in primary breast tumors. To do so, we applied a well-character-

ized SC50 molecular subtype classifier13 that scores the four

molecular subtypes (luminal A, luminal B, Her2, and basal) to

cancer epithelial cells in the integrated dataset. We found that

each patient tumor expressed differing proportions of cells

from each molecular subtype with a varied degree of concor-

dance with the clinical subtype diagnosis (Figure 2I). This finding

prompted us to explore how cancer epithelial cell ITTH may be

influenced by features beyondmolecular subtype. We quantified

the degree of heterogeneity across all cancer epithelial cells in a

patient tumor using ROGUE analysis (Figure 2I).52 The ROGUE

score for each individual tumor sample also reflected molecular

subtype heterogeneity to some degree; however, we noticed

discordance in 33.3% of samples, which demonstrated homo-

geneity based on molecular subtype but high heterogeneity

based on ROGUE score (Figure 2J; STAR Methods). This sug-

gests that other factors beyond molecular subtype-associated

genes drive the observed heterogeneity and underscores a

need for different approaches to study cancer epithelial cell

ITTH at higher resolution than that of existing subtype classifiers.

Cancer epithelial cell heterogeneity can be defined by
10 unifying groups of gene signatures
To develop a high-resolution classifier of heterogeneous cancer

epithelial cells, we first performed unsupervised clustering on all

cancer epithelial cells in the integrated dataset to generate sig-

natures of upregulated genes that capture distinct molecular fea-

tures of cancer epithelial cell clusters. Next, supervised classifi-

cation was performed based on expression of 12 clinical

therapeutic targets (ESR1, ERBB2, ERBB3, PIK3CA, NTRK1/

NTRK2/NTRK3, CD274, EGFR, FGFR1/FGFR2/FGFR3/FGFR4,

TACSTD2, CDK4/CDK6, AR, and NECTIN2) to ensure that clini-

cally relevant associations were captured by upregulated gene
signatures (STAR Methods). The motivation for including thera-

peutic targets was to create classifications grounded in relevant

clinical approaches. We additionally supervised classification of

all cancer epithelial cells based on molecular subtype to

generate upregulated gene signatures that reflect subtype fea-

tures. Consensus clustering of all generated gene signatures

identified 10 unifying groups, which we defined as ‘‘gene ele-

ments’’ (GEs) (Figures S8A and S8B). We defined each GE by

the top 100 genes that occurred most frequently across gene

signatures assigned to the group (Table 3; STAR Methods). We

scored each cancer epithelial cell by the individual 10 GEs and

assigned GE-based cell labels (Figure 3A; STAR Methods).

When assessing for molecular subtypes, GE3-labeled cells

were predominantly assigned to the basal subtype, while the

majority of GE9-labeled cells were assigned to the Her2 subtype

(Figure 3B). Cells labeled by GE1 and GE7 were almost exclu-

sively assigned as luminal A and luminal B. In contrast, GE5-

and GE10-labeled cells were assigned to all molecular subtypes.

Next, we used gene set enrichment analysis (Figure 3C) to iden-

tify functional annotations for each GE. This analysis identified

shared and distinct functional features for all GEs. GE4 was

uniquely enriched for cell cycle and proliferation hallmarks

(MKI67, PCNA, and CDK1). GE2 and GE3 contained hallmark

genes of EMT (VIM and ACTA2). GE1, GE6, GE7, and GE9 con-

tained genes associated with estrogen response (ESR1, AREG,

and TFF3). GE5 and GE10 were enriched for hallmarks of allo-

graft rejection (HLA-DRA and HLA-DRB1) and complement

(C1QA/B/C and C1R).

To assess how GE-based cell labels allow us to characterize

cancer epithelial cell heterogeneity within a tumor sample, we

applied our GEs to the integrated dataset to deconstruct each in-

dividual patient tumor into the 10 GEs (Figure S8C). Notably, GE-

based heterogeneity was not constrained by clinical or molecu-

lar subtype. This again confirms that significant cancer epithelial

cell ITTH exists even within cells from a tumor labeled by a single

clinical or molecular subtype. Overall, we generated 10 GEs to

characterize cancer epithelial cell ITTH and deconstruct a het-

erogeneous tumor into its diverse cellular phenotypes.

GEs predict individual patient predominant immune
response
To examine how cancer epithelial cell ITTH influences immune

interactions in the TME, we generated a decoder matrix of pre-

dicted GE-immune interaction strength. GE-immune interaction

strength is determined based on the scaled number of predicted

receptor-ligand pairings between GEs and immune cells

(Figures 3D and S8D; STAR Methods).

To experimentally validate the decoder matrix, we tested

these predictions with human breast cancer cell lines. In the
Cell Reports Medicine 5, 101511, May 21, 2024 9
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Figure 3. Cancer epithelial cell heterogeneity can be defined by 10 GEs that influence immune cell interactions

(A) Heatmap of Z-scored signature scores of the 10 identified gene elements (GEs) representing all cancer epithelial cells, ordered based on the maximum Z-

scored GE signature score. Annotations represent dataset origin, clinical subtype, PAM50 subtype, and SC50 subtype. The ‘‘sample’’ annotation was included to

demonstrate that no individual patient sample contributed heavily to a particular GE.

(B) Percentage of cancer epithelial cells assigned to each GE by molecular subtype.

(C) Gene set enrichment using ClusterProfiler of the differentially expressed genes by GE. Significantly enriched gene sets from the MSigDB Hallmark collection

are shown (Benjamini-Hochberg-adjusted p < 0.05).

(D) Heatmap of the scaled number of curated predicted receptor-ligand pairs between cancer epithelial cells by GE and interacting immune and stromal cells.

(E) Scatterplots showing Spearman correlations of expression of NK-cell related GE1 and GE6 with sensitivity to NK cell killing (Benjamini-Hochberg-adjusted

p < 0.05).

(F) Circos plots showing curated receptor-ligand pairs between cancer epithelial cells that highly express NK cell-related GE1 and GE6 with NK cells. NK cell

activating receptor-ligand pairs are colored blue; NK cell inactivating receptor-ligand pairs are colored red.

See also Figure S8.
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decoder matrix, cancer epithelial cells labeled by GE1 and GE6

were predicted to highly interact with NK cells (GE1 and GE6

have the highest scaled number of curated receptor-ligand pair-

ings). We applied the GEs to human breast cancer cell lines from

the Cancer Cell Line Encyclopedia to quantify GE expression

across cell lines (Figure S8E). Given that GE1 and GE6 have

the greatest predicted interaction strength with NK cells (Fig-
10 Cell Reports Medicine 5, 101511, May 21, 2024
ure 3D), we hypothesized that expression of these GEs will

have a significant influence on NK cell function (i.e., sensitivity

or resistance of cancer cell lines to NK cell killing). To test this,

we selected breast cancer cell lines with differing expression

of GE1 and GE6. BT-474 had increased expression of GE1 and

GE6, while MDA-MB-436 had decreased expression of GE1

and GE6. Using these selected cell lines, we assessed the
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Figure 4. GE-immune interactions predict response to anti-PD-1 therapy

(A) Heatmap of Pearson correlations between expression of each of the 10 GEs and the presence of CD8+ T cells for 6 spatial transcriptomics samples across

spots containing CD8+ T cells (n.s., Benjamini-Hochberg-adjusted p > 0.05).

(B) For a representative TNBC sample, pathological annotation of morphological regions into distinct categories. UCell signature scores of CD8+ T cells are

overlaid onto spatial tumor sample spots (red). A UCell signature score of GE5 (a CD8+ T cell activating GE) is overlaid onto tumor sample spots (red). A co-

localization score for ITGB2_ITGAL, LTB_TNFRSF1A, and ALOX5AP_ALOX5 (predicted receptor-ligand pairs for GE5 and CD8+ T cells) is overlaid onto tumor

sample spots (red).

(legend continued on next page)
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relationship between GE1 and GE6 expression and sensitivity to

NK cell killing. We co-cultured BT-474 (GE1 and GE6 high) and

MDA-MB-436 (GE1 and GE6 low) with NK-92, a human NK cell

line. As hypothesized, GE1 and GE6 expression had a statisti-

cally significant impact on NK cell function. NK cell cytotoxicity

against BT-474 at 24 h was significantly reduced (p < 0.0001)

compared with NK cell cytotoxicity against MDA-MB-436 (Fig-

ure S8F). This finding suggests that GE1 and GE6 confer resis-

tance to NK cell cytotoxicity. Next, to expand on these experi-

mental findings, we used a study by Sheffer et al.,53 which

reports experimental sensitivity or resistance of 26 breast cancer

cell lines to NK cell cytotoxicity (STAR Methods).53,54Increased

GE1 and GE6 expression was significantly correlated with

increased resistance to NK cell killing (R = �0.54, p < 0.05 for

GE1; R = �0.54, p < 0.05 for GE6) (Figure 3E), consistent with

the decoder matrix and our experimental findings. Other GEs

with fewer predicted NK cell interactions in the decoder matrix

did not have statistically meaningful correlations with sensitivity

to NK cells (Figure S8G). To investigate interactions that

contribute to these phenotypes, we assessed predicted recep-

tor-ligand pairs between cells that highly express GE and NK

cells (Figure 3F). We observed that GE1- and GE6-labeled cells

were predicted to have receptor-ligand pairs that have been

characterized as inactivators of NK cell activity (e.g., NECTIN2_

TIGIT, THBS1_CD47, and CD320_TGFRB2). These functional

studies validate two of the predictions made by the decoder ma-

trix by showing that GE1 and GE6 are predictive of significant

resistance to NK cell killing for breast cancer cell lines.

Overall, this decoder matrix provides a blueprint for quanti-

fying the degree of interactions between each GE and different

immune cell types. Moreover, this decoder matrix curates key

activating and inhibitory receptors that can be used to infer

how GE-immune interactions affect immune cell behavior.

Spatial mapping of GEs reflects predicted immune
interactions
To validate the predicted interactions curated by the decoder

matrix, we used a spatial transcriptomics dataset containing

published data from 103Genomics and fromWu et al.13 We first

deconvoluted the underlying composition of cell types through

integration of the spatial transcriptome data with the integrated

dataset (STARMethods). Because T cell infiltration was relatively

high across spatial transcriptomics samples (Figure S9A), we

chose to explore T cell interactions using this dataset. To do so,

we applied the 10 GEs to each sample in the dataset. Using the

decoder matrix, we inferred which GE-labeled cells interact

with T cells and which ones do not. Thus, we hypothesized that

these GE-labeled cells and CD8+ T cells would be spatially orga-
(C) Heatmap of average expression of each of the 10 GEs across cancer epithelia

(D) Boxplot showing T cell InteractPrint prediction of response to anti-PD-1 th

responder; p < 0.05). Also shown is the AUC of ROC comparing the performance

Bassez et al.57 samples (bootstrap test with n = 10,000, p < 0.05).

(E) Heatmap of average expression of each of the 10 GEs across cancer epithelia

(F) Boxplot showing T cell InteractPrint prediction of response to anti-PD-1 therap

<0.0001). Also shown is the AUC of ROC comparing the performance of T cell Int

trial (bootstrap test with n = 10,000, p <0.05).

(G) Schematic of T cell InteractPrint to predict patient response to anti-PD-1 the

See also Figure S9.
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nized in breast tumors. To test this, we examined the co-expres-

sion of the GEs and the presence of neighboring CD8+ T cells.

Notably, GE5 expression demonstrated positive correlations

with CD8+ T cells in all samples (mean R = 0.33, all p < 0.0001)

(Figure 4A). In one representative image, we determined the

co-localization of CD8+ T cells with GE5 expression (Figure 4B).

For areas with high presence of CD8+ T cells, we observed

increased colocalization of select curated receptor-ligand pairs

(ITGB2_ITGAL, LTB_TNFRSF1A, and ALOX5AP_ALOX5) (Fig-

ure 4B). As expected, GEs with limited predicted interactions

did not consistently co-localize with CD8+ T cells (Figure S9B).

InteractPrint: A weighted score to predict the
predominant tumor-interacting immune cell for an
individual patient tumor
We then hypothesized that the GE-immune interaction decoder

matrix could be applied to individual tumor tissues. To account

for how cancer epithelial cell ITTH within a tumor influences im-

mune cell interactions, we developed InteractPrint. InteractPrint

reflects interactions between the predominant tumor-responsive

immune cells from the decoder matrix and cancer cells that

highly express each GE, weighted by the GE composition of an

individual patient tumor. This approach permits real-world appli-

cation of InteractPrint since it accounts for heterogeneity of GEs

within a tumor.

InteractPrint predicts anti-PD-1 therapeutic response
We then sought to use InteractPrint to characterize the predom-

inant immune response within patients for therapeutically

targeted immune cells. Because current immune checkpoint in-

hibitors (ICI) target CD8+ T cell-driven cancers, we developed

T cell InteractPrint to predict who might respond to ICI. For the

comparator, average PD-L1 expression on cancer epithelial cells

was selected, as PD-L1 remains the main biomarker used clini-

cally to determine who should receive ICI for many solid tumors,

including patients with recurrent unresectable or metastatic

triple-negative breast cancer (TNBC).55,56

We applied our approach to a separate scRNA-seq dataset

published by Bassez et al.,57 which contains tumor biopsies

from breast cancer patients pre and post anti-PD-1 therapy

(Figures S8C and S8D). Deconstruction of each individual patient

tumor into the 10GEs revealed considerable cancer epithelial cell

ITTH prior to anti-PD-1 treatment (Figure 4C), similar to what was

observed in the integrated dataset (Figure S8C). To assess the

capacity of the T cell InteractPrint to predict responders to anti-

PD-1 therapy, we derived receiver operating characteristic

(ROC) curves in this dataset (Figure 4D). Across clinical subtypes

of breast cancer, the T cell InteractPrint demonstrated an area
l cells in each sample from Bassez et al.57 T cell InteractPrint is shown below.

erapy across all clinical subtypes in Bassez et al.57 (R, responder; NR, non-

of T cell InteractPrint (AUC = 81.87) and of PD-L1 expression (AUC = 49.71) in

l cells in each sample from the I-SPY2 trial. T cell InteractPrint is shown below.

y across all clinical subtypes in I-SPY2 trial samples (two-sidedWilcoxon test p

eractPrint (AUC = 83.02) and of PD-L1 expression (AUC = 72.33) in the I-SPY2

rapy.
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under the curve (AUC) of 81.87% (p = 0.0061) in predicting

response to anti-PD-1 therapy, inferred from T cell clonotype

expansion.53 This was a significant improvement (p = 0.019)

over average PD-L1 expression on cancer epithelial cells, the

current clinical biomarker to predict patients who will respond

to anti-PD-1 therapy in breast cancer, which had an AUC of

49.71% (p > 0.05).

Next, we applied our predictor to a separate validation dataset

containing results from the I-SPY2 trial. I-SPY2 is an ongoing,

multicenter, open-label, adaptively randomized phase 2 trial of

neoadjuvant chemotherapy for early-stage breast cancer at

high risk of recurrence.57 In this trial, patients with breast cancer

received anti-PD-1 therapy (the same as patients from Bassez

et al.57) combined with paclitaxel. We applied the 10 GEs to mi-

croarray data from pre-treatment tumor samples from the

I-SPY2 trial and observed levels of heterogeneity that were

comparable with those described in the scRNA-seq datasets

(Figure 4E). In the I-SPY2 trial dataset, T cell InteractPrint

(AUC = 83.02%, p = 8.1 3 10�7) demonstrated significant

improvement (p = 0.034) over average PD-L1 expression on can-

cer epithelial cells (AUC = 72.33%, p = 0.001) in predicting

response to anti-PD-1 therapy (Figure 4F).

Across two trials, T cell InteractPrint demonstrated significant

improvement over PD-L1 at predicting response to anti-PD-1

therapy. This highlights the ability of T cell InteractPrint to

decode how cancer epithelial cell ITTH impacts CD8+ T cell

response for each individual patient.

DISCUSSION

In this study, we present an atlas resource that integrates

scRNA-seq data of 236,363 cells that represent the breast

TME. This resource enables high-resolution characterization of

rare immune cell and cancer epithelial cell heterogeneity and

demonstrates how heterogeneity influences immune cell inter-

actions that have not been evaluated previously.

First, we leveraged the statistical power of this integrated data-

set to demonstrate how NK cells, a population of rare immune

cells that have not been classified in the breast TME, can be stud-

ied further. We identified six subsets of NK cells, which consist of

activated and cytotoxic, exhausted, and rNK cells. Identification

of rNK cells inmost but not all samples (i.e., 72%of samples) pro-

vides a subtype-independent approach to identify patients who

may benefit from rNK cell-directed therapies. We also performed

receptor-ligand analysis on rNK cells and tumor cells to identify

potential interactions that could lead to this phenotype (Fig-

ure 1H). Interestingly,KLRG1 is among the identified interactions

betweenHER2+cancer epithelial cells and rNKcells.KLRG1was

previously validatedasapotential regulator of rNKcell function.20

Ongoing and future experimental work by is needed to determine

mechanisms thatdrive thisdistinct and functional rNKcell pheno-

type.Our findings add to the growing body of literature ondistinct

NK cell subsets and phenotypes. In particular, the gene expres-

sion profile of the cytotoxicNK-2 subset alignswithCD56dim sub-

sets identified previously in bone marrow by Crinier et al.25 and

Yang et al.,27 in peripheral blood by Smith et al.,26 and in human

melanoma metastases by de Andrade et al.28 The NK-0 subset

closely resembles previously described ‘‘memory-like’’ NK cells
derived from bone marrow by Crinier et al.25 and have been

described after viral or tumor exposure. Our description of

NK-4 aligns with prior observations of ‘‘inflamed’’ interferon

(IFN)-responding NK cells in the bone marrow by Yang et al.27

and in peripheral blood by Smith et al.26 NK-3 demonstrated fea-

tures consistent with prior studies of tissue-resident NK cells

derived from bone marrow by Yang et al.27 and from melanoma

metastasesbydeAndradeet al.28 Theunique transcriptional pro-

file of the NK-5 subset has been described previously as ex-

hausted.34,35 Last, expression profiles (e.g., upregulated NR4A

family, DUSP1, FOS, and JUN) similar to the rNK-1 subset have

been described in peripheral blood by Smith et al.,26 in bone

marrow by Yang et al.,27 and in human head and neck cancers

by Moreno-Nieves et al.,29 as well as in our prior studies on

metastasis-promoting NK cells derived from ex vivo and mouse

models.20 Additionally, our present study is the first to identify

six subsets of NK cells in human primary breast tumors, which

can now be quantified and measured in response to prospective

therapeutics.

Through this analysis, we observed that NK cell heterogeneity

is associated with breast cancer clinical subtypes. These clinical

subtypes are well known to harbor substantial heterogene-

ity.23,24,40 This led us to use this resource to further understand

clinically relevant heterogeneity within the breast TME and can-

cer epithelium at resolutions higher than studied previously. At

the single-cell resolution, we quantified the heterogeneity of

single-gene expression (i.e., ERBB2 and TACSTD2) across tu-

mors and found that the majority of samples across all breast

cancer subtypes expressed ERBB2 and TACSTD2. These find-

ings prompt further functional investigation of what degree of

transcriptomic expression correlates with clinical efficacy of

anti-HER2 and anti-TROP2 antibody-drug conjugates. The new

class of antibody-drug conjugates targeting these proteins

has recently demonstrated efficacy across breast cancer sub-

types. For HER2/ERBB2, high concordance between proteomic

HER2 status and ERBB2mRNA expression has been reported in

the literature,58–63 and we corroborate these findings in the inte-

grated dataset (Figure S6D). Similarly, for TROP2/TACSTD2,

concordance between proteomic TROP2 and TACSTD2 mRNA

expression has been reported in various solid tumors, including

breast.64–69 Further, examining genes that are positively corre-

latedwith ERBB2 and TACSTD2 uncovers other potential clinical

targets that can synergize with current anti-HER2 and anti-

TROP2 therapies and provides a rationale for novel combination

approaches. Then, we characterized cancer epithelial cell het-

erogeneity by using unsupervised clustering and supervised

classification based on breast cancer molecular subtypes and

clinical therapeutic target gene expression. While discrepancies

between clinical and molecular subtyping have been well docu-

mented, we provide an approach to defining cancer epithelial

cell heterogeneity at the single-cell level by using 10 GEs. This

approach enables high-resolution characterization of cancer

epithelial cell ITTH and deconstruction of a heterogeneous tumor

into its diverse epithelial phenotypes.

To further demonstrate how this resource facilitates analysis

of the breast TME, we then use information from the 10 GEs

to identify how cancer epithelial cell heterogeneity influences in-

teractions with immune populations. Current ICI biomarker
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approaches mainly focus on the expression of single targets, re-

sulting in an incomplete characterization of the TME complexity.

Our approach for T cell InteractPrint score calculates cancer

epithelial cell heterogeneitywithina tumor sampleand thenumber

of predicted interactions between heterogeneous cancer epithe-

lial cells and CD8+ T cells (Figure 4G). This captures how hetero-

geneous expression of GEs shifts the predicted strength of

T cell interactions for an individual patient’s tumor. Across two tri-

als and all subtypes of breast cancer, T cell InteractPrint predicted

response to T cell immune checkpoint inhibition. This finding is

significant because anti-PD-1 therapy is not effective in HR+ dis-

ease70 and has limited efficacy in TNBCdisease71 comparedwith

the response seen in other solid tumors.72–75 The development of

InteractPrint from this resource serves as another example of how

this resource canbe used to uncover biology that, once validated,

could inform response to ICI in breast cancer.

The breast TME is a complex ecosystem that encompasses

diverse cell phenotypes, heterogeneous interactions among

cells, and varied expression of clinically targetable features.

The development of this resource and examples of its utility un-

covered information about NK cells and how heterogeneous

cancer epithelial cells and their predicted immune interactions

can predict immune checkpoint therapy responses. Future use

of this resource is likely to yield additional impactful findings.

Limitations of the study
A limitation of our study is that we compared InteractPrint with

PD-L1 by transcriptomic expression in early-stage breast cancer

trials. PD-L1 expression by IHC is approved in the setting of

recurrent unresectable or metastatic TNBC disease for selection

of patients to receive ICI.76 However, PD-L1 expression has

been associated with increased response rates in neoadjuvant

trials,77–81 and concordance between PD-L1 mRNA and proteo-

mic expression has been shown.82–85 While this provides the

rationale behind our selection of PD-L1 transcriptomic expres-

sion as the comparator for T cell InteractPrint, a discussion of

the limitations of this comparator is necessary. First, assessment

of PD-L1 expression based on mRNA levels rather than proteo-

mic expression is not widely used in the clinic. Second, across

the neoadjuvant trials, differences in study design, patient enroll-

ment, and subgroup analyses make it difficult to reconcile mixed

findings around the role of PD-L1 as a biomarker in early-stage

breast cancer. Last, evaluation of other exploratory biomarkers

is ongoing.86–89 There is still an outstanding need for improved

patient selection to maximize efficacy and minimize exposure

to adverse events associated with ICIs. These limitations define

a need for future prospective studies to compare T cell

InteractPrint and PD-L1 gene and protein expression, along

with other exploratory biomarkers, to predict response to ICI.
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Lead contact
Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Dr. Isaac S. Chan (isaac.

chan@utsouthwestern.edu).

Materials availability
This study did not generate new unique reagents.
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https://www.10xgenomics.com/datasets/human-breast-cancer-visium-fresh-frozen-whole-transcriptome-1-standard
https://www.10xgenomics.com/datasets/human-breast-cancer-visium-fresh-frozen-whole-transcriptome-1-standard
https://www.10xgenomics.com/datasets/human-breast-cancer-visium-fresh-frozen-whole-transcriptome-1-standard
https://www.10xgenomics.com/datasets/human-breast-cancer-block-a-section-1-1-standard-1-1-0
https://www.10xgenomics.com/datasets/human-breast-cancer-block-a-section-1-1-standard-1-1-0
https://www.10xgenomics.com/datasets/human-breast-cancer-whole-transcriptome-analysis-1-standard-1-2-0
https://www.10xgenomics.com/datasets/human-breast-cancer-whole-transcriptome-analysis-1-standard-1-2-0
https://www.10xgenomics.com/datasets/human-breast-cancer-whole-transcriptome-analysis-1-standard-1-2-0
https://www.10xgenomics.com/products/xenium-in-situ/preview-dataset-human-breast
https://www.10xgenomics.com/products/xenium-in-situ/preview-dataset-human-breast
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE194040
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Data and code availability
d Single-cell RNA-seq data have been deposited at GEO and are publicly available as of the date of publication. Accession

numbers are listed in the key resources table.

d All original code will be deposited at https://github.com/ChanLab-UTSW/BreastCancer_Integrated and is publicly available as

of the date of publication. DOIs are listed in the key resources table.

d Any additional information required to reanalyze the data reported in this work paper is available from the lead contact upon

request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

NK-92
NK-92 cells are a human NK cell line derived from a 50-year-old male with malignant non-Hodgkin’s lymphoma. These cells were

cultured in RPMI-1640 with 10% FBS, 1% penicillin-streptomycin, 1% sodium pyruvate, 1% MEM-NEAA, 1% GlutaMAX, 0.01%

2-mercaptoethanol, and 100 IU/mL of human IL-2 at 37�C and 5% CO2.

BT-474
BT-474 cells are a humanmammary duct cell line derived from a 60-year-old female with invasive ductal carcinoma. These cells were

cultured in RPMI-1640 with 10% FBS and 1% penicillin-streptomycin at 37�C and 5% CO2.

MDA-MB-436
MDA-MB-436 cells are a human mammary gland cell line derived from a 43-year-old female with adenocarcinoma. These cells were

cultured in RPMI-1640 with 10% FBS and 1% penicillin-streptomycin at 37�C and 5% CO2.

K-562
K-562 cells are a human bonemarrow-derived lymphoblastic cell line from a 53-year-old female with chronic myelogenous leukemia.

These cells were cultured in RPMI-1640 with 10% FBS and 1% penicillin-streptomycin at 37�C and 5% CO2.

NK-92 cell line media was used in all coculture conditions.

Cell line authentication was performed at the UT Southwestern DNA Genotypic Core facility.

METHOD DETAILS

Processing of single-cell RNA-seq datasets
We obtained 119 primary breast tumor samples across 8 publicly available datasets from 88 untreated female patients 32 to 90 years

of age. All gene names were converted to the official gene alias by the HUGO Gene Nomenclature Committee (HGNC) using limma

(v3.50.1) and org.Hs.e.g.,.db (v3.14.0) packages.90,91 Cells were filtered by percent mitochondrial transcripts, percent hemoglobin

genes, number of RNA molecules, and number of features. In brief, cells below the 5th percentile and above the 95th percentile of

each metric were removed, as well as cells with over 15% mitochondrial content. We used the DoubletFinder (v2.0.3) package to

identify and remove doublets from the dataset.92 Doublet rates were estimated using reported rates from the original technology

used and cell loadings provided by original studies.

Integration of primary breast tumor datasets
119 untreated primary samples were integrated via reference-based integration usingSeurat (v4.1.0) to remove batch effects. To pre-

vent over-correction, SCTransform (v0.3.2.9008) was used.95 The 10x datasets were chosen as the reference and rann was chosen

for FindNeighbors. Success of batch effect correction was determined by ensuring that no single technology, cohort, or subtype was

driving any clusters (Figures S1D–S1L, S2A–S2I; Data S8).

Cell type annotation and clustering
Initial cell type annotations were identified using canonical and literature-derived cell markers as specified in Data S2.96,110–113 Three

methods were used to refine the annotations. The first utilized cluster-level annotations via theUCell (v1.99.1) package96; the second

labeled cells based on thresholds of number of markers, and then clustered and calculated the average expression of those markers

to refine the cell identities8; the third took highest average expression of select markers. The annotation with highest agreement

across the three methods was selected. If all methods disagreed, the cluster-level annotation was chosen.

For the cluster-level method, all cell markers were aggregated into a single score using the AddModuleScore_UCell function from

the UCell (v1.99.1) package.93,96 Clusters with the highest score for a given cell type were labeled, isolated, and re-integrated to ac-

count for batch effects. Subtype-specific cell markers were applied (e.g., CD4 for CD4+ T cells).

For the second method, cell type annotations were identified based on the number of cell type markers with non-zero expression

for a given cell. In brief, epithelial cells labeled if they had two epithelial markers or at least one of EPCAM, KRT8, KRT18, or KRT19.

Immune cells were labeled if they had at least twomarkers of that immune cell type and no other type, PTPRC and at least onemarker
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of that type and no other, or at least threemarkers for that type and at most onemarker of a different immune type. Stromal cells were

labeled if they had only cell-type-specific markers or at least three cell-type-specific markers and at most one endothelial marker.

Finally, endothelial cells were labeled if they had only endothelial markers or at least three endothelial markers and atmost onemarker

associated with a stromal cell type.

Lastly, we examined log-normalized expression values of the selected cell typemarkers for each cell. Each cell was annotated with

the cell type that had the highest average expression for their markers across all features. T andmyeloid subsets were identified in the

same manner once the cells were identified as T cells or myeloid cells respectively.

The final cell call was determined based on the highest consensus or defaulted to the cluster-level annotation. Of the 116,346 cells

which had original source annotations, 93% had concordant annotations between the original source and our analysis (Data S7).

Identification of natural killer cell subsets
The NK cell cluster was isolated and re-integrated (Figure S4A). Given the higher dimensionality of the dataset containing only NK

cells (i.e., number of features [ number of NK cells), the Manhattan distance metric was used. FindMarkers in Seurat (v4.1.0)

andMAST (v1.20.0)were used to identify differentially expressed genes for each cluster, with absolute log2 fold change (log2FC) cut-

off of 0.56 (Bonferroni adjusted p value <0.05).93,94 Marker genes for each NK cell subset are included in Table 1.

To identify human tumor-promoting rNK cells, we previously developed a gene signature based on genes upregulated in tumor-

exposed NK cells compared to healthy NK cells in MMTV-PyMT andWT FVB/n mice.20 In our prior study, primary healthy and tumor-

exposed NK cells were isolated, and total RNAwas extracted and sequenced using Illumina NextSeq 500. Bulk RNA-seq paired-end

reads were aligned and mapped using hisat2114 and HTSeq115 respectively, and DESeq2 was used for differential gene expression

analysis. In the current study, mouse genes were converted into their human aliases using BioMart (v2.50.0).116 Because the MMTV-

PyMT mouse strain used in the previous study most closely resembles the luminal A/luminal B and basal subtypes, these subtypes

were first analyzed for the presence of rNK cells. NK cells in the top 75th percentile for the 90-gene signature were labeled as rNK

cells. We identified 841 total rNK cells in the integrated dataset.

Gene set enrichment analysis across the NK cell subsets was performed using clusterProfiler (v4.2.2) and the Hallmark gene set

collection frommsigdbr (v7.5.1).97,98 Only genes with log2FC > 0were considered. Sampleswith fewer than 10NK cells were omitted.

For visualization of differentially expressed genes, the log2FC cutoff was increased to 1.5 and a false discovery rate (FDR) cutoff was

set to 0.05. To examine expression of the rNK signature within NK cell subsets and across clinical subtypes, Kruskal-Wallis and pair-

wise post-hoc Dunn tests were performed. For similarity analysis of rNK cells, the expression matrix was reduced to genes in the rNK

cell signature, and the Pearson correlation coefficient was calculated for all pairwise combinations of rNK cells with rNK cells and for

rNK cells with non-rNK cells. These analyses were also stratified by age to ensure that age was not a confounder (Figures S5D–S5F).

Survival analysis
To assess survival outcomes, we obtained the primary solid tumor samples from the breast cancer cohort of The Cancer Genome

Atlas (TCGA).117 Expression data was normalized using TCGAbiolinks (v2.18.0) package and transformed using DESeq2 (v1.34.0)

with default parameters.99,100 For all breast cancer samples, we applied NK-specific genes (NCAM1, FGFBP2, KLRD1, FCGR3A,

KLRK1) and the 44 upregulated genes of the rNK signature. Of the 1,098 total patients in the dataset, we labeled the top 300 patients

with highest rNK signature expression as ‘rNK-high,’ and the remaining 798 patients were labeled as ‘rNK-low.’ Next, we selected

samples with high fraction of tumor-infiltrating NK cells (activated or resting NK cells predicted to be greater than a relative fraction of

0.015 of tumor-infiltrating immune cells in the sample), as determined by Xu et al.14 This selected 349 patients for the survival analysis

(excluded 749 patients with low NK cell infiltrate). Kaplan-Meier survival curves were generated using survival (v2.44-1.1)118 and as-

sessed using log rank test statistics. Patients R45yo demonstrated worse outcomes with increased rNK cell signature expression

(p < 0.05) (Figure S5F); survival analysis for patients <45yo did not show significance, though there was a similar trend. To ensure age

was not a confounder, correlation between age at initial diagnosis and survival was also assessed (R =�0.11, p > 0.05) (Figure S5E).

Identification of epithelial cell clusters
Epithelial cells were re-clustered and re-integrated to account for batch effects (Figures S6A–S6C). Copy number variant (CNV) pro-

file analysis was used for cancer (malignant) versus normal (non-malignant) assignments. The CNV signal for individual cells was esti-

mated using inferCNV (v.0.99.7) with a 100-gene sliding window; genes with mean count less than 0.1 across all cells were filtered

out, and the signal was denoised using a dynamic threshold of 1.3 s.d. from the mean.101 Non-T cell immune cells were used for the

reference cell profiles. Epithelial cells were classified as normal (non-malignant), cancer (malignant), or unassigned using a previously

describedmethod.119 Briefly, inferred changes at each genomic locus were scaled (between�1 and +1) and themean of the squares

of these values was used to define a CNV signal for each cell. For each sample, an average CNV profile was created, and each cell in

the samplewas then correlated to this profile for theCNV correlation score. Epithelial cells were classified cancer vs. normal based on

CNV signal and CNV correlation, with thresholds of 0.4 for CNV correlation and 0.02 for CNV signal (Figures S3A–S3B). This assigned

75,883 cancer, 3,524 normal, and 4,997 unassigned epithelial cells.

Within cancer epithelial cells, ERBB2-positive and TACSTD2-positive cells were chosen due to clinical relevance. ERBB2 and

TACSTD2 expression levels are calculated using UCell (v1.99.1)96. ERBB2Hi cells were defined by ERRB2 expression above the

97.5th percentile of all cells, ERBB2Med cells by expression at or below the 97.5th percentile, and ERBB2Lo cells by zero expression.
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TACSTD2Hi cells were defined by positive TACSTD2 expression above the 95th percentile of all cells, TACSTD2Med cells by expres-

sion at or below the 95th percentile, and TACSTD2Lo cells by zero expression. FindMarkers in Seurat (v4.1.0) andMAST (v1.20.0)were

used to identify differentially expressed genes (>5 cells per cluster, detected in >20% of cells in a cluster, log2FC cutoff of 1.5, FDR

cutoff of 0.05).93,94 Gene set enrichment analysis was performed using clusterProfiler (v4.2.2) and the Hallmark gene set collection

from msigdbr (v7.5.1),97,98 using a 0.1 cutoff for absolute difference in percent expression between the pairwise populations.

Expression levels of clinically actionable targets for each subset of cells was estimated by AverageExpression by Seurat

(v4.1.0).93 For visualization of differentially expressed genes (Figures S6H–S6K), log2FC cutoff of 1.5 and FDR cutoff of 0.05 were

used. To explore associations with clinical features, linear regression and Pearson correlations were calculated between the propor-

tion of ERBB2-positive or TACSTD2-positive cells per sample and age or nodal status, and these analyses were stratified by subtype

in Figures S7A–S7C. We additionally explored associations between % TACSTD2+ cells and nodal status in each cohort and then

combined the results using Fisher’s combined probability test, whichwas found to not be statistically significant (Figure S7C; Fisher’s

combined probability X = 11.227, p = 0.08). In contrast, for the integrated dataset, there was a statistically significant association

between % TACSTD2+ cells per sample and nodal across all samples with nodal status clinical data (p < 0.05, n = 38).

Molecular subtype of samples using SCSubtype
To identify molecular breast cancer subtypes, we used the SC50 subtype gene signature described in Wu et al.13 In brief, the mean

read counts for each signature were determined and the highest mean was assigned as the subtype for that cell. To determine the

molecular subtype for each tumor, we determined the number of cells classified under each SC50 subtype, and then selected the

subtype with the highest number of cells to be the tumor molecular subtype, following the method of Wu et al.13

Cancer epithelial cell heterogeneity analysis
For each tumor sample with over 50 cancer epithelial cells, heterogeneity was assessed using ROGUE, an entropy-based statistic

that enables accurate and sensitive assessment of cluster purity.52 To identify samples with discordance between heterogeneity as

characterized by the ROGUE score versus by molecular subtype, we calculated the difference between the normalized ROGUE

score and the highest percentage of cells of a single subtype. Samples with difference over 50% were determined to be discordant.

To identify gene expression patterns across cancer epithelial cells, unsupervised clustering and supervised classification of all can-

cer epithelial cells for tumor samples with more than 50 cancer epithelial cells were performed. We generated an exhaustive collec-

tion of gene signatures that reflect molecular features of different cancer epithelial cells.

For unsupervised clustering, cancer epithelial cells were clustered at 15 resolutions (0.01, 0.05, 0.08, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,

1.0, 1.3, 1.6, 1.8, 2.0) utilizing Seurat (v4.1.0)93. FindMarkers in Seurat (v4.1.0) andMAST (v1.20.0) were used to identify differentially

expressed genes (>5 cells per cluster, only test genes with >25% difference in the fraction of detection between the clusters,

log2FC > 0.25).93,94 Dataset-wide unsupervised clustering returned 519 gene signatures. Unsupervised clustering was also per-

formed on the sample level, which returned 5,546 gene signatures.

For supervised classification by SC50 molecular subtype, cancer epithelial cells were grouped by SC50 subtype.13 FindMarkers in

Seurat (v4.1.0) and MAST (v1.20.0) were then used to identify differentially expressed genes in each group (>5 cells per group, only

test genes detected in >20% of cells in a group, log2FC > 0.1).93,94 Supervised classification based on SC50 molecular subtype re-

turned 4 gene signatures.

For supervised classification based on clinical therapeutic targets, expression of 12 clinical therapeutic targets was considered:

ESR1, ERBB2, ERBB3, PIK3CA, NTRK1/NTRK2/NTRK3, CD274, EGFR, FGFR1/FGFR2/FGFR3/FGFR4, TACSTD2, CDK4/CDK6,

AR, and NECTIN2. Cancer epithelial cells grouped based on high (expression level above the 90th percentile), medium (expression

level below the 90th percentile but non-zero), and low (no or zero expression) expression of clinical targets. FindMarkers in Seurat

(v4.1.0) and MAST (v1.20.0) were then used to identify differentially expressed genes in each group (>5 cells per group, only test

genes detected in >20% of cells in a group, log2.
93,94 Supervised classification based on clinical target expression returned 32

gene signatures.

The 12 clinical therapeutic targets were selected based on availability of corresponding therapeutic agents that are approved or

under clinical development for the treatment of breast cancer. ESR1 encodes estrogen receptor, the target for hormone therapies

such as selective estrogen receptor modulators (e.g., tamoxifen) and selective estrogen receptor degraders (e.g., fulvestrant).

ERBB2 encodes HER2, the target for anti-HER2 therapies (e.g., trastuzumab, margetuximab, pertuzumab) and ADCs (e.g.,

trastuzumab-deruxtecan, T-DM1). ERBB3 encodes HER3, the target for anti-HER3 monoclonal antibodies (e.g., patritumab,

seribantumab, lumretuzumab), bispecific antibodies (e.g., EGFR/HER3 duligotuzumab, HER2/HER3 zenocutuzumab, HER3/IGF-

1R isitarumab), and ADCs (e.g., patritumab deruxtecan), all currently under clinical development. PIK3CA encodes PI3 kinase, the

target for PI3K inhibitors (e.g., alpelisib). NTRK1, NTRK2, and NTRK3 are genes involved in chromosomal rearrangements (NTRK

fusions) targeted by TRK inhibitors (e.g., larotrectinib, entrectinib). CD274 encodes PD-L1, the target for PD-L1 inhibitors (e.g., ate-

zolizumab, durvalumab) and PD-1 inhibitors (e.g., pembrolizumab). EGFR encodes the EGFR protein, the target for small molecule

inhibitors (e.g., lapatinib, gefitinib, erlotinib, osimertinib) andmonoclonal antibodies (e.g., cetuximab, panitumumab). FGFR1, FGFR2,

FGFR3, and FGFR4 encode fibroblast growth factor receptors, targeted by pan-FGFR tyrosine kinase inhibitors (e.g., AZD-4547,

futibatinib, erdafitinib) currently under clinical development. TACSTD2 encodes TROP2, the target for anti-TROP2 ADCs (e.g.,

sacituzumab govitecan). CDK4 and CDK6 encode the cyclin-dependent kinases 4 and 6, the targets for CDK4/6 inhibitors (e.g.,
e5 Cell Reports Medicine 5, 101511, May 21, 2024
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abemaciclib, palbociclib, and ribociclib). AR encodes the androgen receptor (AR), the target for AR inhibitors (e.g., enzalutamide),

CYP17 inhibitors which inhibit production of androgens (e.g., abiraterone, seviteronel), and selective androgen receptor modulators

or SARMs (e.g., enobosarm or GTx-024). NECTIN2 encodes NECTIN2 or CD112, which binds TIGIT on T and NK cells and is the

target for anti-TIGIT monoclonal antibodies (e.g., tiragolumab, ociperlimab, pembrolizumab/vibostolimab) which are currently under

investigation.

Only gene signatures containing over 20 genes were kept. Additionally, signature redundancy was reduced by comparing all un-

supervised gene signatures and removing pairs with Jaccard similarity index >0.9. A total of 1,101 gene signatures were generated.

Consensus clustering of the Jaccard similarities between gene signatures (using spherical k-means clustering, metric ATC, imple-

mented with cola (v2.0.0)) was used to identify 10 groupings (Figures S8A–S8B).102 For each grouping, we took the top 100 genes

with highest frequency of occurrence across clusters. These were defined as a ‘gene element’ (GE) and were named GE1 to

GE10. GE signature expression was calculated for each cancer epithelial cell using UCell (v1.99.1).96 GE signature expression

was Z score normalized across all cancer epithelial cells, and cells were assigned to the GE with the highest z-scored expression.

Receptor-ligand pairing analysis
To identify interactions that may influence NK cell reprogramming,NicheNet analyses were run between rNK cells and cancer epithe-

lial cells separated by clinical subtype. rNK cells were set as the ‘sender’ population, and non-rNK cells were set as the ‘reference’103.

Receptor-ligand regulatory potential scores for the top 50 predicted ligands and top 200 predicted targets were calculated and for

each predicted receptor-ligand pair, an R-L interaction score was calculated as a product of ligand expression (fold change in

average expression of the ligand in cancer epithelial cells of that clinical subtype) and receptor expression (percent of the rNK pop-

ulation that has positive expression of the receptor). For the top 20 R-L pairs selected based on this interaction score, circos plots

were generated.

To identify interactions between cancer epithelial cells and interacting cells (i.e., CD4+ T cells, CD8+ T cells, regulatory T cells, B

cells, plasma cells, myeloid cells, mast cells, MDSCs, NK cells, rNK cells, fibroblasts, myoepithelial cells, endothelial cells, perivas-

cular-like cells), receptor-ligand pairing analysis was performed using NicheNet (v1.1.0) and CellChat (v0.0.1).103,104 For each GE,

separate NicheNet analyses were run between cancer epithelial cells assigned to that GE (‘sender’) and each interacting cell pop-

ulation (‘receiver’). The top 50 predicted ligands and top 200 predicted targets were used for the R-L interaction score, which

was the product of ligand expression (fold change in average expression on cancer epithelial cells with high vs. low GE expression)

and receptor expression (percent of the interacting cell subset with positive receptor expression). For the top 20 receptor-ligand pairs

selected based on this R-L interaction score, circos plots were generated. In addition toNicheNet analysis, cancer epithelial cell and

interacting cell communication analysis was conducted usingCellChat (v0.0.1) using default parameters.104 For eachGE, the cell-cell

communication network between GE-labeled cancer epithelial cells and interacting cells was visualized usingCellChat (v0.0.1) (104).

Receptor-ligand pairings with significant (Bonferroni adjusted p value <0.05) probability of interaction were selected as a curated list.

The number of curated receptor-ligand interactions for each GE and interacting cell population was used to infer the degree of

interaction between the GEs and interacting cell populations. First, the entire list of R-L interactions predicted by NicheNet was

filtered. For each interacting cell population, the top 2,000 predicted R-Ls were selected based on Nichenet prediction for regulatory

potential. Then, of those selected pairs, the top 400 predicted R-Ls for each GE were selected based on ligand expression (fold

change in average expression of the ligand on cancer epithelial cells with high vs. low GE expression). Lastly, all overlapping R-L

interactions that were predicted by both NicheNet and CellChat for a GE and interacting cell pair were selected. We combined

the list of overlapping R-L interactions and the list of selected NicheNet R-L interactions to generate a list of curated R-L interactions

for each GE and interacting cell population. For each GE and interacting cell pair, the number of curated R-L interactions was normal-

ized across each interacting cell pair. This scaled number of R-L interactions was used to infer the degree of interaction between the

GE and the interacting cell population. We visualized the scaled number of curated receptor-ligand interactions in our GE-immune

interaction decoder matrix (Figure 3E). We also visualized the absolute number of curated receptor-ligands between each GE and

interacting cell (Figure S8D).

Breast cancer cell line exploration
To explore cancer epithelial cell heterogeneity and NK cell sensitivity, we obtained bulk RNA-seq data from the Broad Cancer Cell

Line Encyclopedia (CCLE) DepMap portal for human breast cancer cell lines.53,54 Bulk RNA-seq data from CCLE containing TPM

values of protein-coding genes were inferred using the RSEM tool and loaded into Seurat (v.4.1.0) and log-normalized.13,93 For

each cell line, GE expression was calculated by the UCell (v1.99.1) score of the 100-gene GE signature. For each GE, UCell

(v1.99.1) scores were Z score normalized across all breast cancer cell lines.

We experimentally confirmed NK cell cytotoxicity against select human breast cancer cell lines. We selected the BT-474 cell line

which had increased expression of NK-resistant GEs (GE1 and GE6) and theMDA-MB-436 cell line which had decreased expression

of NK-resistant GEs. Additionally, the K562 cell line (derived from human myelogenous leukemia) is known to be sensitive to NK cell

killing and therefore served as a positive control.53,120,121 The NK-92 cell line, a highly cytotoxic NK cell line, was cultured in media

with IL-2. To determine killing function of NK cells against cancer cell lines, BT-474, MDA-MB-436, and K562 cells were cocultured

with NK-92 cells at a ratio of 1:2 in 96-well round-bottomplates (50,000 cancer cells per well and 100,000NK-92 cells per well) for 24 h

at 37�C. Cells were stained for CD56 (BV605, Clone HCD56, Biolegend 318334) and DAPI in DPBS with 3% FBS. FACS analysis was
Cell Reports Medicine 5, 101511, May 21, 2024 e6



Article
ll

OPEN ACCESS
performed on the Cytek Aurora. Higher NK cytotoxicity was inferred based on increased % DAPI+ in CD56-negative cancer cells.

From Sheffer et al.,53 breast cancer cell line sensitivity to NK cell killing was assessed using reported 24-h AUC values. Briefly,

Sheffer et al. performed a PRISM-based phenotypic screen with pools of DNA-barcoded cell lines to quantify NK cell cytotoxicity

against cancer cell lines using the AUC of tumor cell survival. Please refer to the original study53 for additional information. For breast

cancer cell lines, NK cell sensitivity was based on the reported 24-h AUC values from the Sheffer et al. study. Spearman correlation

was used to assess the relationship between GE expression and NK cell sensitivity for breast cancer cell lines.

Spatial transcriptomics analysis
Processed spatial transcriptomics count matrices for 6 samples from Wu et al. and 5 samples from 10x were loaded into Seurat

(v.4.1.0).13,93 We deconvoluted the underlying composition of cell types using the anchor-based Seurat integration workflow (Fig-

ure S9A). The resulting annotations calculated the fraction of each cell type per given spot and mapped the spatial distribution of

cell types, which we further corroborated by the spatial expression of marker genes (Data S2). Spots labeled as normal tissue or arti-

fact by pathologist annotation were excluded.

To investigate interactions between cancer epithelial cells and immune or stromal cells, spots were first filtered based on presence

of cancer epithelial cells (spots with less than 10% predicted cancer epithelial cells excluded).93 Each spot containing cancer epithe-

lial cells was scored for expression of each of the 10 GEs using UCell (v1.99.1).96 For immune and stromal cell populations, spots

were filtered based on presence of their respective cell types (spots with 0% predicted cells excluded).93 Each spot containing

the respective cell type was scored for expression of that cell using canonical and literature-derived cell markers (Data S2). To assess

colocalization, Pearson correlations were computed across spots containing between the expression of each GE and the expression

of CD8+ T cell markers. For cell signaling predictions between select GE ligands andCD8+ T cell receptors, R-L co-localization scores

were defined as the product of the ligand and receptor normalized expression levels.

Development of InteractPrint
For each sample, the average expression of each GE was calculated as the average of the scaled UCell (v1.99.1) (scaled across all

cancer epithelial cells in the dataset) score.96 Next, the number of curated R-L pairs in the GE-immune decoder matrix between each

GE and CD8+ T cells was used to infer the degree of interaction between cancer epithelial cells and CD8+ T cells. GE1, GE6, GE7,

GE8, and GE9 were designated as ‘‘inactivating’’ based on the presence inactivating CD8+ T cell receptors (e.g., NECTIN2_TIGIT) in

the list of curated receptor-ligand interactions for those GEs.

T cell InteractPrint was calculated as the average of the number of curated CD8+ T cell R-L interactions in the GE-immune inter-

action decoder matrix, weighted by average expression of each GE and a factor of �1 for inactivating GEs.

IP =
X10

i = 1

ðeiÞðRiÞðwÞ

InteractPrint = Weighted CD8+ T cell interaction score for a patient’s tumor

i = GE (ranges from 1 to 10)

ei = Average GE expression (average of Z score normalized UCell scores for the GE

across all cancer epithelial cells in the sample)

Ri = Number of curated R-L pairs (from GE-immune interaction decoder matrix)

w = Multiplier for activating or inactivating GE (w = 1 for CD8+ T cell activating

GEs; w = � 1 for CD8+ T cell inactivating GEs)

Validation of InteractPrint
To assess the predictive value of the T cell InteractPrint, we applied our method to a publicly available scRNA-seq dataset containing

29 primary breast tumors from patients who received pembrolizumab (Bassez et al.).108 In Bassez et al., responsewas inferred based

on T cell clonal expansion, as determined by sTCR-seq of pre- and on-treatment samples.108 To determine cancer epithelial cells in

the Bassez et al. dataset, CNV analysis was performed (Figures S3C–S3D). GE signature expression and T cell InteractPrint were

calculated for each pre-treatment sample.

We applied our method to the I-SPY2 microarray dataset containing 69 primary breast tumors from patients who received com-

bination paclitaxel and pembrolizumab.57 The data was loaded using limma (v3.15), and the batch-corrected and normalized expres-

sion data provided by the authors was inserted into the object.90 Genes names were converted using the same method described in

the scRNA-seq processing section. Microarray data was deconvoluted with BisqueRNA (v1.0.5) using marker-based devolution with

the 10 GE signatures to estimate the relative abundance of the GEs within each sample.105 GE signature expression and T cell

InteractPrint were compared for responders and non-responders.

On both datasets, we assessed the predictive value of the T cell InteractPrint compared to average expression levels of PD-L1 on

cancer epithelial cells. ROC curves and AUC statistics were generated using the pROC (v1.18.0).106 Bootstrapmethod (n = 10,000) in

pROC (v1.18.0) was used for significance testing between T cell InteractPrint ROC and PD-L1 ROC curves.
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Statistical significancewas determined using theWilcoxon Rank-Sum test unless otherwise stated in the figure legend.Where appro-

priate, p values were adjusted using the Bonferroni correction where appropriate for multiple testing, unless otherwise stated in the

figure legend. All boxplots depict the first and third quartiles as the lower and upper bounds, respectively. The whiskers represent

1.5x the interquartile range, and the center depicts the median. All statistical tests with statistical parameters used are defined in

the figure legends; p values <0.05 were considered significant.
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