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ABSTRACT
◥

Cancer cells exhibit metabolic plasticity to meet oncogene-driven
dependencies while coping with nutrient availability. A better under-
standing of how systemic metabolism impacts the accumulation of
metabolites that reprogram the tumor microenvironment (TME) and
drive cancer could facilitate development of precision nutrition
approaches. Using the Hi-MYC prostate cancer mouse model, we
demonstrated that an obesogenic high-fat diet (HFD) rich in saturated
fats accelerates the development of c-MYC–driven invasive prostate
cancer through metabolic rewiring. Although c-MYC modulated key
metabolic pathways, interactionwith an obesogenicHFDwas necessary
to induce glycolysis and lactate accumulation in tumors. These meta-
bolic changes were associated with augmented infiltration of CD206þ

and PD-L1þ tumor-associated macrophages (TAM) and FOXP3þ

regulatory T cells, as well as with the activation of transcriptional
programs linked to disease progression and therapy resistance. Lactate
itself also stimulatedneoangiogenesis andprostate cancer cellmigration,
which were significantly reduced following treatment with the lactate

dehydrogenase inhibitor FX11. In patients with prostate cancer, high
saturated fat intake and increased bodymass indexwere associatedwith
tumorglycolytic features that promote the infiltrationofM2-likeTAMs.
Finally, upregulation of lactate dehydrogenase, indicative of a lactagenic
phenotype,was associatedwith a shorter time tobiochemical recurrence
in independent clinical cohorts. This work identifies cooperation
between genetic drivers and systemic metabolism to hijack the TME
and promote prostate cancer progression through oncometabolite
accumulation. This sets the stage for the assessment of lactate as a
prognostic biomarker and supports strategies of dietary intervention
and direct lactagenesis blockade in treating advanced prostate cancer.

Significance: Lactate accumulation driven by high-fat diet and
MYC reprograms the tumor microenvironment and promotes
prostate cancer progression, supporting the potential of lactate as
a biomarker and therapeutic target in prostate cancer.
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Introduction
Western society is experiencing widespread consumption of satu-

rated fat- and sugar-rich food and increasing rates of obesity (1).
Obesity is a putative major risk factor for at least 13 cancer types and
may soon overtake smoking in the ranking of preventable cancer risk
factors (2). Understanding of the molecular mechanisms linking the
consumption of unhealthy diets and/or obesity to cancer incidence/
progression has therefore become a priority (3). Experimental and
clinical studies have endorsed caloric restriction and weight manage-
ment as strategies to reduce cancer advancement and improve treat-
ment outcomes (4, 5). Because caloric restriction regimens may not be
sustainable in the long run, intermittent fasting–mimicking diets are
currently under investigationwith promising results in the clinic (6, 7).
Still, new approaches of precision nutrition and/or ad hoc pharma-
cological modulation of cancer-driven metabolic pathways are sorely
needed. Metabolites such as lactate, kynurenine, and arginine have
recently emerged as keymediators of tumor/tumormicroenvironment
(TME) cross-talk, immune evasion, and resistance to therapies (8, 9).
However, whether perturbations in systemic metabolism support the
intratumoral accumulation of metabolites that shape TME and pro-
mote cancer progression is still an open question. Prostate cancer is the
second cause of cancer-related death in men in the United States, and
the third in Europe (10, 11). Obesity status, lifestyle, and environ-
mental factors, including diet, profoundly affect the course of the
disease (12). Although the association between obesity and worse
prostate cancer progression/lethality is well established (13), the link
between increased consumption of saturated fatty acids (FA) and fatal
prostate cancer is still the object of debate (14). Our group has
previously demonstrated that a lard-based obesogenic high-fat diet
(HFD) promotes alterations of one-carbon metabolism [i.e., s-
adenosylhomocysteine (SAH) levels] in prostate intraepithelial neo-
plasia (PIN), precursor of invasive adenocarcinoma (IA). Increased
SAH was associated with the demethylation of the H4K20 histone
mark and amplification of a c-MYC transcriptional program, suggest-
ing obesogenic HFD-mediated reprogramming of the metabolic/epi-
genetic axis at an early stage in the disease process (15). The oncogene
c-MYC (MYC) is overexpressed and amplified in many human
malignancies, including prostate cancer (16). MYC still remains a
challenging target, calling for a better understanding of druggable
metabolic vulnerabilities driven by MYC (17). In the Hi-MYC trans-
genic model, at 24 weeks, MYC consistently drives the transition from
PIN to IA, which faithfully resembles the human disease (18). Here, we
leveraged the Hi-MYC model to investigate the underpinning
mechanisms that foster late prostate cancer progression under a
prolonged exposure to obesogenic HFD. Integrating digital pathology,
transcriptomics, metabolomics, and computational analyses, our
study uncovers a concerted cooperation between obesogenic HFD
and MYC genetic drive to remodel the TME, promote immunosur-
veillance escape, and sustain prostate cancer progression through a
metabolic switch toward glycolysis and accumulation of the oncome-
tabolite lactate.

Materials and Methods
Cell lines and reagents

MYC-CaP cells were authenticated and purchased from the ATCC
(#CRL-3255, RRID:CVCL_J703). Method of authentication at the
ATCC is STR profiling. Cells were used at early passages (p3-p8) and
kept in culture longer for migration experiments (p18-p24). Immor-
talized HUVEC/TERT2 (#CHT-006–0008, RRID:CVCL_9Q53) cells
were authenticated and purchased from Evercyte GmbH. Method of

authentication at Evercyte GmbH is STR profiling. Cells tested neg-
ative forMycoplasma during the entire study (MycoAlertMycoplasma
Detection Kit, Lonza, #LT07–418). MYC-CaP cells were grown in
DMEM high-glucose (Gibco, #11965118 or Euroclone, #ECM0728L,
#ECB7501L) with 10% FBS (Gibco, #10270106), 100 U/mL penicillin,
and 0.1 mg/mL streptomycin (Gibco, #15140122 or Euroclone,
#ECB300ID), 4 mmol/L glutamine (Gibco, #25030081 or Euroclone,
#ECB3000D). DMEM low-glucose (Euroclone, #ECM0749L) or XF
DMEM pH 7.4 (Agilent Technologies, #103575–100) were used for
selected experiments, as indicated. Physiological medium was defined
as XF DMEM pH 7.4 with addition of 5 mmol/L glucose, 0.5 mmol/L
glutamine, and 150 mmol/L pyruvate. HUVEC cells were grown
according to supplier instructions in 10% FBS EBM basal medium
(Lonza, #CC-3156) with selected supplements (BBE, HEGF, hydro-
cortisone solution, and ascorbic acid solution) from EGM SingleQuot
Kit (Lonza, #CC-4133) and 20 mg/mL Geneticin (Gibco, #10131–019).
A protein lysate fromHeLa cells (purchased at ATCC, #CCL-2, RRID:
CVCL_0030) was used as positive control for western blotting
experiments. HeLa cells were grown in standard conditions [DMEM
high-glucose (Euroclone, #ECB7501L) supplemented with 10%
FBS (Euroclone, #ECS 0180L), 4 mmol/L L-glutamine (Euroclone,
#ECB3000D), 100 U/mL penicillin/0.1 mg/mL streptomycin (Euro-
clone, #ECB300ID). Lactate (Sigma-Aldrich, #L-7022), lactate dehy-
drogenase (LDHA) inhibitor FX11 (Calbiochem, #EMD 427218), and
monocarboxylate transporters 1 and 4 (MCT-1/MCT-4) dual inhib-
itor syrosingopine (Sigma-Aldrich, #SML1908) were diluted in PBS
and DMSO, respectively.

Preclinical models and in vivo imaging
Hi-MYC mice (FVB-Tg(ARR2/Pbsn-MYC)7Key/Nci, strain num-

ber 01XK8, RRID:IMSR_NCIMR:01XK8), expressing the human c-
MYC transgene in prostatic epithelium (18), were obtained from the
National Cancer Institute Mouse Repository at Frederick National
Laboratory for Cancer Research and housed at the Dana-Farber
Cancer Institute (DFCI) Animal Resources Facility. Upon weaning
(3 weeks of age), heterozygous male mice and their wild-type litter-
mates (WT) were fed a purified control diet (CTD; 10% fat, Harlan
Laboratories, TD.130838) or an HFD (60% fat, Harlan Laboratories,
#TD.06414) for 21 weeks as described previously (15). The two diets
were carefully designed to modulate caloric intake from fat while
keeping caloric intake from protein constant. Food was changed on a
weekly basis. Mice were weighed every three weeks and before
euthanasia. Animals were kept on a 12-hour light/dark cycle and
allowed free access to food and water. Mice were euthanized by CO2,
followed by cervical dislocation. Blood was collected by cardiac
puncture; serumwas obtained using serum-separating tubes (Sarstedt,
#41.1378.005) and stored at �80�C. Upon collection, urogenital
apparatus and liver tissues were fixed in 10% formalin (Sakura,
#5993) and embedded in paraffin. Alternatively, prostate lobes (ante-
rior, AP; ventral, VP; dorsolateral, DLP) were dissected under a
stereomicroscope, weighed, and flash-frozen in liquid nitrogen. Serum
and tissues were harvested in the morning to minimize inter-sample
and circadian rhythm variability. 2-deoxy-2-[18F] fluoro-D-glucose
(18F-FDG) in vivo imaging was performed in MYC-CaP allografts
from FVB mice fed an HFD or CTD (n ¼ 9/diet; imaged ¼ 5/diet)
using a dedicated small animal scanner (InveonMultimodality System,
Siemens Medical Solutions USA, Inc.). Briefly, eighteen 3-week-old
FVBmalemice were bought from theCharles River Laboratories.Mice
were weighted and randomly assigned to CTD or HFD, monitored
daily, and weighted once/week. Researchers were not blind to diet
conditions. After 34 days, mice were injected with Mycoplasma-free
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MYC-CaP cells p3 (1�106 in PBS: Matrigel, 1:1). Tumor formation
and mouse weight were monitored weekly. Three weeks later, 5
mice/group were selected for in vivo imaging (tumor volume >100
mm3 measured by caliper). 2-deoxy-2-[18F] fluoro-D-glucose
(18F-FDG) PET imaging was carried out on a dedicated small animal
scanner (Inveon Multimodality System, Siemens Medical Solutions
USA, Inc.). One hour before radiotracer administration, mice were
warmed on Gaymar circulating warm water heating pads to reduce
brown fat uptake and anesthetized through sevoflurane/air inhalation.
Mice were injected with a bolus intravenous injection (through the
lateral tail vein) of approximately 7.4 MBq of 18F-FDG (PETNet
SolutionsA) and remained under anesthesia throughout the 60 min-
utes uptake period. Mice were subsequently placed into the scanner.
Static PET emission scans were acquired in list-mode format over 10
minutes and corrected for decay and dead time. A low-dose CT scans
was then acquired (80 kVp, 0.5 mA) for anatomical reference and to
provide guidance for the delineation of selected tissue volume of
interest (VOI). Acquired data were then sorted into 0.5-mm sinogram
bins and 1-time frame for image reconstruction using FORE/3D-
OSEM-MAP image reconstruction. Reconstructed PET/CT images
were analyzed with the Siemens Inveon ResearchWorkplace software.
Radioactivity retention within the selected VOI was obtained from
mean voxel intensity values within the VOI and then converted to
megabecquerels per milliliter using the calibration factor determined
for the Inveon PET System. These values were then divided by the
administered activity dose and mouse body weight to obtain an image
VOI-derived standardized uptake value (SUV). Both mean and max-
imum SUV value (SUVmean and SUVmax) within a VOI were used as
quantitative imaging metrics. One mouse form HFD group was
removed from the analysis due to non-suitable tumor volume for
PET imaging, revealed by CT. Imaging was performed at the Lurie
Family Imaging Center, DFCI. Animal studies were reviewed and
approved by the DFCI Institutial Care and Use Committee (IACUC;
approved protocols #13–049; #08–023), and were in accordance with
the Animal Welfare Act and ARRIVE guidelines. Sample size for PET
imaging, metabolomics, and RNA-sequencing (RNA-seq) experi-
ments was determined on the basis of our and other previous pub-
lications in line with conventional recommendations (15, 19).

IHC
Paraffin-embedded murine tissues were sectioned into 5-mm slices,

deparaffinized, rehydrated, and stained with hematoxylin and eosin
(H&E). Consecutive sections of prostatic tissues were stained with
anti–Ki-67 mAb (Vector Laboratories, # VP-RM04, RRID:
AB_2336545, dilution 1:250, Bond III staining platform), anti-
smooth muscle a-actin mAb (Cell Signaling Technology, CST;
#19245, clone: D4K9N, RRID:AB_2734735, dilution 1:500, Bond
Polymer Refine Kit in Leica Bond RX system) or anti-FOXP3 mAb
(R&DSystems, #MAB8214, clone:1054C, RRID:AB_2929004, dilution
1:100, Ventana BenchMark ULTRA system), following manufacturer
instructions. Ki-67 staining and analysis was performed as described
in ref. 15. The percentage of Ki-67þ cells was determined by a board-
certified MD Pathologist (F.G.) by counting the tumor cells that are
positive for nuclear Ki-67 as a function of the total number of tumor
cells in ten high-power fields. For F4/80 and CD260 dual IHC staining,
tissue sections were first incubated with anti-F4/80 mAb (CST,
#70076S, RRID:AB_2799771, dilution 1:300) followed by incubation
with the Discovery OmniMap anti-Rb-HRP secondary antibody
(Roche, #760–4311, RRID:AB_2811043) and signal detection with
Discovery Teal HRP detection Kit (Roche, #760–247). Following
antibodies denaturation, sections were re-incubated with anti-CD206

(CST, #24595, RRID:AB_2892682, dilution: 1:4,000). Second signal
was detected with Discovery Yellow detection kit (Roche, #760–250).
Slides were then counterstainedwith hematoxylin, dehydrated, cleared
and coverslipped. F4/80þ CD206þ cells were counted using the open-
source software QuPath (RRID:SCR_018257, version 0.4.4) by a
board-certified MD Pathologist (P.C.). Pathologists were blind to
diet/genotype conditions. For all tissue slides, images were acquired
using Aperio (Leica) or Perkin Elmer Vectra 3 (PerkinElmer, Inc.) or
Nano Zoomer-XR (Hamamatsu) image scanner systems. Sample size
was calculated with the software G�power version 3.1 (RRID:
SCR_013726). On the basis of Blando and colleagues (20), we deter-
mined that 20–25 mice/group were adequate to detect a significant
difference in IA incidence with an effect size of about 0.4, a-error of
0.05, and power of 0.80.

Imaging analysis
For the definition of PIN percentage and invasive areas, imaging

analysis was carried out on H&E-stained slides with the support of the
HALO software (licensed, Indica Labs). A board-certified MD pathol-
ogist (P. Chetta), blinded to experimental conditions, manually seg-
mented each scanned tissue slide into AP, VP, and DLP annotation
layers. A separate annotation layer was drawn for IA whenever
applicable. Similar to Gertych and colleagues (21), random forests-
based classification systems were trained to identify atypical epithe-
lium, benign epithelium, stroma, glandular lumen, and background.
IA layers were digitally classified into adenocarcinoma, stroma, and
background. The atypical epithelium category served as a morpho-
logical surrogate for a diagnosis of PIN. The output of each digital
classification was carefully reviewed by P. Chetta and edited as
necessary. The surface area for each tissue category/annotation layer
was digitally quantified. The Fisher exact test was used to determine the
association betweenHFD and invasive phenotype. FOXP3was used as
a marker of regulatory T (Treg) cells. Briefly, a cell detection algorithm
was trained to detect DAB-positive cells with nuclear area between 20
and 220 mm2 and minimal roundness of 0.702 to enrich for lympho-
cytes and exclude stellate, spindle, and epithelial cells. FOXP3þ

lymphocytes were quantified in the DLP stroma as number of cells
per unit area. The Mann–Whitney U test was used to determine
differences in FOXP3þ lymphocytes density in DLP stroma tissue
sections from MYC mice fed an HFD or CTD.

Duplex ISH
The RNAscope 2.5 HD Duplex Chromogenic Assay was performed

using the unique and validated RNAscope probes for Mm-Adgre 1
(ACD, #460651, lot: 23130B) and Mm-Cd274-C2 (ACD, #420501-C2,
lot: 23130D), RNAscope 2.5HDDuplexDetectionKit (ACD, #322430),
and the HybEZ Hybridization System. Sample preparation (i.e., depar-
affination, antigen retrieval, etc.) and assay were carefully performed as
described by the manufacturer. Cells were counterstained using 50%
hematoxylin-staining solution (Gill’s hematoxylin I, Sigma-Aldrich,
#GHS132) and 0.02% ammonia water for bluing step. Slides were
mounted using the VectaMount mounting medium (Vector laborato-
ries, #H-5000). Double-positive cells were counted in an area of
0.76 mm2 by a board-certifiedMD Pathologist (P. Chetta). The Pathol-
ogist was blind to diet/genotype conditions. Images had been acquired
using the Nano Zoomer-SQ image scanner system (Hamamatsu).

Metabolic profiling
Metabolic profiling in serum and DLP tissues was performed by

LC/MS using Metabolon Inc. platform, similarly to Labb�e and collea-
gues (15) and as briefly described.
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may soon overtake smoking in the ranking of preventable cancer risk
factors (2). Understanding of the molecular mechanisms linking the
consumption of unhealthy diets and/or obesity to cancer incidence/
progression has therefore become a priority (3). Experimental and
clinical studies have endorsed caloric restriction and weight manage-
ment as strategies to reduce cancer advancement and improve treat-
ment outcomes (4, 5). Because caloric restriction regimens may not be
sustainable in the long run, intermittent fasting–mimicking diets are
currently under investigationwith promising results in the clinic (6, 7).
Still, new approaches of precision nutrition and/or ad hoc pharma-
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Detection Kit, Lonza, #LT07–418). MYC-CaP cells were grown in
DMEM high-glucose (Gibco, #11965118 or Euroclone, #ECM0728L,
#ECB7501L) with 10% FBS (Gibco, #10270106), 100 U/mL penicillin,
and 0.1 mg/mL streptomycin (Gibco, #15140122 or Euroclone,
#ECB300ID), 4 mmol/L glutamine (Gibco, #25030081 or Euroclone,
#ECB3000D). DMEM low-glucose (Euroclone, #ECM0749L) or XF
DMEM pH 7.4 (Agilent Technologies, #103575–100) were used for
selected experiments, as indicated. Physiological medium was defined
as XF DMEM pH 7.4 with addition of 5 mmol/L glucose, 0.5 mmol/L
glutamine, and 150 mmol/L pyruvate. HUVEC cells were grown
according to supplier instructions in 10% FBS EBM basal medium
(Lonza, #CC-3156) with selected supplements (BBE, HEGF, hydro-
cortisone solution, and ascorbic acid solution) from EGM SingleQuot
Kit (Lonza, #CC-4133) and 20 mg/mL Geneticin (Gibco, #10131–019).
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itor syrosingopine (Sigma-Aldrich, #SML1908) were diluted in PBS
and DMSO, respectively.
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ber 01XK8, RRID:IMSR_NCIMR:01XK8), expressing the human c-
MYC transgene in prostatic epithelium (18), were obtained from the
National Cancer Institute Mouse Repository at Frederick National
Laboratory for Cancer Research and housed at the Dana-Farber
Cancer Institute (DFCI) Animal Resources Facility. Upon weaning
(3 weeks of age), heterozygous male mice and their wild-type litter-
mates (WT) were fed a purified control diet (CTD; 10% fat, Harlan
Laboratories, TD.130838) or an HFD (60% fat, Harlan Laboratories,
#TD.06414) for 21 weeks as described previously (15). The two diets
were carefully designed to modulate caloric intake from fat while
keeping caloric intake from protein constant. Food was changed on a
weekly basis. Mice were weighed every three weeks and before
euthanasia. Animals were kept on a 12-hour light/dark cycle and
allowed free access to food and water. Mice were euthanized by CO2,
followed by cervical dislocation. Blood was collected by cardiac
puncture; serumwas obtained using serum-separating tubes (Sarstedt,
#41.1378.005) and stored at �80�C. Upon collection, urogenital
apparatus and liver tissues were fixed in 10% formalin (Sakura,
#5993) and embedded in paraffin. Alternatively, prostate lobes (ante-
rior, AP; ventral, VP; dorsolateral, DLP) were dissected under a
stereomicroscope, weighed, and flash-frozen in liquid nitrogen. Serum
and tissues were harvested in the morning to minimize inter-sample
and circadian rhythm variability. 2-deoxy-2-[18F] fluoro-D-glucose
(18F-FDG) in vivo imaging was performed in MYC-CaP allografts
from FVB mice fed an HFD or CTD (n ¼ 9/diet; imaged ¼ 5/diet)
using a dedicated small animal scanner (InveonMultimodality System,
Siemens Medical Solutions USA, Inc.). Briefly, eighteen 3-week-old
FVBmalemice were bought from theCharles River Laboratories.Mice
were weighted and randomly assigned to CTD or HFD, monitored
daily, and weighted once/week. Researchers were not blind to diet
conditions. After 34 days, mice were injected with Mycoplasma-free
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MYC-CaP cells p3 (1�106 in PBS: Matrigel, 1:1). Tumor formation
and mouse weight were monitored weekly. Three weeks later, 5
mice/group were selected for in vivo imaging (tumor volume >100
mm3 measured by caliper). 2-deoxy-2-[18F] fluoro-D-glucose
(18F-FDG) PET imaging was carried out on a dedicated small animal
scanner (Inveon Multimodality System, Siemens Medical Solutions
USA, Inc.). One hour before radiotracer administration, mice were
warmed on Gaymar circulating warm water heating pads to reduce
brown fat uptake and anesthetized through sevoflurane/air inhalation.
Mice were injected with a bolus intravenous injection (through the
lateral tail vein) of approximately 7.4 MBq of 18F-FDG (PETNet
SolutionsA) and remained under anesthesia throughout the 60 min-
utes uptake period. Mice were subsequently placed into the scanner.
Static PET emission scans were acquired in list-mode format over 10
minutes and corrected for decay and dead time. A low-dose CT scans
was then acquired (80 kVp, 0.5 mA) for anatomical reference and to
provide guidance for the delineation of selected tissue volume of
interest (VOI). Acquired data were then sorted into 0.5-mm sinogram
bins and 1-time frame for image reconstruction using FORE/3D-
OSEM-MAP image reconstruction. Reconstructed PET/CT images
were analyzed with the Siemens Inveon ResearchWorkplace software.
Radioactivity retention within the selected VOI was obtained from
mean voxel intensity values within the VOI and then converted to
megabecquerels per milliliter using the calibration factor determined
for the Inveon PET System. These values were then divided by the
administered activity dose and mouse body weight to obtain an image
VOI-derived standardized uptake value (SUV). Both mean and max-
imum SUV value (SUVmean and SUVmax) within a VOI were used as
quantitative imaging metrics. One mouse form HFD group was
removed from the analysis due to non-suitable tumor volume for
PET imaging, revealed by CT. Imaging was performed at the Lurie
Family Imaging Center, DFCI. Animal studies were reviewed and
approved by the DFCI Institutial Care and Use Committee (IACUC;
approved protocols #13–049; #08–023), and were in accordance with
the Animal Welfare Act and ARRIVE guidelines. Sample size for PET
imaging, metabolomics, and RNA-sequencing (RNA-seq) experi-
ments was determined on the basis of our and other previous pub-
lications in line with conventional recommendations (15, 19).

IHC
Paraffin-embedded murine tissues were sectioned into 5-mm slices,

deparaffinized, rehydrated, and stained with hematoxylin and eosin
(H&E). Consecutive sections of prostatic tissues were stained with
anti–Ki-67 mAb (Vector Laboratories, # VP-RM04, RRID:
AB_2336545, dilution 1:250, Bond III staining platform), anti-
smooth muscle a-actin mAb (Cell Signaling Technology, CST;
#19245, clone: D4K9N, RRID:AB_2734735, dilution 1:500, Bond
Polymer Refine Kit in Leica Bond RX system) or anti-FOXP3 mAb
(R&DSystems, #MAB8214, clone:1054C, RRID:AB_2929004, dilution
1:100, Ventana BenchMark ULTRA system), following manufacturer
instructions. Ki-67 staining and analysis was performed as described
in ref. 15. The percentage of Ki-67þ cells was determined by a board-
certified MD Pathologist (F.G.) by counting the tumor cells that are
positive for nuclear Ki-67 as a function of the total number of tumor
cells in ten high-power fields. For F4/80 and CD260 dual IHC staining,
tissue sections were first incubated with anti-F4/80 mAb (CST,
#70076S, RRID:AB_2799771, dilution 1:300) followed by incubation
with the Discovery OmniMap anti-Rb-HRP secondary antibody
(Roche, #760–4311, RRID:AB_2811043) and signal detection with
Discovery Teal HRP detection Kit (Roche, #760–247). Following
antibodies denaturation, sections were re-incubated with anti-CD206

(CST, #24595, RRID:AB_2892682, dilution: 1:4,000). Second signal
was detected with Discovery Yellow detection kit (Roche, #760–250).
Slides were then counterstainedwith hematoxylin, dehydrated, cleared
and coverslipped. F4/80þ CD206þ cells were counted using the open-
source software QuPath (RRID:SCR_018257, version 0.4.4) by a
board-certified MD Pathologist (P.C.). Pathologists were blind to
diet/genotype conditions. For all tissue slides, images were acquired
using Aperio (Leica) or Perkin Elmer Vectra 3 (PerkinElmer, Inc.) or
Nano Zoomer-XR (Hamamatsu) image scanner systems. Sample size
was calculated with the software G�power version 3.1 (RRID:
SCR_013726). On the basis of Blando and colleagues (20), we deter-
mined that 20–25 mice/group were adequate to detect a significant
difference in IA incidence with an effect size of about 0.4, a-error of
0.05, and power of 0.80.

Imaging analysis
For the definition of PIN percentage and invasive areas, imaging

analysis was carried out on H&E-stained slides with the support of the
HALO software (licensed, Indica Labs). A board-certified MD pathol-
ogist (P. Chetta), blinded to experimental conditions, manually seg-
mented each scanned tissue slide into AP, VP, and DLP annotation
layers. A separate annotation layer was drawn for IA whenever
applicable. Similar to Gertych and colleagues (21), random forests-
based classification systems were trained to identify atypical epithe-
lium, benign epithelium, stroma, glandular lumen, and background.
IA layers were digitally classified into adenocarcinoma, stroma, and
background. The atypical epithelium category served as a morpho-
logical surrogate for a diagnosis of PIN. The output of each digital
classification was carefully reviewed by P. Chetta and edited as
necessary. The surface area for each tissue category/annotation layer
was digitally quantified. The Fisher exact test was used to determine the
association betweenHFD and invasive phenotype. FOXP3was used as
a marker of regulatory T (Treg) cells. Briefly, a cell detection algorithm
was trained to detect DAB-positive cells with nuclear area between 20
and 220 mm2 and minimal roundness of 0.702 to enrich for lympho-
cytes and exclude stellate, spindle, and epithelial cells. FOXP3þ

lymphocytes were quantified in the DLP stroma as number of cells
per unit area. The Mann–Whitney U test was used to determine
differences in FOXP3þ lymphocytes density in DLP stroma tissue
sections from MYC mice fed an HFD or CTD.

Duplex ISH
The RNAscope 2.5 HD Duplex Chromogenic Assay was performed

using the unique and validated RNAscope probes for Mm-Adgre 1
(ACD, #460651, lot: 23130B) and Mm-Cd274-C2 (ACD, #420501-C2,
lot: 23130D), RNAscope 2.5HDDuplexDetectionKit (ACD, #322430),
and the HybEZ Hybridization System. Sample preparation (i.e., depar-
affination, antigen retrieval, etc.) and assay were carefully performed as
described by the manufacturer. Cells were counterstained using 50%
hematoxylin-staining solution (Gill’s hematoxylin I, Sigma-Aldrich,
#GHS132) and 0.02% ammonia water for bluing step. Slides were
mounted using the VectaMount mounting medium (Vector laborato-
ries, #H-5000). Double-positive cells were counted in an area of
0.76 mm2 by a board-certifiedMD Pathologist (P. Chetta). The Pathol-
ogist was blind to diet/genotype conditions. Images had been acquired
using the Nano Zoomer-SQ image scanner system (Hamamatsu).

Metabolic profiling
Metabolic profiling in serum and DLP tissues was performed by

LC/MS using Metabolon Inc. platform, similarly to Labb�e and collea-
gues (15) and as briefly described.
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Sample preparation
Biological samples were stored at �80�C and thawed on ice before

extraction. Each sample was assigned a unique identifier using the
Laboratory Information Management System (LIMS) to track all
sample handling, tasks, and results. Tissue samples were weighed on
a 4-position analytical scale (1/10th mg) and then soaked overnight in
80% methanol/20% deionized water with recovery standards at a
60mL/1mg ratio. Four recovery standards (DL-2-fluorophenylglycine,
tridecanoic acid, d6-cholesterol and 4-chlorophenylalanine) were
included in the methanol solution to assess metabolite extraction
efficiency. For serum, 100 mL of sample was extracted with 500 mL
of methanol containing the recovery standards. To remove proteins,
dissociate small molecules bound to proteins or trapped in the
precipitated protein matrix, and to recover chemically diverse meta-
bolites, proteins were precipitated with methanol under vigorous
shaking for 2 minutes (Glen Mills GenoGrinder 2000), followed by
centrifugation. The resulting extract was divided in five fractions: two
aliquots were used for two separate reverse phase (RP)/ultra-
performance liquid chromatography/MS-MS (UPLC/MS-MS) meth-
ods with positive ion mode electrospray ionization (ESI), one aliquot
was used for RP/UPLC/MS-MS with negative ion mode ESI, one
aliquot was used for hydrophilic interaction LC/MS-MS (HILI-
C/UPLC/MS-MS with negative ion mode ESI), and one final aliquot
was reserved for backup.

UPLC method
Weused aWaters ACQUITYUPLC, and aThermo Fisher Scientific

Q-Exactive high resolution/accurate mass spectrometer interfaced
with a heated electrospray ionization (HESI-II) source and Orbitrap
mass analyzer operated at 35,000 mass resolution. Sample extracts
were dried and then reconstituted in solvents compatible with each of
the four analyses. Each solvent contained a series of standards at fixed
concentrations to ensure injection and chromatographic consistency.
One aliquot was analyzed using acidic positive ion conditions, chro-
matographically optimized for more hydrophilic compounds. The
extract was gradient eluted from a C18 column (Waters UPLC BEH
C18–2.1�100 mm, 1.7 mm) using water and methanol, containing
0.05%perfluoropentanoic acid (PFPA) and 0.1% formic acid. A second
aliquot was also analyzed using acidic positive ion conditions, but
chromatographically optimized for more hydrophobic compounds.
The extract was gradient eluted from the C18 column using methanol,
acetonitrile, water, 0.05% PFPA and 0.01% formic acid and was
operated at an overall higher organic content. The third aliquot was
analyzed using basic negative ion optimized conditions and a separate
dedicated C18 column. The basic extracts were gradient eluted from
the column using methanol, water, and 6.5 mmol/L ammonium
bicarbonate, pH 8. The fourth aliquot was analyzed via negative
ionization following elution from a HILIC column (Waters UPLC
BEHAmide 2.1�150mm, 1.7mm) using a gradient consisting of water
and acetonitrile with 10 mmol/L ammonium formate, pH 10.8. The
MS analysis alternated between MS and data-dependent MSn scans
using dynamic exclusion. The scan range varied slighted between
methods but covered 70–1,000m/z with a scan speed of approximately
9 scans per second (alternating between MS and MS-MS scans). Mass
calibration was performed as needed to maintain <5 ppm mass error
for all standards monitored.

QA/QC
Several controls were analyzed together with experimental samples:

(i) a pooled matrix sample, generated by combining 20 ml of each
experimental sample (i.e., prostate or serum), was injected six times for

each dataset and served as a technical replicate to assess process
variability; (ii) five water aliquots were extracted and analyzed to serve
as blank for artifact determination; (iii) a cocktail of internal standards,
carefully chosen to not interfere with the measurement of endogenous
compounds, was spiked into every analyzed sample to monitor
instrument performance and was also used as a retention marker for
chromatographic alignment (LCNeg: D7-glucose, d3-methionine, d3-
leucine, d8-phenylalanine, d5-tryptophan, bromophenylalanine, d15-
octanoic acid, d19-decanoic acid, d27-tretadecanoic acid, d35-octa-
decanoic acid, d2-eicosanoic acid; LC HILIC: D35-octadecanoic acid,
d5-indole acetic acid, bromophenylalanine, d5-tryptophan, d4-tryr-
osine, d3-serine, d3-aspartic acid, d7-ornithine, d4-lysine; LC Pos: D7-
glucose, d3-methionine, d3-leucine, d8-phenylalanine, d5-trypto-
phan, bromophenylalanine, d4-tryrosine, d5-indole acetic acid, d5-
hippuric acid, amitriptyline, d9-progesterone, d4-dioctylphthalate).

Instrument variability was determined by calculating the median
relative standard deviation (RSD) for the standards that were added to
each sample before injection into the mass spectrometer. The QCed
data were automatically organized into curated metabolic pathways
and piped into a secure, cloud-based digital environment for further
analysis using custom-built bioinformatics tools, providing detailed
pathway annotation based on integration of literature and institutional
knowledge. For QA/QC, pooled QC plasma replicates from study
samples was used to determine endogenous biochemical variability by
calculating the median RSD for all endogenous metabolites (i.e., non-
instrument standards) present in 100% of the pooled matrix samples,
with representative RSD¼ 10% across all biochemicals. Experimental
samples were randomized across the platform run with QC samples
spaced to avoid batch effects.

Data extraction, compound identification, and quantification
Metabolon has developed a chemocentric approach for peak detec-

tion and integration. The data output is a list of m/z ratios, retention
indices (RI) and AUC values, as previously described (22). User
specified criteria for peak detection included threshold for signal to
noise ratio, area, and width. RSDs of peak area were determined for
each internal and recovery standard to confirm extraction efficiency,
instrument performance, column integrity, chromatography, and
mass calibration. The biological datasets, including QC samples, were
chromatographically aligned on the basis of a retention index that used
internal standards assigned afixedRI value. TheRI of the experimental
peak was determined by assuming a linear fit between flanking RI
markers whose RI values are set. Peaks were matched against an in-
house library of authentic standards and routinely detected unknown
compounds specific to the respective method. More than 5,200
commercially available purified standard compounds have been
acquired and registered into LIMS for analysis on all platforms for
determination of their analytic characteristics. Compound identifica-
tion was based on RI values, experimental precursormassmatch to the
library authentic standard within 10 ppm, and quality of MS-MS
match. Compound identification was then manually reviewed, and
hand curated by an analyst who approved or rejected each identifi-
cation on the basis of the criteria above. Additional mass spectral
entries have been created for structurally unnamed biochemicals,
which have been identified by virtue of their recurrent nature (both
chromatographic and mass spectral). Peaks were quantified using
AUC.

Data processing
Each metabolite was scaled on the median. Only metabolites with

less than one third ofmissing values in at least two groupswere kept for
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statistical analysis. In each group (six replicates), a missing metabolite
was imputed with 0 when absent in at least four replicates, otherwise
the metabolite was imputed using the k-nearest neighbor (kNN)
algorithm with k ¼ 5.

Data analysis
Principal component analysis (PCA) was used to visualize the

metabolomic data. Two-way ANOVA was used to identify metabolic
changes induced byMYC-independent of diet. TheUnpaired t test was
used for two-group comparison. Benjamini–Hochberg-based FDR
was calculated to correct formultiple comparisons.Metabolite changes
were considered for further investigation/validation if P value was
<0.05 and FDR <0.15, consistent with our previous work (15). Data
processing and analysis were performed in R. Heat map was generated
using Morpheus by Broad Institute (RRID:SCR_017386; https://soft
ware.broadinstitute.org/morpheus/).

Metabolic assays and lactate measurements
Serum levels of IGF-1, metabolic hormones, and adipokines were

measured using the Mouse IGF-1 Single Plex array (MIGF1–01–101)
and theMouse, RatMetabolic Array (MRDMET) at Eve Technologies.
Lactate levels in DLP and serum were assessed using nuclear magnetic
resonance (NMR) spectroscopy and colorimetric assays, respectively.
For the NMR analyses, polar metabolites were extracted from DLP
tissues with standard procedures, before performing NMR spectros-
copy. Briefly:

Metabolite extraction
Intact frozen DLP tissues were carefully weighted and transferred

into a glass vial (borosilicate clear glass with black phenolic cap,
Fisherbrand). Polar metabolites were extracted following these
steps: (i) addition of ice-cold methanol (14 mL/g) and pure water
(3 mL/g) to the tissue sample; (ii) sonication-based tissue homog-
enization (Misonix Microson Ultrasonic cell Disruptor XL2000);
(iii) addition of ice-cold chloroform (14 mL/g) followed by thor-
ough vortexing; (iv) final addition of pure water (7 mL/g), followed
by vortexing, incubation on ice (15 minutes), centrifugation (15
minutes at 1,000 � g), and collection of the methanol/water phase
containing polar metabolites; (vi) evaporation of polar solvents with
the SpeedVac vacuum concentrator (Concentrator plus/Vacufuge
plus, Eppendorf). To avoid phases contamination, the polar phase
was not entirely collected. This was accounted for in the final
calculation of lactate concentration. Finally, polar metabolites were
resuspended in 520 mL NMR buffer [containing 150 mmol/L sodi-
um phosphate at pH 7.4 in D2O, and 0.1% w/w trimethylsilylpro-
panoic acid (TSP) as chemical shift reference (d ¼ 0 ppm)],
vortexed, and centrifuged at 12,000 � g for 5 minutes. Supernatant
(500 mL) was then transferred into NMR tube.

NMR spectroscopy
One-dimensional proton (1H)-NMR spectra were recorded at

300 K on a Bruker AVANCE III 500 spectrometer equipped with a
5-mm inverse triple resonance 1H/13C/15N TXI probe and x, y, z
gradient coils. A nuclear Overhauser effect spectroscopy (NOESY)
experiment was acquired using the NOESY-presat pulse sequence
(noesygppr1d) where water suppression is performed through
presaturation. The relaxation delay was set to 4s, the mixing time
to 10 ms, the acquisition time to 2.7s, and the spectral window to
20 ppm. 512 transients were acquired with 54518 data points.
Transformed spectra were corrected for phase and baseline distor-
tions using Topspin 3.6 (Bruker BioSpin) and calibrated to the

signal of sodium TSP at 0.00 ppm. The signal of lactate at 1.33 ppm
(doublet) and TSP at 0.00 ppm were fitted by combining a local
baseline and Voigt functions based on the multiplicity of the NMR
signal (23). Lactate concentration was calculated according to the
equation described in ref. 24.

Metabolic assays
Serum lactate was measured with the BioVision colorimetric assay

kit (#K607–100), following the manufacturer’s instructions.
Glycolytic proton efflux rate (GlycoPER) in MYC-CaP cells was

measured with the Seahorse XFe24 analyzer (Agilent Technologies),
following the manufacturer’s instructions with some modifications.
Briefly, MYC-CaP cells were plated in 24-well Seahorse plate (20,000
cells/well) for 24 hours in DMEM low glucose (1g/L, Euroclone
ECM0749L) supplemented with 10% FBS, 4 mmol/L glutamine, and
antibiotics. One hour before assay, medium was changed to Seahorse
medium (Agilent Technologies 103575–100 with the addition of
5 mmol/L glucose, 1 mmol/L pyruvate, 2 mmol/L glutamine). Cells
were incubated without CO2 for 1 hour at 37�C. Medium was then
again replaced before analysis with the Seahorse XFe24 analyzer. Assay
was performed using the standard protocol, adjusting the measure-
ments as following: 3 basal measurements (8 min each: 3 min mix,
2 min wait, 3 min measure), 8 measurements after injection with 5%
(final concentration/well) of HFD or CTD serum (8 min each: 3 min
mix, 2 min wait, 3 min measure), 3 measurements after injection with
0.5 mmol/L (final concentration/well) of rotenone/antimycin A (8 min
each: 3minmix, 2minwait, 3minmeasure), and 5measurements after
injection with 50 mmol/L (final concentration/well) of 2-DG (8 min
each: 3 min mix, 2 min wait, 3 min measure). PER, glycoPER, basal
glycolysis, basal PER, compensatory glycolysis, and after 2-DG acid-
ification were calculated. GlycoPER was normalized to protein con-
tent/sample. Proteins were measured using Micro BCA Protein Assay
Kit (Thermo Fisher Scientific, #23235).

Bulk RNA-seq and gene set enrichment analysis
Frozen DLP lobes were pulverized using a Cryoprep Pulverizer

(Covaris). Total RNA was extracted with the RNeasy Plus MiniKit
(Qiagen, #73404). RNA-seq libraries were prepared from 50 ng of total
purified RNA using the KAPA Biosystems RNA HyperPrep Kit with
RiboErase (Roche, #08098140702). Before library preparation, RNA
quality was checked with the Agilent Bioanalyzer to calculate RIN score
andDV200.RNAsampleswith aRIN score>5were fragmented at 94�C
for 8 minutes according to the manufacturer’s recommendation. Those
with RIN <5 were fragmented at 85�C for 2 minutes. dsDNA libraries
were quantified by Qubit fluorometer, Agilent TapeStation 2200, and
RT-qPCR using the Kapa Biosystems library quantification kit (Roche,
#07960298001), according to the manufacturer’s protocols. Uniquely
indexed libraries were pooled in equimolar ratio and sequenced on an
Illumina NovaSeq 6000 with paired end 50 bp reads at the DFCI
Molecular Biology Core Facility. A countmatrix was estimated through
pseudo-alignment with salmon (25) using mm39 ensembl 104 tran-
scripts annotations, which were summarized at the gene level with the
tximport R/Bioconductor package. Low count genes (<5 CPM) were
filtered, and the remaining genes were normalized with the trimmed
mean of M values method (26). A generalized linear model approach
coupled with empirical Bayes moderation of standard errors and voom
precision weights was used to identify differentially expressed genes
between the selected contrasts (27, 28). Correction for multiple testing
was done with the Benjamini–Hochberg method. The results from
differential expression analysis were ranked by t-statistics. Ranked lists
were tested for gene set enrichment. Gene set enrichment analysis
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Sample preparation
Biological samples were stored at �80�C and thawed on ice before

extraction. Each sample was assigned a unique identifier using the
Laboratory Information Management System (LIMS) to track all
sample handling, tasks, and results. Tissue samples were weighed on
a 4-position analytical scale (1/10th mg) and then soaked overnight in
80% methanol/20% deionized water with recovery standards at a
60mL/1mg ratio. Four recovery standards (DL-2-fluorophenylglycine,
tridecanoic acid, d6-cholesterol and 4-chlorophenylalanine) were
included in the methanol solution to assess metabolite extraction
efficiency. For serum, 100 mL of sample was extracted with 500 mL
of methanol containing the recovery standards. To remove proteins,
dissociate small molecules bound to proteins or trapped in the
precipitated protein matrix, and to recover chemically diverse meta-
bolites, proteins were precipitated with methanol under vigorous
shaking for 2 minutes (Glen Mills GenoGrinder 2000), followed by
centrifugation. The resulting extract was divided in five fractions: two
aliquots were used for two separate reverse phase (RP)/ultra-
performance liquid chromatography/MS-MS (UPLC/MS-MS) meth-
ods with positive ion mode electrospray ionization (ESI), one aliquot
was used for RP/UPLC/MS-MS with negative ion mode ESI, one
aliquot was used for hydrophilic interaction LC/MS-MS (HILI-
C/UPLC/MS-MS with negative ion mode ESI), and one final aliquot
was reserved for backup.

UPLC method
Weused aWaters ACQUITYUPLC, and aThermo Fisher Scientific

Q-Exactive high resolution/accurate mass spectrometer interfaced
with a heated electrospray ionization (HESI-II) source and Orbitrap
mass analyzer operated at 35,000 mass resolution. Sample extracts
were dried and then reconstituted in solvents compatible with each of
the four analyses. Each solvent contained a series of standards at fixed
concentrations to ensure injection and chromatographic consistency.
One aliquot was analyzed using acidic positive ion conditions, chro-
matographically optimized for more hydrophilic compounds. The
extract was gradient eluted from a C18 column (Waters UPLC BEH
C18–2.1�100 mm, 1.7 mm) using water and methanol, containing
0.05%perfluoropentanoic acid (PFPA) and 0.1% formic acid. A second
aliquot was also analyzed using acidic positive ion conditions, but
chromatographically optimized for more hydrophobic compounds.
The extract was gradient eluted from the C18 column using methanol,
acetonitrile, water, 0.05% PFPA and 0.01% formic acid and was
operated at an overall higher organic content. The third aliquot was
analyzed using basic negative ion optimized conditions and a separate
dedicated C18 column. The basic extracts were gradient eluted from
the column using methanol, water, and 6.5 mmol/L ammonium
bicarbonate, pH 8. The fourth aliquot was analyzed via negative
ionization following elution from a HILIC column (Waters UPLC
BEHAmide 2.1�150mm, 1.7mm) using a gradient consisting of water
and acetonitrile with 10 mmol/L ammonium formate, pH 10.8. The
MS analysis alternated between MS and data-dependent MSn scans
using dynamic exclusion. The scan range varied slighted between
methods but covered 70–1,000m/z with a scan speed of approximately
9 scans per second (alternating between MS and MS-MS scans). Mass
calibration was performed as needed to maintain <5 ppm mass error
for all standards monitored.

QA/QC
Several controls were analyzed together with experimental samples:

(i) a pooled matrix sample, generated by combining 20 ml of each
experimental sample (i.e., prostate or serum), was injected six times for

each dataset and served as a technical replicate to assess process
variability; (ii) five water aliquots were extracted and analyzed to serve
as blank for artifact determination; (iii) a cocktail of internal standards,
carefully chosen to not interfere with the measurement of endogenous
compounds, was spiked into every analyzed sample to monitor
instrument performance and was also used as a retention marker for
chromatographic alignment (LCNeg: D7-glucose, d3-methionine, d3-
leucine, d8-phenylalanine, d5-tryptophan, bromophenylalanine, d15-
octanoic acid, d19-decanoic acid, d27-tretadecanoic acid, d35-octa-
decanoic acid, d2-eicosanoic acid; LC HILIC: D35-octadecanoic acid,
d5-indole acetic acid, bromophenylalanine, d5-tryptophan, d4-tryr-
osine, d3-serine, d3-aspartic acid, d7-ornithine, d4-lysine; LC Pos: D7-
glucose, d3-methionine, d3-leucine, d8-phenylalanine, d5-trypto-
phan, bromophenylalanine, d4-tryrosine, d5-indole acetic acid, d5-
hippuric acid, amitriptyline, d9-progesterone, d4-dioctylphthalate).

Instrument variability was determined by calculating the median
relative standard deviation (RSD) for the standards that were added to
each sample before injection into the mass spectrometer. The QCed
data were automatically organized into curated metabolic pathways
and piped into a secure, cloud-based digital environment for further
analysis using custom-built bioinformatics tools, providing detailed
pathway annotation based on integration of literature and institutional
knowledge. For QA/QC, pooled QC plasma replicates from study
samples was used to determine endogenous biochemical variability by
calculating the median RSD for all endogenous metabolites (i.e., non-
instrument standards) present in 100% of the pooled matrix samples,
with representative RSD¼ 10% across all biochemicals. Experimental
samples were randomized across the platform run with QC samples
spaced to avoid batch effects.

Data extraction, compound identification, and quantification
Metabolon has developed a chemocentric approach for peak detec-

tion and integration. The data output is a list of m/z ratios, retention
indices (RI) and AUC values, as previously described (22). User
specified criteria for peak detection included threshold for signal to
noise ratio, area, and width. RSDs of peak area were determined for
each internal and recovery standard to confirm extraction efficiency,
instrument performance, column integrity, chromatography, and
mass calibration. The biological datasets, including QC samples, were
chromatographically aligned on the basis of a retention index that used
internal standards assigned afixedRI value. TheRI of the experimental
peak was determined by assuming a linear fit between flanking RI
markers whose RI values are set. Peaks were matched against an in-
house library of authentic standards and routinely detected unknown
compounds specific to the respective method. More than 5,200
commercially available purified standard compounds have been
acquired and registered into LIMS for analysis on all platforms for
determination of their analytic characteristics. Compound identifica-
tion was based on RI values, experimental precursormassmatch to the
library authentic standard within 10 ppm, and quality of MS-MS
match. Compound identification was then manually reviewed, and
hand curated by an analyst who approved or rejected each identifi-
cation on the basis of the criteria above. Additional mass spectral
entries have been created for structurally unnamed biochemicals,
which have been identified by virtue of their recurrent nature (both
chromatographic and mass spectral). Peaks were quantified using
AUC.

Data processing
Each metabolite was scaled on the median. Only metabolites with

less than one third ofmissing values in at least two groupswere kept for
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statistical analysis. In each group (six replicates), a missing metabolite
was imputed with 0 when absent in at least four replicates, otherwise
the metabolite was imputed using the k-nearest neighbor (kNN)
algorithm with k ¼ 5.

Data analysis
Principal component analysis (PCA) was used to visualize the

metabolomic data. Two-way ANOVA was used to identify metabolic
changes induced byMYC-independent of diet. TheUnpaired t test was
used for two-group comparison. Benjamini–Hochberg-based FDR
was calculated to correct formultiple comparisons.Metabolite changes
were considered for further investigation/validation if P value was
<0.05 and FDR <0.15, consistent with our previous work (15). Data
processing and analysis were performed in R. Heat map was generated
using Morpheus by Broad Institute (RRID:SCR_017386; https://soft
ware.broadinstitute.org/morpheus/).

Metabolic assays and lactate measurements
Serum levels of IGF-1, metabolic hormones, and adipokines were

measured using the Mouse IGF-1 Single Plex array (MIGF1–01–101)
and theMouse, RatMetabolic Array (MRDMET) at Eve Technologies.
Lactate levels in DLP and serum were assessed using nuclear magnetic
resonance (NMR) spectroscopy and colorimetric assays, respectively.
For the NMR analyses, polar metabolites were extracted from DLP
tissues with standard procedures, before performing NMR spectros-
copy. Briefly:

Metabolite extraction
Intact frozen DLP tissues were carefully weighted and transferred

into a glass vial (borosilicate clear glass with black phenolic cap,
Fisherbrand). Polar metabolites were extracted following these
steps: (i) addition of ice-cold methanol (14 mL/g) and pure water
(3 mL/g) to the tissue sample; (ii) sonication-based tissue homog-
enization (Misonix Microson Ultrasonic cell Disruptor XL2000);
(iii) addition of ice-cold chloroform (14 mL/g) followed by thor-
ough vortexing; (iv) final addition of pure water (7 mL/g), followed
by vortexing, incubation on ice (15 minutes), centrifugation (15
minutes at 1,000 � g), and collection of the methanol/water phase
containing polar metabolites; (vi) evaporation of polar solvents with
the SpeedVac vacuum concentrator (Concentrator plus/Vacufuge
plus, Eppendorf). To avoid phases contamination, the polar phase
was not entirely collected. This was accounted for in the final
calculation of lactate concentration. Finally, polar metabolites were
resuspended in 520 mL NMR buffer [containing 150 mmol/L sodi-
um phosphate at pH 7.4 in D2O, and 0.1% w/w trimethylsilylpro-
panoic acid (TSP) as chemical shift reference (d ¼ 0 ppm)],
vortexed, and centrifuged at 12,000 � g for 5 minutes. Supernatant
(500 mL) was then transferred into NMR tube.

NMR spectroscopy
One-dimensional proton (1H)-NMR spectra were recorded at

300 K on a Bruker AVANCE III 500 spectrometer equipped with a
5-mm inverse triple resonance 1H/13C/15N TXI probe and x, y, z
gradient coils. A nuclear Overhauser effect spectroscopy (NOESY)
experiment was acquired using the NOESY-presat pulse sequence
(noesygppr1d) where water suppression is performed through
presaturation. The relaxation delay was set to 4s, the mixing time
to 10 ms, the acquisition time to 2.7s, and the spectral window to
20 ppm. 512 transients were acquired with 54518 data points.
Transformed spectra were corrected for phase and baseline distor-
tions using Topspin 3.6 (Bruker BioSpin) and calibrated to the

signal of sodium TSP at 0.00 ppm. The signal of lactate at 1.33 ppm
(doublet) and TSP at 0.00 ppm were fitted by combining a local
baseline and Voigt functions based on the multiplicity of the NMR
signal (23). Lactate concentration was calculated according to the
equation described in ref. 24.

Metabolic assays
Serum lactate was measured with the BioVision colorimetric assay

kit (#K607–100), following the manufacturer’s instructions.
Glycolytic proton efflux rate (GlycoPER) in MYC-CaP cells was

measured with the Seahorse XFe24 analyzer (Agilent Technologies),
following the manufacturer’s instructions with some modifications.
Briefly, MYC-CaP cells were plated in 24-well Seahorse plate (20,000
cells/well) for 24 hours in DMEM low glucose (1g/L, Euroclone
ECM0749L) supplemented with 10% FBS, 4 mmol/L glutamine, and
antibiotics. One hour before assay, medium was changed to Seahorse
medium (Agilent Technologies 103575–100 with the addition of
5 mmol/L glucose, 1 mmol/L pyruvate, 2 mmol/L glutamine). Cells
were incubated without CO2 for 1 hour at 37�C. Medium was then
again replaced before analysis with the Seahorse XFe24 analyzer. Assay
was performed using the standard protocol, adjusting the measure-
ments as following: 3 basal measurements (8 min each: 3 min mix,
2 min wait, 3 min measure), 8 measurements after injection with 5%
(final concentration/well) of HFD or CTD serum (8 min each: 3 min
mix, 2 min wait, 3 min measure), 3 measurements after injection with
0.5 mmol/L (final concentration/well) of rotenone/antimycin A (8 min
each: 3minmix, 2minwait, 3minmeasure), and 5measurements after
injection with 50 mmol/L (final concentration/well) of 2-DG (8 min
each: 3 min mix, 2 min wait, 3 min measure). PER, glycoPER, basal
glycolysis, basal PER, compensatory glycolysis, and after 2-DG acid-
ification were calculated. GlycoPER was normalized to protein con-
tent/sample. Proteins were measured using Micro BCA Protein Assay
Kit (Thermo Fisher Scientific, #23235).

Bulk RNA-seq and gene set enrichment analysis
Frozen DLP lobes were pulverized using a Cryoprep Pulverizer

(Covaris). Total RNA was extracted with the RNeasy Plus MiniKit
(Qiagen, #73404). RNA-seq libraries were prepared from 50 ng of total
purified RNA using the KAPA Biosystems RNA HyperPrep Kit with
RiboErase (Roche, #08098140702). Before library preparation, RNA
quality was checked with the Agilent Bioanalyzer to calculate RIN score
andDV200.RNAsampleswith aRIN score>5were fragmented at 94�C
for 8 minutes according to the manufacturer’s recommendation. Those
with RIN <5 were fragmented at 85�C for 2 minutes. dsDNA libraries
were quantified by Qubit fluorometer, Agilent TapeStation 2200, and
RT-qPCR using the Kapa Biosystems library quantification kit (Roche,
#07960298001), according to the manufacturer’s protocols. Uniquely
indexed libraries were pooled in equimolar ratio and sequenced on an
Illumina NovaSeq 6000 with paired end 50 bp reads at the DFCI
Molecular Biology Core Facility. A countmatrix was estimated through
pseudo-alignment with salmon (25) using mm39 ensembl 104 tran-
scripts annotations, which were summarized at the gene level with the
tximport R/Bioconductor package. Low count genes (<5 CPM) were
filtered, and the remaining genes were normalized with the trimmed
mean of M values method (26). A generalized linear model approach
coupled with empirical Bayes moderation of standard errors and voom
precision weights was used to identify differentially expressed genes
between the selected contrasts (27, 28). Correction for multiple testing
was done with the Benjamini–Hochberg method. The results from
differential expression analysis were ranked by t-statistics. Ranked lists
were tested for gene set enrichment. Gene set enrichment analysis
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(GSEA; RRID:SCR_003199) was performed using a Monte Carlo
adaptive multilevel splitting approach, implemented in the fgsea R
package. Hallmark gene sets were obtained from the Broad Institute
MsigDB database (h.all.v7.5.1.symbols). Gene sets with less than 15 and
more than 1,500 genes were removed from the analysis. The enriched
pathways were collapsed to maintain only independent ones using the
function collapsePathways from fgsea. Heat map was generated using
Morpheus by Broad Institute (RRID:SCR_017386; https://software.
broadinstitute.org/morpheus/). The tumor-associated macrophage
(TAM) and Treg murine gene signatures were derived from the
literature (29, 30). The endothelial cell signature was derived from
publicly available single-cell RNA-seq (scRNA-seq) data of murine
prostate lobes from 24-week-old mice (31).

scRNA-seq analyses
Processed data from scRNA-seq data of lateral and dorsal prostate

lobes of 24-week-old FVB mice were downloaded from
GSE228945 (32) and used to perform single-cell data analysis using
the Seurat package (version 5.0.1). Low-quality cells were excluded
(<200 genes, >75% mitochondrial reads) before merging lateral and
dorsal prostate samples. Gene expression levels were normalized and
scaled for subsequent analysis. A total of 2,000 highly variable genes
were generated to perform PCA before data integration using the
IntegrateData function from Seurat and K-mean clustering. Cell
subtypes were identified by matching each cluster-specific gene with
marker genes reported in Graham and colleagues (32). AUCell pack-
age (version 1.21.2) was used to calculate a cell-based “glycolytic
signature” AUC score [AUC estimates the proportion of genes in a
gene set that are highly expressed (top 5%) in each cell; AUC threshold
>0.2] and identify the cell subtypes expressing the signature. The
“glycolytic signature” is composed of the leading-edge genes from the
hallmark_glycolysis gene set that was enriched in the contrast
HFD_MYC versus CTD_MYC from GSEA of bulk RNA-seq in DLP.

Estimation of immune cell type composition and tumor purity
The computationalmodels seq-ImmuCC (http://218.4.234.74:3200/im

mune/) and murine Microenvironment Cell Population counter
(mMCP)-counter (mMCPcounter R package, version 1.1.0) were used
to infer the relative proportions and abundance of major immune cell
types in mouse tissues from bulk RNA-seq data, respectively (33, 34). In
human tissues, deconvolute_quantiseq function from the R package
immunedeconv (version 2.0.4) was used to estimate immune cell content
frommicroarray expressiondata (35).Toassess tumorpurity, ESTIMATE
(ESTIMATE R package, version 3.0.13; ref. 36), and PUREE (available at
https://puree.genome.sg; ref. 37) methods were used.

Western blotting and densitometry
Fresh-frozen murine tissues were pulverized (Cryoprep Pulvrizer,

Covaris) and lysed on ice in RIPA buffer (20mmol/L Tris-HCl pH 7.5,
150mmol/L NaCl, 1mmol/L EDTA, 1mmol/L EGTA, 1% NP-40)
with the addition of phosphatase and protease inhibitor cocktail tablets
(Complete Mini, EDTA-free, Roche, #11836170001; PhosSTOP,
Roche, #4906837001). Fresh-frozen MYC-CaP tumor allografts were
minced on ice with stainless steel disposable scalpels (Thermo Fisher
Scientific) and then homogenized in RIPA buffer (20mmol/L Tris-
HCl pH 7.5, 150mmol/L NaCl, 1mmol/L EDTA, 1% TRITON-X)
supplemented with phosphatase and protease inhibitors (Pierce Pro-
tease and Phosphatase Inhibitor Mini Tablets, EDTA free, Thermo
Fisher Scientific, #A32961) using a tissue grinder kit (Kontes). Protein
lysates were quantified with Bradford protein assay (Bio-Rad,
#500020) or Pierce Rapid Gold BCA Protein Assay (Thermo Fisher

Scientific, # A53225). Equal amounts of protein (10–25mg for DLP
tissues, 30 mg for MYC-CaP allografts) were resolved on precast 4% to
20% or 10% Tris-Glycine polyacrylamide (PA) gels (Bio-Rad Labo-
ratories, #4561096, Invitrogen, #XP04205BOX) or 10% custom-made
gels using Acrylamide/Bis-acrylamide, 30% solution (Bio-Rad,
#1610158) and APS (Bio-Rad, #1610700), and transferred using
Trans-Blot(R) Turbo (tm) Mini Nitrocellulose Transfer Packs (Bio-
Rad Laboratories, #1704158), following the manufacturer’s proce-
dures. Alternatively, proteins were transferred using standard wet
blotting systems (Bio-Rad, #1703810), using nitrocellulose mem-
branes (GE Healthcare, Cytiva RPN2020D). Membranes were probed
overnight (4�C) with primary antibodies [AR (Abcam, #ab108341,
RRID:AB_10865716, dilution 1:1,000); b-actin (CST, #4970S, RRID:
AB_2223172, dilution 1:1,000); b-actin (CST, #3700S, RRID:
AB_2242334, dilution 1:1,000); MYC (Abcam, #ab32072, RRID:
AB_731658, dilution 1:1,000); GLUT-1 (Abcam, #ab115730, RRID:
AB_10903230, dilution 1:1,000); HIF1a (CST, #14179S, RRID:
AB_2622225, dilution 1:1,000); LDHA (CST, #2012S, RRID:
AB_2137173, dilution 1:1,000); MCT-1 (Santa Cruz Technology,
#sc-365501, RRID:AB_10841766, dilution 1:200); MCT-4 (Santa Cruz
Technology, #sc-376140, RRID:AB_10992036, dilution 1:200); vincu-
lin (Sigma-Aldrich, #V9131, RRID:AB_477629, dilution 1:5,000).
Membranes were washes with 0.1% Tween-TBS (three times, 5
min/each) and probed with secondary antibodies [goat anti-rabbit
IgG (HþL)–HRP conjugate, Bio-Rad, #1706515, RRID:AB_11125142
or goat-anti-mouse IgG (HþL)–HRP conjugate, Bio-Rad, #1721011,
RRID:AB_11125936] for 1 hour at room temperature. Chemolumi-
nescent signal was developed using Amersham ECLWestern Blotting
Detection Reagent (GE Healthcare, Cytiva #RPN2020D) or Clarity
Western ECL Substrate (Bio-Rad #1705061) and detected using
Chemiluminescent Detection films (Hyblot CL, Thomas Scientific,
#E3018) or the Chemidoc imaging system (Bio-Rad). Densitometry
was performed with ImageJ (RRID:SCR_003070) or ImageLab (Bio-
Rad, https://www.bio-rad.com/en-us/product/image-lab-software?
ID¼KRE6P5E8Z). Results were normalized to b-actin or vinculin
and expressed as arbitrary units. GraphPad Prism version 9.3.0 (RRID:
SCR_002798) was used for statistics and graph preparation.

Tube formation and wound-healing assays
Both tube formation and wound-healing assays were performed

using standard procedures with somemodifications as briefly described.

Tube formation assay
Six-hundred thousand HUVEC cells were seeded in a 6-well plate.

Twenty-four hours after seeding, calcein-AM (Life Technology, #C-
3099) was added for 40minutes. Cells were harvested in EBMmedium
supplemented with 5% FBS. Seven thousand cells/well were seeded in
the angiogenesis m-slide (Ibidi, #81506), previously coated with
10 mL/well of Growth Factor-Reduced Matrigel (Corning, #356231),
in the presence of PBS or sodium lactate (2, 10 mmol/L, Sigma,
#L7022), or Recombinant Human VEGF (50 ng/mL, Peprotech,
#100–20). For experiments using the lactate FX11 (20 mmol/L) or the
dual MCT-1/MCT-4 inhibitor syrosingopine (10 mmol/L) or DMSO,
cells were pre-treated with the drugs or vehicle for 48 hours before
seeding in the m-slide. Cells were not treated with calcein-AM. Tubes
were visualized in bright-field using the Olympus IX71 or CK2
inverted microscopes, following 10 or 12 hours of treatment as
indicated. For each condition, the number of segments/field was
measured using the Angiogenesis Analyzer, a toolset of ImageJ soft-
ware (RRID:SCR_003070). Default settings and minimum object size
of 10 pixels were used.
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Wound-healing assay
For wound-healing assays with/without lactate, MYC-CaP cells

were plated at 800,000 cells/well in a 24-well plate in fresh medium
containing 10% FBS. Twenty-four hours later, a scratch was per-
formed with a p200 tip, medium was aspirated, cells were washed
with PBS, and fresh medium containing lactate (10 mmol/L) or PBS
was added. For wound-healing assays with/without LDHA inhibitor
FX11, MYC-CaP cells were plated at 950,000 cells/well in a 24-well
plate in fresh medium containing 10% FBS. Twenty-four hours
later, a scratch was performed with a p200 tip, medium was
aspirated, cells were washed with PBS, and fresh medium contain-
ing FX11 (1 mmol/L) or DMSO was added. Two images/wound were
taken at different time points (0–48 hours), using an Olympus IX71
inverted microscope (4X objective). Wound areas were measured
using the Analysis Particles analyzer, a toolset of ImageJ software
(RRID:SCR_003070). Statistical analysis and graphical representa-
tion of data were performed with GraphPad Prism version 9.3.0
(RRID:SCR_002798).

Single-cell migration
MYC-CaP cells were pretreated with lactate (10mmol/L) or PBS for

72 hours, plated, and cultured overnight on fibronectin-coated
(0.1 mg/mL, Sigma-Aldrich, #F0895) 5 kPa PA gels with or without
lactate. PA gels were prepared according to the procedure described by
Califano and Reinhart-King (38) with the following modification:
Coupling of the extracellular matrix (ECM) protein was achieved by
functionalizing the surface of the PA gels with Sulfo-SANPAH
(50 mg/mL, Thermo Fisher Scientific, #22589) and 10 minutes UV
exposure. The PA gels were then coupled with fibronectin for 1 hour at
4�C. Images were acquired every 20 minutes for 12 hours using a Zeiss
Axiovert 7 inverted microscope equipped with a 20�/0.4 N.A. objec-
tive and a chamber kept at 37�C and 5% CO2. The fraction of motile
cells was calculated. A cell was defined as motile if the centroid moved
over a distance of at least one cell diameter during a defined obser-
vation period. Cell migration was manually tracked by outlining the
cells and calculating the displacement of the cell centroid with ImageJ
software (RRID:SCR_003070). Cell migration was quantified over a
short period (3 hours) to avoid track interruption due to cell division.
The mean square displacement was then computed and further fitted
using the previously reported randomwalk equation hd2i ¼ 2S2 P(t�P
(1�e^(�t/P))], where S is the average cell speed and P the persistence
time using a nonlinear least square regression analysis (39).

Traction force microscopy
Traction force microscopy (TFM) was performed using 5 kPa PA

gels as previously described (40) with some modifications. Briefly,
MYC-CaP cells were pretreated with lactate (10 mmol/L) or PBS for
72 hours. At the end of 72 hours, MYC-CaP cells were seeded on
fibronectin-coated PA gels embedded with 0.5 mmol/L diameter
fluorescent beads (Thermo Fisher Scientific, #F8812) and cultured
overnight. The cell-seeded PA gels were then imaged on a Nikon TI2
inverted microscope equipped with an environmental chamber. The
stress field resulting from individual cells traction forces was obtained
by imaging the fluorescent beads beneath the cell. The unstressed bead
field was then imaged following cell detachment with 0.25%, trypsin
(for 10 minutes, at 37�C). Traction forces were computed using the
established Fourier transform traction cytometry method as described
before (41). Briefly, the cellular traction fields were computed using a
custom code in MATLAB (MathWorks; RRID:SCR_001622) that
solves the inverse problem in the Fourier space with Green’s functions
based on the bead displacements obtained from the stressed and

unstressed images (computation details in 49). TFM data were log
transformed before statistical analysis.

Human cohorts
Physicians’ Health Study and the Health Professionals Follow-up
Study

Previously described gene expression data from 319 patients with
prostate cancer of the physicians’ health study (PHS) and HPFS
(Health Professionals Follow-up Study) prospective cohorts were used
[Gene Expression Omnibus (GEO, RRID:SCR_005012) Series acces-
sion number GSE79021; refs. 15, 42]. For these patients, both gene
expression data, fat intake, and body mass index (BMI) information
were available. Stratification of patients according to saturated
fat intake (SFI) and BMI has been previously described in refs. 15, 42.
Patients with prostate cancer were considered very overweight/obese
when BMI ≥ 27.5 and healthy weight (18.5 < BMI < 25). A mod.t.test
(MKmisc_1.6 R package) was used to measure gene expression
differences between patients with high SFI versus low SFI and to rank
genes for GSEA. GSEA was performed using the clusterProfiler R
package (version 3.18.1). Hallmark gene sets were obtained from the
MSigDB database using themsigdbr package (version 7.5.1). Gene sets
were considered enriched with an FDR adjustment of < 0.05. The
leading-edge genes of the glycolysis gene set, which was enriched by
SFI, were used as a signature to calculate a glycolytic score using the
simpleScore function from Singscore R package (version 1.12.0).
Patients with prostate cancer were categorized into high and low
glycolytic groups based on the mean glycolytic score. Full description
of patient characteristics and clinicopathological data, fat intake
assessment, BMI, and gene expression profiling is provided in refs.
15, 42. Written informed consent was obtained from all participants.
The studies were approved by the institutional review boards at the
Harvard T.H. Chan School of Public Health and Partners Health Care,
as described in refs. 15, 42.

TCGA/PRAD dataset
RNA-seq raw read counts and clinicopathological information

from The Cancer Genome Atlas (TCGA)/prostate adenocarcinoma
(PRAD) patients were downloaded from TCGA database (http://tcga-
data.nci.nih.gov/tcga/; ref. 43) using the Bioconductor (RRID:
SCR_006442) package TCGAbiolinks (version 2.14.1). Data from
488 patients with primary prostate cancer were used. Read count
were then normalized for sequencing depth using the size factor
method and transformed using the variance-stabilizing transforma-
tion (voom), both implemented in Deseq2 (RRID:SCR_015687) pack-
age (version 1.20.0). Data analysis and statistics were performed in R
version 3.6.2 (2019-12-12). Patients were stratified on the basis of
LDHA expression quartiles (4th quartile ¼ high expression and the
other 3 quartiles ¼ other). Differences in patient disease-free survival
between groups were estimated by the Kaplan–Meier survival analysis
and log-rank tests. Differences in LDHA mRNA levels according to
Gleason Score (GS) and recurrence status were calculated using the
Mann–Whitney U test. Analyses were done using GraphPad Prism
version 9.3.0 (RRID:SCR_002798).

META855 cohort
META855 consists of a multi-institutional and multiethnic cohort

of 855 patients treated with radical prostatectomy with available
transcriptomic, clinicopathological, and outcome data. Data were
derived from five published studies that used the Decipher prostate
genomic classifier test and included only patients who reached an
undetectable PSA level after surgery, as previously described (44).
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(GSEA; RRID:SCR_003199) was performed using a Monte Carlo
adaptive multilevel splitting approach, implemented in the fgsea R
package. Hallmark gene sets were obtained from the Broad Institute
MsigDB database (h.all.v7.5.1.symbols). Gene sets with less than 15 and
more than 1,500 genes were removed from the analysis. The enriched
pathways were collapsed to maintain only independent ones using the
function collapsePathways from fgsea. Heat map was generated using
Morpheus by Broad Institute (RRID:SCR_017386; https://software.
broadinstitute.org/morpheus/). The tumor-associated macrophage
(TAM) and Treg murine gene signatures were derived from the
literature (29, 30). The endothelial cell signature was derived from
publicly available single-cell RNA-seq (scRNA-seq) data of murine
prostate lobes from 24-week-old mice (31).

scRNA-seq analyses
Processed data from scRNA-seq data of lateral and dorsal prostate

lobes of 24-week-old FVB mice were downloaded from
GSE228945 (32) and used to perform single-cell data analysis using
the Seurat package (version 5.0.1). Low-quality cells were excluded
(<200 genes, >75% mitochondrial reads) before merging lateral and
dorsal prostate samples. Gene expression levels were normalized and
scaled for subsequent analysis. A total of 2,000 highly variable genes
were generated to perform PCA before data integration using the
IntegrateData function from Seurat and K-mean clustering. Cell
subtypes were identified by matching each cluster-specific gene with
marker genes reported in Graham and colleagues (32). AUCell pack-
age (version 1.21.2) was used to calculate a cell-based “glycolytic
signature” AUC score [AUC estimates the proportion of genes in a
gene set that are highly expressed (top 5%) in each cell; AUC threshold
>0.2] and identify the cell subtypes expressing the signature. The
“glycolytic signature” is composed of the leading-edge genes from the
hallmark_glycolysis gene set that was enriched in the contrast
HFD_MYC versus CTD_MYC from GSEA of bulk RNA-seq in DLP.

Estimation of immune cell type composition and tumor purity
The computationalmodels seq-ImmuCC (http://218.4.234.74:3200/im

mune/) and murine Microenvironment Cell Population counter
(mMCP)-counter (mMCPcounter R package, version 1.1.0) were used
to infer the relative proportions and abundance of major immune cell
types in mouse tissues from bulk RNA-seq data, respectively (33, 34). In
human tissues, deconvolute_quantiseq function from the R package
immunedeconv (version 2.0.4) was used to estimate immune cell content
frommicroarray expressiondata (35).Toassess tumorpurity, ESTIMATE
(ESTIMATE R package, version 3.0.13; ref. 36), and PUREE (available at
https://puree.genome.sg; ref. 37) methods were used.

Western blotting and densitometry
Fresh-frozen murine tissues were pulverized (Cryoprep Pulvrizer,

Covaris) and lysed on ice in RIPA buffer (20mmol/L Tris-HCl pH 7.5,
150mmol/L NaCl, 1mmol/L EDTA, 1mmol/L EGTA, 1% NP-40)
with the addition of phosphatase and protease inhibitor cocktail tablets
(Complete Mini, EDTA-free, Roche, #11836170001; PhosSTOP,
Roche, #4906837001). Fresh-frozen MYC-CaP tumor allografts were
minced on ice with stainless steel disposable scalpels (Thermo Fisher
Scientific) and then homogenized in RIPA buffer (20mmol/L Tris-
HCl pH 7.5, 150mmol/L NaCl, 1mmol/L EDTA, 1% TRITON-X)
supplemented with phosphatase and protease inhibitors (Pierce Pro-
tease and Phosphatase Inhibitor Mini Tablets, EDTA free, Thermo
Fisher Scientific, #A32961) using a tissue grinder kit (Kontes). Protein
lysates were quantified with Bradford protein assay (Bio-Rad,
#500020) or Pierce Rapid Gold BCA Protein Assay (Thermo Fisher

Scientific, # A53225). Equal amounts of protein (10–25mg for DLP
tissues, 30 mg for MYC-CaP allografts) were resolved on precast 4% to
20% or 10% Tris-Glycine polyacrylamide (PA) gels (Bio-Rad Labo-
ratories, #4561096, Invitrogen, #XP04205BOX) or 10% custom-made
gels using Acrylamide/Bis-acrylamide, 30% solution (Bio-Rad,
#1610158) and APS (Bio-Rad, #1610700), and transferred using
Trans-Blot(R) Turbo (tm) Mini Nitrocellulose Transfer Packs (Bio-
Rad Laboratories, #1704158), following the manufacturer’s proce-
dures. Alternatively, proteins were transferred using standard wet
blotting systems (Bio-Rad, #1703810), using nitrocellulose mem-
branes (GE Healthcare, Cytiva RPN2020D). Membranes were probed
overnight (4�C) with primary antibodies [AR (Abcam, #ab108341,
RRID:AB_10865716, dilution 1:1,000); b-actin (CST, #4970S, RRID:
AB_2223172, dilution 1:1,000); b-actin (CST, #3700S, RRID:
AB_2242334, dilution 1:1,000); MYC (Abcam, #ab32072, RRID:
AB_731658, dilution 1:1,000); GLUT-1 (Abcam, #ab115730, RRID:
AB_10903230, dilution 1:1,000); HIF1a (CST, #14179S, RRID:
AB_2622225, dilution 1:1,000); LDHA (CST, #2012S, RRID:
AB_2137173, dilution 1:1,000); MCT-1 (Santa Cruz Technology,
#sc-365501, RRID:AB_10841766, dilution 1:200); MCT-4 (Santa Cruz
Technology, #sc-376140, RRID:AB_10992036, dilution 1:200); vincu-
lin (Sigma-Aldrich, #V9131, RRID:AB_477629, dilution 1:5,000).
Membranes were washes with 0.1% Tween-TBS (three times, 5
min/each) and probed with secondary antibodies [goat anti-rabbit
IgG (HþL)–HRP conjugate, Bio-Rad, #1706515, RRID:AB_11125142
or goat-anti-mouse IgG (HþL)–HRP conjugate, Bio-Rad, #1721011,
RRID:AB_11125936] for 1 hour at room temperature. Chemolumi-
nescent signal was developed using Amersham ECLWestern Blotting
Detection Reagent (GE Healthcare, Cytiva #RPN2020D) or Clarity
Western ECL Substrate (Bio-Rad #1705061) and detected using
Chemiluminescent Detection films (Hyblot CL, Thomas Scientific,
#E3018) or the Chemidoc imaging system (Bio-Rad). Densitometry
was performed with ImageJ (RRID:SCR_003070) or ImageLab (Bio-
Rad, https://www.bio-rad.com/en-us/product/image-lab-software?
ID¼KRE6P5E8Z). Results were normalized to b-actin or vinculin
and expressed as arbitrary units. GraphPad Prism version 9.3.0 (RRID:
SCR_002798) was used for statistics and graph preparation.

Tube formation and wound-healing assays
Both tube formation and wound-healing assays were performed

using standard procedures with somemodifications as briefly described.

Tube formation assay
Six-hundred thousand HUVEC cells were seeded in a 6-well plate.

Twenty-four hours after seeding, calcein-AM (Life Technology, #C-
3099) was added for 40minutes. Cells were harvested in EBMmedium
supplemented with 5% FBS. Seven thousand cells/well were seeded in
the angiogenesis m-slide (Ibidi, #81506), previously coated with
10 mL/well of Growth Factor-Reduced Matrigel (Corning, #356231),
in the presence of PBS or sodium lactate (2, 10 mmol/L, Sigma,
#L7022), or Recombinant Human VEGF (50 ng/mL, Peprotech,
#100–20). For experiments using the lactate FX11 (20 mmol/L) or the
dual MCT-1/MCT-4 inhibitor syrosingopine (10 mmol/L) or DMSO,
cells were pre-treated with the drugs or vehicle for 48 hours before
seeding in the m-slide. Cells were not treated with calcein-AM. Tubes
were visualized in bright-field using the Olympus IX71 or CK2
inverted microscopes, following 10 or 12 hours of treatment as
indicated. For each condition, the number of segments/field was
measured using the Angiogenesis Analyzer, a toolset of ImageJ soft-
ware (RRID:SCR_003070). Default settings and minimum object size
of 10 pixels were used.
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Wound-healing assay
For wound-healing assays with/without lactate, MYC-CaP cells

were plated at 800,000 cells/well in a 24-well plate in fresh medium
containing 10% FBS. Twenty-four hours later, a scratch was per-
formed with a p200 tip, medium was aspirated, cells were washed
with PBS, and fresh medium containing lactate (10 mmol/L) or PBS
was added. For wound-healing assays with/without LDHA inhibitor
FX11, MYC-CaP cells were plated at 950,000 cells/well in a 24-well
plate in fresh medium containing 10% FBS. Twenty-four hours
later, a scratch was performed with a p200 tip, medium was
aspirated, cells were washed with PBS, and fresh medium contain-
ing FX11 (1 mmol/L) or DMSO was added. Two images/wound were
taken at different time points (0–48 hours), using an Olympus IX71
inverted microscope (4X objective). Wound areas were measured
using the Analysis Particles analyzer, a toolset of ImageJ software
(RRID:SCR_003070). Statistical analysis and graphical representa-
tion of data were performed with GraphPad Prism version 9.3.0
(RRID:SCR_002798).

Single-cell migration
MYC-CaP cells were pretreated with lactate (10mmol/L) or PBS for

72 hours, plated, and cultured overnight on fibronectin-coated
(0.1 mg/mL, Sigma-Aldrich, #F0895) 5 kPa PA gels with or without
lactate. PA gels were prepared according to the procedure described by
Califano and Reinhart-King (38) with the following modification:
Coupling of the extracellular matrix (ECM) protein was achieved by
functionalizing the surface of the PA gels with Sulfo-SANPAH
(50 mg/mL, Thermo Fisher Scientific, #22589) and 10 minutes UV
exposure. The PA gels were then coupled with fibronectin for 1 hour at
4�C. Images were acquired every 20 minutes for 12 hours using a Zeiss
Axiovert 7 inverted microscope equipped with a 20�/0.4 N.A. objec-
tive and a chamber kept at 37�C and 5% CO2. The fraction of motile
cells was calculated. A cell was defined as motile if the centroid moved
over a distance of at least one cell diameter during a defined obser-
vation period. Cell migration was manually tracked by outlining the
cells and calculating the displacement of the cell centroid with ImageJ
software (RRID:SCR_003070). Cell migration was quantified over a
short period (3 hours) to avoid track interruption due to cell division.
The mean square displacement was then computed and further fitted
using the previously reported randomwalk equation hd2i ¼ 2S2 P(t�P
(1�e^(�t/P))], where S is the average cell speed and P the persistence
time using a nonlinear least square regression analysis (39).

Traction force microscopy
Traction force microscopy (TFM) was performed using 5 kPa PA

gels as previously described (40) with some modifications. Briefly,
MYC-CaP cells were pretreated with lactate (10 mmol/L) or PBS for
72 hours. At the end of 72 hours, MYC-CaP cells were seeded on
fibronectin-coated PA gels embedded with 0.5 mmol/L diameter
fluorescent beads (Thermo Fisher Scientific, #F8812) and cultured
overnight. The cell-seeded PA gels were then imaged on a Nikon TI2
inverted microscope equipped with an environmental chamber. The
stress field resulting from individual cells traction forces was obtained
by imaging the fluorescent beads beneath the cell. The unstressed bead
field was then imaged following cell detachment with 0.25%, trypsin
(for 10 minutes, at 37�C). Traction forces were computed using the
established Fourier transform traction cytometry method as described
before (41). Briefly, the cellular traction fields were computed using a
custom code in MATLAB (MathWorks; RRID:SCR_001622) that
solves the inverse problem in the Fourier space with Green’s functions
based on the bead displacements obtained from the stressed and

unstressed images (computation details in 49). TFM data were log
transformed before statistical analysis.

Human cohorts
Physicians’ Health Study and the Health Professionals Follow-up
Study

Previously described gene expression data from 319 patients with
prostate cancer of the physicians’ health study (PHS) and HPFS
(Health Professionals Follow-up Study) prospective cohorts were used
[Gene Expression Omnibus (GEO, RRID:SCR_005012) Series acces-
sion number GSE79021; refs. 15, 42]. For these patients, both gene
expression data, fat intake, and body mass index (BMI) information
were available. Stratification of patients according to saturated
fat intake (SFI) and BMI has been previously described in refs. 15, 42.
Patients with prostate cancer were considered very overweight/obese
when BMI ≥ 27.5 and healthy weight (18.5 < BMI < 25). A mod.t.test
(MKmisc_1.6 R package) was used to measure gene expression
differences between patients with high SFI versus low SFI and to rank
genes for GSEA. GSEA was performed using the clusterProfiler R
package (version 3.18.1). Hallmark gene sets were obtained from the
MSigDB database using themsigdbr package (version 7.5.1). Gene sets
were considered enriched with an FDR adjustment of < 0.05. The
leading-edge genes of the glycolysis gene set, which was enriched by
SFI, were used as a signature to calculate a glycolytic score using the
simpleScore function from Singscore R package (version 1.12.0).
Patients with prostate cancer were categorized into high and low
glycolytic groups based on the mean glycolytic score. Full description
of patient characteristics and clinicopathological data, fat intake
assessment, BMI, and gene expression profiling is provided in refs.
15, 42. Written informed consent was obtained from all participants.
The studies were approved by the institutional review boards at the
Harvard T.H. Chan School of Public Health and Partners Health Care,
as described in refs. 15, 42.

TCGA/PRAD dataset
RNA-seq raw read counts and clinicopathological information

from The Cancer Genome Atlas (TCGA)/prostate adenocarcinoma
(PRAD) patients were downloaded from TCGA database (http://tcga-
data.nci.nih.gov/tcga/; ref. 43) using the Bioconductor (RRID:
SCR_006442) package TCGAbiolinks (version 2.14.1). Data from
488 patients with primary prostate cancer were used. Read count
were then normalized for sequencing depth using the size factor
method and transformed using the variance-stabilizing transforma-
tion (voom), both implemented in Deseq2 (RRID:SCR_015687) pack-
age (version 1.20.0). Data analysis and statistics were performed in R
version 3.6.2 (2019-12-12). Patients were stratified on the basis of
LDHA expression quartiles (4th quartile ¼ high expression and the
other 3 quartiles ¼ other). Differences in patient disease-free survival
between groups were estimated by the Kaplan–Meier survival analysis
and log-rank tests. Differences in LDHA mRNA levels according to
Gleason Score (GS) and recurrence status were calculated using the
Mann–Whitney U test. Analyses were done using GraphPad Prism
version 9.3.0 (RRID:SCR_002798).

META855 cohort
META855 consists of a multi-institutional and multiethnic cohort

of 855 patients treated with radical prostatectomy with available
transcriptomic, clinicopathological, and outcome data. Data were
derived from five published studies that used the Decipher prostate
genomic classifier test and included only patients who reached an
undetectable PSA level after surgery, as previously described (44).
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Microarray expression levels were normalized using the single-
channel array normalization (SCAN) algorithm (SCAN.UPC R pack-
age, version 2.28.0). Multivariable analysis was performed using the
Proportional Hazards Regression model by adjusting for the covari-
ables seminal vesicle invasion, surgical margins, extracellular exten-
sion, age, preoperative PSA, andGS. A P value was calculated using the
Wald test. Difference in LDHAmRNA levels between prostate cancer
from patients with and without biochemical recurrence (BCR) was
calculated with the Wilcoxon rank-sum test. Statistical analyses were
performed using R (version 4.2.0).

Statistical analysis
Unless otherwise indicated, statistics and graphs were generated

with GraphPad Prism version 9.3.0 (RRID:SCR_002798). A P value of
<0.05 was considered statistically significant. Normal distribution
(D’Agostino-Pearson omnibus normality test, Shapiro–Wilk normal-
ity test, Kolmogorov–Smirnov normality test) and equal variance (F
test) were assessed before analysis using GraphPad Prism (RRID:
SCR_002798). When assumptions were not met, nonparametric or
unequal variance tests were used. For each statistical analysis, test
name and whether is one- or two-sided is provided.

Data availability
Metabolomics, digital pathology, differential gene expression,

and GSEA data are available as Supplementary Data Files. Murine
RNA-seq data have been deposited in NCBI GEO (RRID:
SCR_005012) and are accessible through GEO Series accession
number GSE203139. scRNA-seq data used in this study are
accessible through GEO Series accession numbers GSE165741
and GSE228945. Mass spectrometry spectra have been deposited
in Metabolights and are accessible through accession number
MTBLS3316 and MTBLS3317. NMR spectra are available in
Github at https://github.com/tkcaccia/Lactate-quantification-by-
NMR. Gene expression data from HPFS and PHS cohorts are
available through GEO Series accession number GSE79021.
TCGA/PRAD data are available from the TCGA database
(http://tcga-data.nci.nih.gov/tcga/). META855 data are available
through GEO Series accession numbers GSE62116, GSE72291,
GSE79915, and GSE79957. The code that was generated to calcu-
late the lactate concentration in DLP tissue from NMR spectra is
available in the form of an R script at: https://github.com/tkcac
cia/Lactate-quantification-by-NMR. All other raw data are avail-
able upon request from the corresponding authors.

Results
Obesogenic HFD accelerates the development of invasive
prostate cancer

We compared 24-week-old Hi-MYC mice that overexpress the
human c-MYC transgene in the prostate epithelium (hereafter referred
to as MYC mice) and WT littermates fed either a lard-based HFD or
CTD (Fig. 1A; refs. 15, 18). Mice fed an HFD, irrespective of their
genotype, developed obesity-like features, including increased body
weight (CTD group ¼ 34.5 � 5.8 g; HFD group ¼ 45.0 � 6.7 g),
hyperglycemia (i.e., decreased circulating 1,5-anhydroglucitol), hyper-
insulinemia, increased resistin, c-peptide, and amylin levels, decreased
ghrelin levels as well as liver steatosis (Supplementary Fig. S1A–S1D;
Supplementary Table S1). Untargeted metabolomics confirmed a
distinct serummetabolic profile inmice fed anHFDwith predominant
changes in lipid species (154/290 metabolites altered by HFD were
lipids, P < 0.05, FDR < 0.15, two-way ANOVA; Supplementary

Fig. S1E; Supplementary Tables S2–S4). As MYC drives the transition
from PIN to IA at 24 weeks (18), we used digital pathology to quantify
the amount of benign epithelium, PIN, and IA in the three prostate
lobes from mice fed an HFD or CTD. When present, IA was detected
only in the DLP, despite the high expression of MYC transgene also in
the ventral prostate (VP; Fig. 1B; Supplementary Fig. S2A and S2B). In
the VP, we observed a significant increase in the average percentage of
PIN in HFD_MYC mice (94%, range, 25%–100%, n ¼ 22) vs.
CTD_MYC mice (82%, range, 24%–100%, n ¼ 21; P ¼ 0.0001,
Mann–Whitney test). In the DLP, we observed no difference in PIN
penetrance (HFD_MYC: 84%, range, 49%–98%, n ¼ 24; CTD_MYC:
74%, range, 13%–94%, n ¼ 21; P ¼ 0.0859, Mann–Whitney
test; Fig. 1C). However, the incidence of IA was markedly increased
in mice fed an HFD (P ¼ 0.0008, Fisher exact test), confirming that
HFD accelerates IA development (Fig. 1D; Supplementary
Table S5). DLP from HFD_MYC mice also displayed increased
areas of outgrowing protrusions, indicative of more advanced
disease progression (HFD_MYC: average, 1.34 mm2; range, 0.3–
2.48 mm2, n ¼ 24; CTD_MYC: average, 0.68 mm2; range, 0–1.95
mm2, n ¼ 21; P ¼ 0.0002, Unpaired t test; Fig. 1E; Supplementary
Table S5). Protein levels of androgen receptor (AR) or MYC
transgene were not significantly altered by HFD; ruling out their
direct role in accelerating IA development in mice fed an HFD
(Supplementary Fig. S2C and S2D). No significant difference in
proliferation rate (assessed as percentage of Ki-67þ cells) was
observed in DLP from mice fed either an HFD or CTD (Supple-
mentary Fig. S2E). AP was minimally affected by PIN, independent
of diet (HFD_MYC: 3%, range, 0%–13%, n ¼ 24; CTD_MYC: 4%,
range, 0%–14%, n ¼ 18), consistent with the marginal expression of
the MYC transgene in AP lobe at this time point (Fig. 1C; Sup-
plementary Fig. S2A and S2B; Supplementary Table S5) and with
our previous findings (45). HFD did not display any transforming
effect on WT prostates (Supplementary Fig. S2F).

Altogether, these data support the notion that obesogenic HFD
promotes aggressive prostate cancer without altering either AR or
MYC transgene protein expression.

Obesogenic HFD amplifies MYC-driven metabolic
reprogramming

Following the histopathology findings, we investigated the meta-
bolic features of IA driven by MYC and by MYC/obesogenic HFD
cooperation. Untargeted LC/MS-MS was performed in DLP fromWT
and MYC mice fed an HFD or CTD for 21 weeks. Six hundred
and twenty-eight metabolites were detected and 603 analyzed after
processing (Supplementary Tables S6–S8). PCA clearly separated DLP
samples according to MYC expression. However, the MYC-
transformed but not the WT prostate group was further subdivided
by diet (Fig. 2A). These results are consistent with those we previously
reported in younger mice (12-week-old; ref. 15), suggesting that HFD
influences MYC-driven metabolic reprogramming at both early and
advanced stages of tumorigenesis. MYC alters the levels of more than
half of themetabolites analyzed comparedwithWT (392/603, P< 0.05,
FDR < 0.15, two-way ANOVA; Fig. 2B), consistent with its role as a
master metabolic regulator. In particular, MYC transformation pro-
motesmetabolic pathways that support cancer-enhanced anabolic and
energetic requirements [e.g., FA synthesis/oxidation, amino acid
metabolism, tricarboxylic acid (TCA) cycle, and glutaminolysis],
increases the accumulation of metabolites implicated in methylation
and polyamines synthesis (i.e., methionine, the methyl donor s-
adenosyl methionine, and 50-Methylthioadenosine), and boosts
the uptake of inflammatory diet-derived FAs (i.e., polyunsaturated
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arachidonic and linoleic acids; Supplementary Fig. S3A; Supplemen-
tary Table S8). HFD perturbs the metabolome of MYC-transformed
prostate but only minimally affects WT prostate (Fig. 2B; Supple-
mentary Fig. S3B and S3C; Supplementary Table S8). Of the 175
metabolites altered by HFD in MYC-transformed DLP, about two
third were already increased by MYC and further augmented by

HFD (P < 0.05, FDR < 0.15, Unpaired t test). These include
intermediates of the synthesis of sarcosine, a putative biomarker
of poor prognosis (46), glutaminolysis, TCA cycle, and branched-
chain amino acid metabolism (Fig. 2C; Supplementary Table S8),
suggesting that obesogenic HFD acts as a booster of MYC-driven
metabolic dependencies.
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Figure 1.

Obesogenic high-fat diet accelerates the development of invasive adenocarcinoma. A, Experimental overview. B, Representative images of H&E (top), segmented
invasive and outgrowing areas (middle), and a-smooth muscle actin (aSMA) IHC (bottom). The inset is a magnification of an area of invasive adenocarcinoma with
complete negativity for aSMA. Black arrow, aSMA staining in vascular smooth muscle cells, which were used as internal positive control. Scale bar is shown. C, Dot
plot showing the percentage of PIN in the whole lobe epithelium (benignþ atypical). PIN percentage in anterior (AP), ventral (VP), and dorsolateral (DLP) prostate
lobeswas quantified using digital pathology (��� ,P¼0.0001, two-sidedMann–WhitneyU test; n, biologically independent samples;mean� SD).D,Bar plot showing
the incidence of invasive adenocarcinoma. Data are presented as the percentage of MYC mice in each condition (CTD_MYC, n¼ 21; HFD_MYC, n¼ 24). A P value is
shown (two-sided Fisher exact test). E, Dot plot comparing the size of outgrowing areas in DLP (��� , P ¼ 0.0002, two-sided unpaired t test; n, biologically
independent samples; mean� SD). ELISA, enzyme-linked immunoassay; ISH, in situ hybridization; WB, Western blotting.
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Microarray expression levels were normalized using the single-
channel array normalization (SCAN) algorithm (SCAN.UPC R pack-
age, version 2.28.0). Multivariable analysis was performed using the
Proportional Hazards Regression model by adjusting for the covari-
ables seminal vesicle invasion, surgical margins, extracellular exten-
sion, age, preoperative PSA, andGS. A P value was calculated using the
Wald test. Difference in LDHAmRNA levels between prostate cancer
from patients with and without biochemical recurrence (BCR) was
calculated with the Wilcoxon rank-sum test. Statistical analyses were
performed using R (version 4.2.0).

Statistical analysis
Unless otherwise indicated, statistics and graphs were generated

with GraphPad Prism version 9.3.0 (RRID:SCR_002798). A P value of
<0.05 was considered statistically significant. Normal distribution
(D’Agostino-Pearson omnibus normality test, Shapiro–Wilk normal-
ity test, Kolmogorov–Smirnov normality test) and equal variance (F
test) were assessed before analysis using GraphPad Prism (RRID:
SCR_002798). When assumptions were not met, nonparametric or
unequal variance tests were used. For each statistical analysis, test
name and whether is one- or two-sided is provided.

Data availability
Metabolomics, digital pathology, differential gene expression,

and GSEA data are available as Supplementary Data Files. Murine
RNA-seq data have been deposited in NCBI GEO (RRID:
SCR_005012) and are accessible through GEO Series accession
number GSE203139. scRNA-seq data used in this study are
accessible through GEO Series accession numbers GSE165741
and GSE228945. Mass spectrometry spectra have been deposited
in Metabolights and are accessible through accession number
MTBLS3316 and MTBLS3317. NMR spectra are available in
Github at https://github.com/tkcaccia/Lactate-quantification-by-
NMR. Gene expression data from HPFS and PHS cohorts are
available through GEO Series accession number GSE79021.
TCGA/PRAD data are available from the TCGA database
(http://tcga-data.nci.nih.gov/tcga/). META855 data are available
through GEO Series accession numbers GSE62116, GSE72291,
GSE79915, and GSE79957. The code that was generated to calcu-
late the lactate concentration in DLP tissue from NMR spectra is
available in the form of an R script at: https://github.com/tkcac
cia/Lactate-quantification-by-NMR. All other raw data are avail-
able upon request from the corresponding authors.

Results
Obesogenic HFD accelerates the development of invasive
prostate cancer

We compared 24-week-old Hi-MYC mice that overexpress the
human c-MYC transgene in the prostate epithelium (hereafter referred
to as MYC mice) and WT littermates fed either a lard-based HFD or
CTD (Fig. 1A; refs. 15, 18). Mice fed an HFD, irrespective of their
genotype, developed obesity-like features, including increased body
weight (CTD group ¼ 34.5 � 5.8 g; HFD group ¼ 45.0 � 6.7 g),
hyperglycemia (i.e., decreased circulating 1,5-anhydroglucitol), hyper-
insulinemia, increased resistin, c-peptide, and amylin levels, decreased
ghrelin levels as well as liver steatosis (Supplementary Fig. S1A–S1D;
Supplementary Table S1). Untargeted metabolomics confirmed a
distinct serummetabolic profile inmice fed anHFDwith predominant
changes in lipid species (154/290 metabolites altered by HFD were
lipids, P < 0.05, FDR < 0.15, two-way ANOVA; Supplementary

Fig. S1E; Supplementary Tables S2–S4). As MYC drives the transition
from PIN to IA at 24 weeks (18), we used digital pathology to quantify
the amount of benign epithelium, PIN, and IA in the three prostate
lobes from mice fed an HFD or CTD. When present, IA was detected
only in the DLP, despite the high expression of MYC transgene also in
the ventral prostate (VP; Fig. 1B; Supplementary Fig. S2A and S2B). In
the VP, we observed a significant increase in the average percentage of
PIN in HFD_MYC mice (94%, range, 25%–100%, n ¼ 22) vs.
CTD_MYC mice (82%, range, 24%–100%, n ¼ 21; P ¼ 0.0001,
Mann–Whitney test). In the DLP, we observed no difference in PIN
penetrance (HFD_MYC: 84%, range, 49%–98%, n ¼ 24; CTD_MYC:
74%, range, 13%–94%, n ¼ 21; P ¼ 0.0859, Mann–Whitney
test; Fig. 1C). However, the incidence of IA was markedly increased
in mice fed an HFD (P ¼ 0.0008, Fisher exact test), confirming that
HFD accelerates IA development (Fig. 1D; Supplementary
Table S5). DLP from HFD_MYC mice also displayed increased
areas of outgrowing protrusions, indicative of more advanced
disease progression (HFD_MYC: average, 1.34 mm2; range, 0.3–
2.48 mm2, n ¼ 24; CTD_MYC: average, 0.68 mm2; range, 0–1.95
mm2, n ¼ 21; P ¼ 0.0002, Unpaired t test; Fig. 1E; Supplementary
Table S5). Protein levels of androgen receptor (AR) or MYC
transgene were not significantly altered by HFD; ruling out their
direct role in accelerating IA development in mice fed an HFD
(Supplementary Fig. S2C and S2D). No significant difference in
proliferation rate (assessed as percentage of Ki-67þ cells) was
observed in DLP from mice fed either an HFD or CTD (Supple-
mentary Fig. S2E). AP was minimally affected by PIN, independent
of diet (HFD_MYC: 3%, range, 0%–13%, n ¼ 24; CTD_MYC: 4%,
range, 0%–14%, n ¼ 18), consistent with the marginal expression of
the MYC transgene in AP lobe at this time point (Fig. 1C; Sup-
plementary Fig. S2A and S2B; Supplementary Table S5) and with
our previous findings (45). HFD did not display any transforming
effect on WT prostates (Supplementary Fig. S2F).

Altogether, these data support the notion that obesogenic HFD
promotes aggressive prostate cancer without altering either AR or
MYC transgene protein expression.

Obesogenic HFD amplifies MYC-driven metabolic
reprogramming

Following the histopathology findings, we investigated the meta-
bolic features of IA driven by MYC and by MYC/obesogenic HFD
cooperation. Untargeted LC/MS-MS was performed in DLP fromWT
and MYC mice fed an HFD or CTD for 21 weeks. Six hundred
and twenty-eight metabolites were detected and 603 analyzed after
processing (Supplementary Tables S6–S8). PCA clearly separated DLP
samples according to MYC expression. However, the MYC-
transformed but not the WT prostate group was further subdivided
by diet (Fig. 2A). These results are consistent with those we previously
reported in younger mice (12-week-old; ref. 15), suggesting that HFD
influences MYC-driven metabolic reprogramming at both early and
advanced stages of tumorigenesis. MYC alters the levels of more than
half of themetabolites analyzed comparedwithWT (392/603, P< 0.05,
FDR < 0.15, two-way ANOVA; Fig. 2B), consistent with its role as a
master metabolic regulator. In particular, MYC transformation pro-
motesmetabolic pathways that support cancer-enhanced anabolic and
energetic requirements [e.g., FA synthesis/oxidation, amino acid
metabolism, tricarboxylic acid (TCA) cycle, and glutaminolysis],
increases the accumulation of metabolites implicated in methylation
and polyamines synthesis (i.e., methionine, the methyl donor s-
adenosyl methionine, and 50-Methylthioadenosine), and boosts
the uptake of inflammatory diet-derived FAs (i.e., polyunsaturated
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arachidonic and linoleic acids; Supplementary Fig. S3A; Supplemen-
tary Table S8). HFD perturbs the metabolome of MYC-transformed
prostate but only minimally affects WT prostate (Fig. 2B; Supple-
mentary Fig. S3B and S3C; Supplementary Table S8). Of the 175
metabolites altered by HFD in MYC-transformed DLP, about two
third were already increased by MYC and further augmented by

HFD (P < 0.05, FDR < 0.15, Unpaired t test). These include
intermediates of the synthesis of sarcosine, a putative biomarker
of poor prognosis (46), glutaminolysis, TCA cycle, and branched-
chain amino acid metabolism (Fig. 2C; Supplementary Table S8),
suggesting that obesogenic HFD acts as a booster of MYC-driven
metabolic dependencies.
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Figure 1.

Obesogenic high-fat diet accelerates the development of invasive adenocarcinoma. A, Experimental overview. B, Representative images of H&E (top), segmented
invasive and outgrowing areas (middle), and a-smooth muscle actin (aSMA) IHC (bottom). The inset is a magnification of an area of invasive adenocarcinoma with
complete negativity for aSMA. Black arrow, aSMA staining in vascular smooth muscle cells, which were used as internal positive control. Scale bar is shown. C, Dot
plot showing the percentage of PIN in the whole lobe epithelium (benignþ atypical). PIN percentage in anterior (AP), ventral (VP), and dorsolateral (DLP) prostate
lobeswas quantified using digital pathology (��� ,P¼0.0001, two-sidedMann–WhitneyU test; n, biologically independent samples;mean� SD).D,Bar plot showing
the incidence of invasive adenocarcinoma. Data are presented as the percentage of MYC mice in each condition (CTD_MYC, n¼ 21; HFD_MYC, n¼ 24). A P value is
shown (two-sided Fisher exact test). E, Dot plot comparing the size of outgrowing areas in DLP (��� , P ¼ 0.0002, two-sided unpaired t test; n, biologically
independent samples; mean� SD). ELISA, enzyme-linked immunoassay; ISH, in situ hybridization; WB, Western blotting.
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MYC cooperation with obesogenic HFD is required to promote
lactate accumulation in vivo

To understand whether obesogenic HFD, beyond acting as a
metabolic booster, also drives new metabolic liabilities in prostate
cancer, we turned our attention to metabolites that were exclusively
altered by MYC/HFD cooperation. Of the 46 significant metabolites
(P < 0.05, FDR < 0.15, Unpaired t test) several are involved, as
expected, in lipid metabolism. However, increased glucose-6-phos-
phate and lactate caught immediate attention (Fig. 3A and B;
Supplementary Table S8) as prostate cancer commonly presents
lipogenic/oxidative features. This suggests that the cooperation
between HFD and genetic drive promotes a switch toward aerobic
glycolysis (also known as Warburg effect) with the resulting accu-
mulation of the oncometabolite lactate. A positive correlation
between HFD-induced weight gain and intratumor lactate increase

emerged (Fig. 3C, R2 ¼ 0.5896, P ¼ 0.0035, Pearson correlation),
whereas no change in serum lactate was observed (Supplementary
Fig. S4A and S4B). NMR spectroscopy confirmed intratumor lactate
accumulation in HFD-fed obese mice (Fig. 3D; Supplementary
Table S9). Protein expression of LDHA, the enzyme responsible
for the conversion of pyruvate to lactate, was significantly increased
in DLP from MYC mice fed an HFD. HIF1a, a well-known inducer
of aerobic glycolysis, was detected only in DLP from MYC mice fed
an HFD (Fig. 3E; Supplementary Fig. S4C and S4D). However,
lactate transporters (MCT-1 and MCT-4) protein levels were not
changed (Fig. 3E; Supplementary Fig. S4E). HIF1a expression co-
occurred with HFD-induced amplification of MYC transcriptional
activity (Fig. 3F; Supplementary Table S10), suggesting their poten-
tial cooperation in promoting the Warburg effect, as previously
described (47, 48).
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Figure 2.

Obesogenic high-fat diet amplifies critical MYC-dependent metabolic vulnerabilities. A, Principal component analysis of metabolomics data from DLP. Four
diet/genotype conditions are represented (n ¼ 6 biologically independent samples/group, 603 metabolites analyzed). B, Pie charts showing the proportion of
metabolites significantly altered by MYC [MYC effect (independent of diet); P < 0.05, FDR < 0.15, two-way ANOVA] or by HFD in MYC-transformed orWT DLP (HFD
effect; P < 0.05, FDR < 0.15, two-sided unpaired t test). C, Dot plots showing relevant metabolites of key pathways enhanced by HFD in MYC-transformed DLP (P <
0.05; FDR <0.15, two-sided unpaired t test; n¼ 6 biologically independent samples/group;mean� SD). For eachmetabolite, comparison between HFD_MYC versus
CTD_MYC is shown. � ,P<0.05; �� ,P <0.01; ��� ,P <0.001. ExactP and FDRvalues are summarized in Supplementary Table S8.aKG,a-ketoglutarate; BCAA, branched
chain amino acids; Gln, glutamine; Glu, glutamate; Gly, glycine; Ile, isoleucine; Leu, leucine; 5-MTA, 50-methylthioadenosine; Met, methionine; PC, principal
component; SAM, s-adenosylmethionine; Ser, serine; Val, valine; WT, wild-type.
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Figure 3.

Obesogenic high-fat diet promotes aerobic glycolysis in MYC-driven prostate cancer. A, Heat map showing the 46 metabolites that are uniquely altered by HFD in
MYC-transformedDLP (P<0.05; FDR<0.15, two-sidedunpaired t test;n¼6biologically independent samples/group).Metabolite relative concentration, exactP and
FDR values are summarized in Supplementary Table S8. Metabolites of aerobic glycolysis are highlighted in bold red. Metabolites were measured using LC/MS-MS.
B,Relative quantification of glucose 6-phosphate (�,P¼0.0211) and lactate (� ,P¼0.0247), two-sidedunpaired t test; n¼6biologically independent samples/group;
mean� SD. C, Association between mouse weight and lactate levels (Pearson correlation). Statistics are indicated. D, Lactate concentration in DLP using NMR
(� ,P¼0.0227, two-sided unpaired t test,n¼ 3–5 biologically independent samples).E,Western blot densitometric analysis of LDHA (EXP 1, �� ,P¼0.0079; EXP 2 and
� , P ¼ 0.0358, two-sided unpaired t test), MCT-1 (P ¼ 0.3939, two-sided Mann–Whitney U test), and MCT-4 (P ¼ 0.1803, two-sided unpaired t test); n ¼ 3–6
biologically independent samples/group; mean� SD. Protein levels are normalized to b-actin or vinculin and expressed as arbitrary units (AU). F,Heatmap showing
enriched/depleted gene sets in DLP (GSEA_Hallmark,P <0.01; FDR <0.01). Critical gene sets enriched byMYC and further enhanced byHFDare shown in green.MYC
transcriptional activity is emphasized in bold green. Critical gene sets exclusively enriched in MYC-transformed DLP frommice fed HFD aremarked in red. Glycolysis
and related gene sets are further highlighted in bold red. Normalized enrichment scores (NES) are reported in Supplementary Table S10. WT, wild-type.
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MYC cooperation with obesogenic HFD is required to promote
lactate accumulation in vivo

To understand whether obesogenic HFD, beyond acting as a
metabolic booster, also drives new metabolic liabilities in prostate
cancer, we turned our attention to metabolites that were exclusively
altered by MYC/HFD cooperation. Of the 46 significant metabolites
(P < 0.05, FDR < 0.15, Unpaired t test) several are involved, as
expected, in lipid metabolism. However, increased glucose-6-phos-
phate and lactate caught immediate attention (Fig. 3A and B;
Supplementary Table S8) as prostate cancer commonly presents
lipogenic/oxidative features. This suggests that the cooperation
between HFD and genetic drive promotes a switch toward aerobic
glycolysis (also known as Warburg effect) with the resulting accu-
mulation of the oncometabolite lactate. A positive correlation
between HFD-induced weight gain and intratumor lactate increase

emerged (Fig. 3C, R2 ¼ 0.5896, P ¼ 0.0035, Pearson correlation),
whereas no change in serum lactate was observed (Supplementary
Fig. S4A and S4B). NMR spectroscopy confirmed intratumor lactate
accumulation in HFD-fed obese mice (Fig. 3D; Supplementary
Table S9). Protein expression of LDHA, the enzyme responsible
for the conversion of pyruvate to lactate, was significantly increased
in DLP from MYC mice fed an HFD. HIF1a, a well-known inducer
of aerobic glycolysis, was detected only in DLP from MYC mice fed
an HFD (Fig. 3E; Supplementary Fig. S4C and S4D). However,
lactate transporters (MCT-1 and MCT-4) protein levels were not
changed (Fig. 3E; Supplementary Fig. S4E). HIF1a expression co-
occurred with HFD-induced amplification of MYC transcriptional
activity (Fig. 3F; Supplementary Table S10), suggesting their poten-
tial cooperation in promoting the Warburg effect, as previously
described (47, 48).
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Figure 2.

Obesogenic high-fat diet amplifies critical MYC-dependent metabolic vulnerabilities. A, Principal component analysis of metabolomics data from DLP. Four
diet/genotype conditions are represented (n ¼ 6 biologically independent samples/group, 603 metabolites analyzed). B, Pie charts showing the proportion of
metabolites significantly altered by MYC [MYC effect (independent of diet); P < 0.05, FDR < 0.15, two-way ANOVA] or by HFD in MYC-transformed orWT DLP (HFD
effect; P < 0.05, FDR < 0.15, two-sided unpaired t test). C, Dot plots showing relevant metabolites of key pathways enhanced by HFD in MYC-transformed DLP (P <
0.05; FDR <0.15, two-sided unpaired t test; n¼ 6 biologically independent samples/group;mean� SD). For eachmetabolite, comparison between HFD_MYC versus
CTD_MYC is shown. � ,P<0.05; �� ,P <0.01; ��� ,P <0.001. ExactP and FDRvalues are summarized in Supplementary Table S8.aKG,a-ketoglutarate; BCAA, branched
chain amino acids; Gln, glutamine; Glu, glutamate; Gly, glycine; Ile, isoleucine; Leu, leucine; 5-MTA, 50-methylthioadenosine; Met, methionine; PC, principal
component; SAM, s-adenosylmethionine; Ser, serine; Val, valine; WT, wild-type.
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Figure 3.

Obesogenic high-fat diet promotes aerobic glycolysis in MYC-driven prostate cancer. A, Heat map showing the 46 metabolites that are uniquely altered by HFD in
MYC-transformedDLP (P<0.05; FDR<0.15, two-sidedunpaired t test;n¼6biologically independent samples/group).Metabolite relative concentration, exactP and
FDR values are summarized in Supplementary Table S8. Metabolites of aerobic glycolysis are highlighted in bold red. Metabolites were measured using LC/MS-MS.
B,Relative quantification of glucose 6-phosphate (�,P¼0.0211) and lactate (� ,P¼0.0247), two-sidedunpaired t test; n¼6biologically independent samples/group;
mean� SD. C, Association between mouse weight and lactate levels (Pearson correlation). Statistics are indicated. D, Lactate concentration in DLP using NMR
(� ,P¼0.0227, two-sided unpaired t test,n¼ 3–5 biologically independent samples).E,Western blot densitometric analysis of LDHA (EXP 1, �� ,P¼0.0079; EXP 2 and
� , P ¼ 0.0358, two-sided unpaired t test), MCT-1 (P ¼ 0.3939, two-sided Mann–Whitney U test), and MCT-4 (P ¼ 0.1803, two-sided unpaired t test); n ¼ 3–6
biologically independent samples/group; mean� SD. Protein levels are normalized to b-actin or vinculin and expressed as arbitrary units (AU). F,Heatmap showing
enriched/depleted gene sets in DLP (GSEA_Hallmark,P <0.01; FDR <0.01). Critical gene sets enriched byMYC and further enhanced byHFDare shown in green.MYC
transcriptional activity is emphasized in bold green. Critical gene sets exclusively enriched in MYC-transformed DLP frommice fed HFD aremarked in red. Glycolysis
and related gene sets are further highlighted in bold red. Normalized enrichment scores (NES) are reported in Supplementary Table S10. WT, wild-type.
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In line with metabolomics data, 18F-FDG uptake was significantly
increased in MYC-CaP allografts from mice fed an HFD. A parallel,
though nonsignificant (P¼ 0.0540), increase in the glucose transporter
GLUT-1 protein levels was also observed (Fig. 4A–F; Supplementary
Table S11). Interestingly, the lactate exporter MCT-4 was expressed in
allografts but not when MYC-CaP cells were grown in vitro under
standard conditions or when supplemented with murine serum (Sup-
plementary Fig. S4F). Seahorse analysis further confirmed that the
exposure of MYC-CaP cells to murine serum frommice fed an HFD is
not sufficient to promote aerobic glycolysis (Supplementary Fig. S4G),
suggesting that an intact in vivo system is required to capture MYC/o-
besogenic HFD cooperation to promote a glycolytic switch and intra-
tumor lactate accumulation.

Obesogenic HFD-induced transcriptional changes support the
Warburg effect and disease progression

To gain further molecular insights, we performed bulk RNA-seq in
DLP tissues (Supplementary Tables S12–S14). GSEA highlighted
MYC/HFD cooperation in promoting transcriptional programs to
support the Warburg effect and aggressive tumor features. Alongside
the expected signatures associated with FA metabolism/oxidative
phosphorylation, HFD was found to significantly enrich for glycolysis
and glycolysis-associated gene sets (i.e., hallmark_glycolysis, hall-
mark_PI3K_AKT_mTORC1 signaling, hallmark_ mTORC1 signal-
ing) inMYC-transformedDLPbut not in the normal prostate (Fig. 3F,
lanes 2 and 3; Supplementary Table S10). To rule out that themetabolic
changes we observed were simply the results of HFD-induced changes
in cellular composition rather than features of tumor metabolism
rewiring, we estimated tumor purity and cell composition using
the ESTIMATE andPUREEmethods (36, 37).Neithermethod showed
HFD-induced difference in tumor purity or stromal cell infiltration
(Supplementary Fig. S5). Moreover, we leveraged scRNA-seq data
from DLP of 24-week-old MYC mice (FVB, 32) and showed that the
glycolytic signature (leading-edge genes of HFD-enriched hallmark_-
glycolysis gene set) was markedly expressed in the luminal cells,
specifically in high Ly6d luminal subtype confirming that HFD-in-
duced glycolytic shift affects epithelial tumor cells (Supplementary
Fig. S6A–S6C). Gene sets related to MYC activity (i.e., MYC_tar-
gets_V1), cancer progression (i.e., epithelial to mesenchymal transi-
tion and TGFb signaling), and inflammation (i.e., IFNg and a
response, IL6–JAK–STAT3 response) were all enriched in
MYC-transformed prostate and further enhanced by HFD (Fig. 3F,
lanes 1 and 2). However, MYC and HFD synergy was required
to activate gene signatures of hypoxia, DNA repair, and AR
transcriptional activity (i.e., androgen response; Fig. 3F, lane 2),
the latter being significantly antagonized following MYC over-
expression, as we described previously (45). Thus, not only does
obesogenic HFD amplify the transcriptional effects of MYC-driven
transformation, but it also cooperates with MYC to promote
transcriptional changes that activate ad hoc metabolic programs
and boost disease progression.

Obesogenic HFD modulates the TME
Intra-tumoral lactate accumulation has been reported to promote

tumor cell migration, angiogenesis, and immune evasion, serving as
fuel for lactate-avid Treg cells and as a stimulator of TAM M2
polarization (9, 49–52). Hence, we evaluated the effects of HFD/lactate
accumulation on the TME. Deconvolution models based on
bulk RNA-seq uncovered an increased proportion of infiltrating
macrophages in MYC-transformed prostate from mice fed an HFD
(Fig. 5A; Supplementary Fig. S7A and S7B). Concomitant enrichment

of a pro-tumor (M2-like) TAM gene signature, previously derived
from prostate-infiltrating macrophages of MYC mice, was detected
(Fig. 5B; ref. 29). Not only did we validate the TAM signature inMYC-
transformed DLP (Supplementary Table S15), but we also demon-
strated further enrichment withHFD (Fig. 5B). Again, this feature was
not observed in WT prostate (Supplementary Table S15). GSEA also
uncovered enrichment of a gene signature related to tumor-infiltrating
Treg cells in the DLP from MYC mice fed an HFD (Fig. 5C;
Supplementary Table S15; ref. 30). Consistent with GSEA, IHC
analysis confirmed increased infiltration of M2-like macrophages
(F4/80þ/CD206þ) in the stroma of DLP fromMYCmice fed an HFD.
Furthermore, ISH analysis in a subset of cases showed a higher
number of F4/80þ/PD-L1þ macrophages in HFD_MYC DLP, con-
firming that HFD-promoted M2-like infiltrating macrophages dis-
play immune suppressive features (Fig. 5D and E). FOXP3 immu-
nostaining and digital pathology were also used to quantify Treg in
stromal areas of MYC-transformed DLP. A greater Treg cell density
was detected in HFD-fed MYC mice both in the whole DLP stroma
and in the peri-invasive stroma (Fig. 5F and G). In line with these
findings, metabolomics uncovered HFD-mediated increased levels
of kynurenine, an intermediate of tryptophan metabolism that
mediates Treg cell generation/recruitment and effector T cells
suppression (Fig. 5H; Supplementary Table S8; ref. 53). Taken
together, our results demonstrate that obesogenic HFD/lactate
accumulation promotes an immune suppressive TME to support
prostate cancer progression.

Lactate promotes vascular tubulogenesis and prostate cancer
cell motility

On the basis of our evidence for HFD-enhanced tumor inva-
siveness (Fig. 1B–D) and previous findings showing increased
microvessel density in MYC mice fed an HFD (20), we leveraged
an endothelial cell signature derived from a scRNA-seq dataset (31)
and demonstrated the signature enrichment in HFD_MYC DLP
(Fig. 6A) concurrent to increased protein expression of the angio-
genic transcription factor HIF1a (Supplementary Fig. S4D). We
then assessed whether HFD-induced intratumor lactate accumula-
tion affect new vessel formation and prostate cancer cell migration
using in vitromodels directly exposed to lactate. MCT-1–expressing
immortalized HUVEC (Supplementary Fig. S8A) and MYC-CaP
cells were treated with high concentrations of lactate (2 and
10 mmol/L), which had been documented in human prostate cancer
and other tumor types (54, 55). HUVEC treatment with lactate
significantly increased the formation of capillary-like tubules on
Matrigel (Fig. 6B). In contrast, inhibition of lactate synthesis or
lactate uptake using the LDHA activity inhibitor FX11 (56) or the
MCT-1/MCT-4 dual inhibitor syrosingopine significantly reduced
tubulogenesis and prevented proper organization of capillary-like
tubules on Matrigel, respectively (Fig. 6C and D). MYC-CaP cells
treatment with lactate increased the fraction of motile cells, their
displacement over time, and promoted collective cell migration (i.e.,
wound closure), without affecting cell proliferation (Fig. 6E–G;
Supplementary Fig. S8B and S8C). In contrast, lactagenesis sup-
pression with FX11 reduced MYC-CaP cell migration, without
affecting either proliferation or LDHA/MCT-1 protein levels
(Fig. 6G; Supplementary Fig. S8D–S8F). TFM revealed that
MYC-CaP cells exerted higher traction forces on the ECM when
exposed to lactate (Fig. S6H and S6I), in line with a more invasive
phenotype (57). These results suggest that lactate accumulation
contributes to enhance HFD-induced angiogenesis and tumor
invasiveness.
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High saturated FA intake and BMI promote glycolytic features
and TME modulation in human prostate cancer

Finally, we explored whether preclinical findings were recapitulated
in the clinical setting. To do so, we used 319 primary prostate cancer

and a subset of adjacent normal tissues (n ¼ 157) from the HPFS and
PHS prospective cohorts that we had previously stratified according to
saturated FA intake and BMI (Supplementary Table S16; refs. 15, 42).
In line with the preclinical data, patients with prostate cancer with high

Figure 4.

Obesogenic high-fat diet boosts glucose uptake.A, Imaging experimentworkflow.B,Mouse weight before the start of CTD/HFD feeding (P¼0.7317) and at the end
of the study. ��, P ¼ 0.0023, two-sided unpaired t test; n ¼ 9 mice/group; mean� SD. C, Representative PET images (axial, coronal, and sagittal sections) of mice
placed in prone position.D,Bar plots showing difference inmean (� , P¼0.0355) andmaximum (� , P¼0.0279) SUV. Two-sided unpaired t test; n¼ 4–5mice/group;
mean� SD. One mouse (HFD_MYC) with tumor volume unsuitable for PET analysis was excluded (see Materials and Methods). E, Western blot of GLUT-1, LDHA,
MCT-1, and MCT-4 proteins. F, Densitometric analysis. Protein levels are normalized to b-actin or vinculin and expressed as arbitrary units (AU; GLUT-1, P¼ 0.0540;
LDHA, P¼ 0.3137; MCT-1, P¼0.8445; MCT-4, P¼ 0.9609, two-sided unpaired t tests; n¼ 4–5 biologically independent samples/group; mean� SD). 18FDG-PET/CT,
2-deoxy-2-[18F]fluoro-D-glucose-PET/CT; GLUT-1, glucose transporter 1.
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In line with metabolomics data, 18F-FDG uptake was significantly
increased in MYC-CaP allografts from mice fed an HFD. A parallel,
though nonsignificant (P¼ 0.0540), increase in the glucose transporter
GLUT-1 protein levels was also observed (Fig. 4A–F; Supplementary
Table S11). Interestingly, the lactate exporter MCT-4 was expressed in
allografts but not when MYC-CaP cells were grown in vitro under
standard conditions or when supplemented with murine serum (Sup-
plementary Fig. S4F). Seahorse analysis further confirmed that the
exposure of MYC-CaP cells to murine serum frommice fed an HFD is
not sufficient to promote aerobic glycolysis (Supplementary Fig. S4G),
suggesting that an intact in vivo system is required to capture MYC/o-
besogenic HFD cooperation to promote a glycolytic switch and intra-
tumor lactate accumulation.

Obesogenic HFD-induced transcriptional changes support the
Warburg effect and disease progression

To gain further molecular insights, we performed bulk RNA-seq in
DLP tissues (Supplementary Tables S12–S14). GSEA highlighted
MYC/HFD cooperation in promoting transcriptional programs to
support the Warburg effect and aggressive tumor features. Alongside
the expected signatures associated with FA metabolism/oxidative
phosphorylation, HFD was found to significantly enrich for glycolysis
and glycolysis-associated gene sets (i.e., hallmark_glycolysis, hall-
mark_PI3K_AKT_mTORC1 signaling, hallmark_ mTORC1 signal-
ing) inMYC-transformedDLPbut not in the normal prostate (Fig. 3F,
lanes 2 and 3; Supplementary Table S10). To rule out that themetabolic
changes we observed were simply the results of HFD-induced changes
in cellular composition rather than features of tumor metabolism
rewiring, we estimated tumor purity and cell composition using
the ESTIMATE andPUREEmethods (36, 37).Neithermethod showed
HFD-induced difference in tumor purity or stromal cell infiltration
(Supplementary Fig. S5). Moreover, we leveraged scRNA-seq data
from DLP of 24-week-old MYC mice (FVB, 32) and showed that the
glycolytic signature (leading-edge genes of HFD-enriched hallmark_-
glycolysis gene set) was markedly expressed in the luminal cells,
specifically in high Ly6d luminal subtype confirming that HFD-in-
duced glycolytic shift affects epithelial tumor cells (Supplementary
Fig. S6A–S6C). Gene sets related to MYC activity (i.e., MYC_tar-
gets_V1), cancer progression (i.e., epithelial to mesenchymal transi-
tion and TGFb signaling), and inflammation (i.e., IFNg and a
response, IL6–JAK–STAT3 response) were all enriched in
MYC-transformed prostate and further enhanced by HFD (Fig. 3F,
lanes 1 and 2). However, MYC and HFD synergy was required
to activate gene signatures of hypoxia, DNA repair, and AR
transcriptional activity (i.e., androgen response; Fig. 3F, lane 2),
the latter being significantly antagonized following MYC over-
expression, as we described previously (45). Thus, not only does
obesogenic HFD amplify the transcriptional effects of MYC-driven
transformation, but it also cooperates with MYC to promote
transcriptional changes that activate ad hoc metabolic programs
and boost disease progression.

Obesogenic HFD modulates the TME
Intra-tumoral lactate accumulation has been reported to promote

tumor cell migration, angiogenesis, and immune evasion, serving as
fuel for lactate-avid Treg cells and as a stimulator of TAM M2
polarization (9, 49–52). Hence, we evaluated the effects of HFD/lactate
accumulation on the TME. Deconvolution models based on
bulk RNA-seq uncovered an increased proportion of infiltrating
macrophages in MYC-transformed prostate from mice fed an HFD
(Fig. 5A; Supplementary Fig. S7A and S7B). Concomitant enrichment

of a pro-tumor (M2-like) TAM gene signature, previously derived
from prostate-infiltrating macrophages of MYC mice, was detected
(Fig. 5B; ref. 29). Not only did we validate the TAM signature inMYC-
transformed DLP (Supplementary Table S15), but we also demon-
strated further enrichment withHFD (Fig. 5B). Again, this feature was
not observed in WT prostate (Supplementary Table S15). GSEA also
uncovered enrichment of a gene signature related to tumor-infiltrating
Treg cells in the DLP from MYC mice fed an HFD (Fig. 5C;
Supplementary Table S15; ref. 30). Consistent with GSEA, IHC
analysis confirmed increased infiltration of M2-like macrophages
(F4/80þ/CD206þ) in the stroma of DLP fromMYCmice fed an HFD.
Furthermore, ISH analysis in a subset of cases showed a higher
number of F4/80þ/PD-L1þ macrophages in HFD_MYC DLP, con-
firming that HFD-promoted M2-like infiltrating macrophages dis-
play immune suppressive features (Fig. 5D and E). FOXP3 immu-
nostaining and digital pathology were also used to quantify Treg in
stromal areas of MYC-transformed DLP. A greater Treg cell density
was detected in HFD-fed MYC mice both in the whole DLP stroma
and in the peri-invasive stroma (Fig. 5F and G). In line with these
findings, metabolomics uncovered HFD-mediated increased levels
of kynurenine, an intermediate of tryptophan metabolism that
mediates Treg cell generation/recruitment and effector T cells
suppression (Fig. 5H; Supplementary Table S8; ref. 53). Taken
together, our results demonstrate that obesogenic HFD/lactate
accumulation promotes an immune suppressive TME to support
prostate cancer progression.

Lactate promotes vascular tubulogenesis and prostate cancer
cell motility

On the basis of our evidence for HFD-enhanced tumor inva-
siveness (Fig. 1B–D) and previous findings showing increased
microvessel density in MYC mice fed an HFD (20), we leveraged
an endothelial cell signature derived from a scRNA-seq dataset (31)
and demonstrated the signature enrichment in HFD_MYC DLP
(Fig. 6A) concurrent to increased protein expression of the angio-
genic transcription factor HIF1a (Supplementary Fig. S4D). We
then assessed whether HFD-induced intratumor lactate accumula-
tion affect new vessel formation and prostate cancer cell migration
using in vitromodels directly exposed to lactate. MCT-1–expressing
immortalized HUVEC (Supplementary Fig. S8A) and MYC-CaP
cells were treated with high concentrations of lactate (2 and
10 mmol/L), which had been documented in human prostate cancer
and other tumor types (54, 55). HUVEC treatment with lactate
significantly increased the formation of capillary-like tubules on
Matrigel (Fig. 6B). In contrast, inhibition of lactate synthesis or
lactate uptake using the LDHA activity inhibitor FX11 (56) or the
MCT-1/MCT-4 dual inhibitor syrosingopine significantly reduced
tubulogenesis and prevented proper organization of capillary-like
tubules on Matrigel, respectively (Fig. 6C and D). MYC-CaP cells
treatment with lactate increased the fraction of motile cells, their
displacement over time, and promoted collective cell migration (i.e.,
wound closure), without affecting cell proliferation (Fig. 6E–G;
Supplementary Fig. S8B and S8C). In contrast, lactagenesis sup-
pression with FX11 reduced MYC-CaP cell migration, without
affecting either proliferation or LDHA/MCT-1 protein levels
(Fig. 6G; Supplementary Fig. S8D–S8F). TFM revealed that
MYC-CaP cells exerted higher traction forces on the ECM when
exposed to lactate (Fig. S6H and S6I), in line with a more invasive
phenotype (57). These results suggest that lactate accumulation
contributes to enhance HFD-induced angiogenesis and tumor
invasiveness.
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High saturated FA intake and BMI promote glycolytic features
and TME modulation in human prostate cancer

Finally, we explored whether preclinical findings were recapitulated
in the clinical setting. To do so, we used 319 primary prostate cancer

and a subset of adjacent normal tissues (n ¼ 157) from the HPFS and
PHS prospective cohorts that we had previously stratified according to
saturated FA intake and BMI (Supplementary Table S16; refs. 15, 42).
In line with the preclinical data, patients with prostate cancer with high

Figure 4.

Obesogenic high-fat diet boosts glucose uptake.A, Imaging experimentworkflow.B,Mouse weight before the start of CTD/HFD feeding (P¼0.7317) and at the end
of the study. ��, P ¼ 0.0023, two-sided unpaired t test; n ¼ 9 mice/group; mean� SD. C, Representative PET images (axial, coronal, and sagittal sections) of mice
placed in prone position.D,Bar plots showing difference inmean (� , P¼0.0355) andmaximum (� , P¼0.0279) SUV. Two-sided unpaired t test; n¼ 4–5mice/group;
mean� SD. One mouse (HFD_MYC) with tumor volume unsuitable for PET analysis was excluded (see Materials and Methods). E, Western blot of GLUT-1, LDHA,
MCT-1, and MCT-4 proteins. F, Densitometric analysis. Protein levels are normalized to b-actin or vinculin and expressed as arbitrary units (AU; GLUT-1, P¼ 0.0540;
LDHA, P¼ 0.3137; MCT-1, P¼0.8445; MCT-4, P¼ 0.9609, two-sided unpaired t tests; n¼ 4–5 biologically independent samples/group; mean� SD). 18FDG-PET/CT,
2-deoxy-2-[18F]fluoro-D-glucose-PET/CT; GLUT-1, glucose transporter 1.
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Figure 5.

Obesogenic high-fat diet promotes TAM and Treg infiltration in invasive prostate cancer. A, Box plots showing macrophage proportion using ImmuCC and mMCP
deconvolution models (ImmuCC, � , P ¼ 0.016; mMCP, �� , P ¼ 0.0079, two-sided Wilcoxon rank-sum test). Box plots show median value, box boundaries: 25th and
75th percentiles; interquartile range (IQR), whiskers: max or min value before the 1.5x IQR fence. The dot plotted in the IQR represents the mean value. B and
C, Enrichment plot of TAM (B) and tumor-infiltrating Treg (TITR; C) signatures in MYC-transformed DLP. P value and normalized enrichment score (NES) are
indicated. D, Left, representative images of F4/80 (teal) and CD206 (yellow) dual IHC staining in DLP stroma. Images show segmentation of double positive
(F4/80þCD206þ; green) and single positive (F4/80þ; blue)macrophages. Scale bar, 20mm.Right, quantification (dot plot) of F4/80þCD206þmacrophages/stromal
area in each case (P¼0.0140, two-sided unpaired t test). One case (HFD_MYC)was removed from the analysis due to a staining issue. E, Left, representative images
of dual ISHwith RNAscope probes forMm-Adgre 1 (F4/80; teal) andMm-Cd274-C2 (PD-L1; red). Right, quantification (dot plot) of F4/80þPD-L1þmacrophages/area
in each case (P¼ 0.0260, two-sided Mann–Whitney U test). Dual ISH was performed in a subset of cases. One case (CTD_MYC) was removed from the analysis due
to a technical issue. F, Representative images of FOXP3 immunohistochemical staining in DLP stroma. FOXP3þ lymphocytes are highlighted in green. Scale bar
is shown. Black arrows, invasive glands. G, Quantification of FOXP3þ lymphocytes using digital pathology. Data are expressed as number of FOXP3þ

lymphocytes/stromal area (left, P ¼ 0.0036; right, P ¼ 0.0026, two-sided Mann–Whitney U test). H, Dot plot showing kynurenine levels measured in DLP by
LC-MS-MS (� , P ¼ 0.04, FDR < 0.15, two-sided unpaired t test). In D, E, G, and H, data are expressed as mean� SD; n ¼ biological independent mice/group.
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Figure 6.

Lactate promotes tubulogenesis and prostate cancer cell migration. A, Enrichment plot of an endothelial cell signature derived from scRNA-seq analysis of prostate
lobes from24-week-oldmice.P value andNESare indicated.B,Tube formation assay. Left, representativepictures of HUVECcells grownonMatrigel and stainedwith
calcein AM green-fluorescent dye. Cells were treated for 12 hours with lactate or PBS. Treatment with VEGF was used as positive control. Scale bar, 100 mm. Right,
quantification of tube segments and nodes (tube segments: � , P¼ 0.0333; �� , P¼ 0.0060; VEGF, ��� , P¼ 0.0006; tube nodes: � , P¼ 0.0160; ��, P¼ 0.0073; VEGF,
�� , P ¼ 0.0014, Kruskal–Wallis test). Number of segments and nodes in each well was normalized to the mean value of PBS condition in each experiment. Two
independent experiments with three biological replicates; each was performed (two pictures/well were taken in EXP 1; one picture/well was taken in EXP 2, n ¼ 9
pictures/group).C, Left, representative pictures of HUVEC cells grown onMatrigel in the presence of the LDHA inhibitor FX11 or DMSO for 10 hours. Scale bar, 100 mm.
Right, quantification of tube segments and nodes (tube segments: �� , P ¼ 0.0057; tube nodes: �� , P ¼ 0.0037, two-sided unpaired t test). (Continued on the
following page.)
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Figure 5.

Obesogenic high-fat diet promotes TAM and Treg infiltration in invasive prostate cancer. A, Box plots showing macrophage proportion using ImmuCC and mMCP
deconvolution models (ImmuCC, � , P ¼ 0.016; mMCP, �� , P ¼ 0.0079, two-sided Wilcoxon rank-sum test). Box plots show median value, box boundaries: 25th and
75th percentiles; interquartile range (IQR), whiskers: max or min value before the 1.5x IQR fence. The dot plotted in the IQR represents the mean value. B and
C, Enrichment plot of TAM (B) and tumor-infiltrating Treg (TITR; C) signatures in MYC-transformed DLP. P value and normalized enrichment score (NES) are
indicated. D, Left, representative images of F4/80 (teal) and CD206 (yellow) dual IHC staining in DLP stroma. Images show segmentation of double positive
(F4/80þCD206þ; green) and single positive (F4/80þ; blue)macrophages. Scale bar, 20mm.Right, quantification (dot plot) of F4/80þCD206þmacrophages/stromal
area in each case (P¼0.0140, two-sided unpaired t test). One case (HFD_MYC)was removed from the analysis due to a staining issue. E, Left, representative images
of dual ISHwith RNAscope probes forMm-Adgre 1 (F4/80; teal) andMm-Cd274-C2 (PD-L1; red). Right, quantification (dot plot) of F4/80þPD-L1þmacrophages/area
in each case (P¼ 0.0260, two-sided Mann–Whitney U test). Dual ISH was performed in a subset of cases. One case (CTD_MYC) was removed from the analysis due
to a technical issue. F, Representative images of FOXP3 immunohistochemical staining in DLP stroma. FOXP3þ lymphocytes are highlighted in green. Scale bar
is shown. Black arrows, invasive glands. G, Quantification of FOXP3þ lymphocytes using digital pathology. Data are expressed as number of FOXP3þ

lymphocytes/stromal area (left, P ¼ 0.0036; right, P ¼ 0.0026, two-sided Mann–Whitney U test). H, Dot plot showing kynurenine levels measured in DLP by
LC-MS-MS (� , P ¼ 0.04, FDR < 0.15, two-sided unpaired t test). In D, E, G, and H, data are expressed as mean� SD; n ¼ biological independent mice/group.
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Figure 6.

Lactate promotes tubulogenesis and prostate cancer cell migration. A, Enrichment plot of an endothelial cell signature derived from scRNA-seq analysis of prostate
lobes from24-week-oldmice.P value andNESare indicated.B,Tube formation assay. Left, representativepictures of HUVECcells grownonMatrigel and stainedwith
calcein AM green-fluorescent dye. Cells were treated for 12 hours with lactate or PBS. Treatment with VEGF was used as positive control. Scale bar, 100 mm. Right,
quantification of tube segments and nodes (tube segments: � , P¼ 0.0333; �� , P¼ 0.0060; VEGF, ��� , P¼ 0.0006; tube nodes: � , P¼ 0.0160; ��, P¼ 0.0073; VEGF,
�� , P ¼ 0.0014, Kruskal–Wallis test). Number of segments and nodes in each well was normalized to the mean value of PBS condition in each experiment. Two
independent experiments with three biological replicates; each was performed (two pictures/well were taken in EXP 1; one picture/well was taken in EXP 2, n ¼ 9
pictures/group).C, Left, representative pictures of HUVEC cells grown onMatrigel in the presence of the LDHA inhibitor FX11 or DMSO for 10 hours. Scale bar, 100 mm.
Right, quantification of tube segments and nodes (tube segments: �� , P ¼ 0.0057; tube nodes: �� , P ¼ 0.0037, two-sided unpaired t test). (Continued on the
following page.)
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saturated FA intake (SFI) showed higher BMI (Fig. 7A) and increased
incidence of severely overweight/obese cases (about 35% and 15% in
prostate cancer with high and low SFI, respectively, Supplementary
Table S16). GSEA confirmed SFI-dependent enrichment of the gly-
colysis and glycolysis-promoting gene sets (i.e., hallmark_glycolysis,
hallmark_mTORC1_signalling, hallmark_PI3K_AKT_MTOR_signalling)
in prostate cancer but not in the adjacent normal tissue (Fig. 7B;
Supplementary Table S17). The glycolysis gene set was not enriched
by obesity per se (independent of FA intake) or by high SFI in lean
patients, suggesting that high SFI with concomitant features of
obesity is key in promoting the glycolytic switch (Fig. 7C, Supple-
mentary Fig. S9A–S9C, Supplementary Tables S18–S19). Although
these tumors had not been genetically characterized, prostate cancer
from patients with high SFI bears enhanced MYC-transcriptional
activity (MYC_targets_V1; Supplementary Table S17; ref. 15), in
line with the preclinical data. Deconvolution models based on bulk
RNA-seq uncovered a significant increased proportion of M2-like
macrophages in highly glycolytic prostate cancer from patients with
high SFI compared with low glycolytic prostate cancer or to prostate
cancer from patients with low SFI (Fig. 7D, Supplementary
Fig. S10). These data strongly suggest that prostate cancer acqui-
sition of glycolytic features contributes to shaping a TME support-
ive of cancer progression.

To confirm that acquiring a “glycolytic phenotype” is associated
with worse clinicopathological features, we interrogated both the
TCGA/PRAD and META855 datasets (43, 44). High levels of LDHA
were associated with increased GS, BCR, and shorter disease-free
survival in the TCGA/PRAD dataset (Fig. 7E–G). The META855
dataset confirmed increased LDHA mRNA levels in BCR patients
(Fig. 7H). Further multivariate analysis highlighted LDHA as inde-
pendent predictor of BCR (Fig. 8A). Taken together, both preclinical
and clinical data support the concept that obesogenic HFD, rich in
saturated FAs, cooperates with oncogenic transformation to promote a
tumor glycolytic switch that fosters prostate cancer progression
(Fig. 8B).

Discussion
Prostate cancer represents the second cause of cancer-related death

in men in the US and the third in Europe (10, 11). Although AR
signaling is themajor driver of thedisease, evidence is accumulating that
obesity and high consumption of saturated FAs contribute to the
developmentofmoreadvancedandlethalprostatecancer(12,13,42,58).
This is particularly worrisome in Western countries where prostate
cancer incidence is rising and both obesity and consumption of
unhealthy diets are increasing at alarming rates. The resulting socio-
economic impact is dramatic, highlighting the urgent need of improv-
ing therapeutic strategies and patient management (59).

Here, we explored whether the cooperation between obesogenic
HFD and prostate cancer genetic drive (i.e., MYC overexpression)

orchestrates specific metabolic programs that shape TME and support
prostate cancer progressionwith the goal to identify new approaches of
personalized nutrition and/or therapies targeting metabolic liabilities.
In contrast to the ketogenic diet, characterized by very high fat and
extremely low carbohydrate contents, our HFD, providing high fat but
also carbohydrate intake, better resembles the western diet, which is
associated with increased risk of obesity and obesity-like metabolic
features in humans (60).

Digital pathology analyses demonstrated that obesogenic HFD
accelerates MYC-driven IA development. However, unlike Blando
and colleagues (20), we report IA only in DLP. This is relevant because
DLP is the lobe that most closely resembles the human prostate
peripheral zone, where prostate cancer typically develops (61). The
integration of mass-spectrometry, RNA-seq, and 18FDG-PET imaging
approaches revealed that accelerated tumor progression is supported
by a metabolic shift toward aerobic glycolysis, which is fueled by
obesogenic HFD. NMR confirmed that intratumor lactate accumula-
tion is observed in MYC-transformed prostate from HFD-fed obese
mice, suggesting that obesity-associated hyperinsulinemia and hyper-
glycemia support the glycolytic shift in the murine model. Though
recognized as one of the hallmarks of cancer, increased aerobic
glycolysis or Warburg effect has not been a Leitmotiv in prostate
cancer, whose classic features are increased oxidativemetabolism and a
lipogenic phenotype (62). However, imaging studies with hyperpolar-
ized 13C-MR (HP-MR) spectrometry have recently shown lactate
accumulation in high-grade and castration-resistant prostate cancer.
This is compelling that aerobic glycolysis and lactate accumulation
indeed sustain prostate cancer aggressiveness and may represent a
therapeutic target in advanced prostate cancer (55, 62–66). Our study
fully aligns with and adds to these findings by showing that obesogenic
HFD alters nutrient availability and tumor metabolic dependencies to
boost prostate cancer progression. In an HFD-induced glucose- and
insulin-enriched environment, transformed prostate cancer cells, but
not their benign counterparts, become glucose-avid, enhance aerobic
glycolysis, and ultimately accumulate lactate. Despite MCT are shared
transporters for both lactate and ketone bodies (i.e., 3-beta-hydro-
xybutyrate), we did not observe alterations in ketone metabolism in
our model. No glycolytic shift was observed when MYC-CaP cells in
2D were exposed to HFD serum, highlighting the concerted involve-
ment of systemic metabolism and TME in MYC/HFD cooperation.
Leveraging scRNA-seq data and deconvolution methods, we demon-
strated that the glycolytic switch is not the result of HFD-induced
changes in tumor purity and it affectsmostly luminal cells, in particular
luminal cells expressing Ly6d, a marker of castration resistance (67).
Both metabolomics and transcriptomics data confirmed that MYC
and HFD work as partners in crime. Prior events of oncogenic
transformation are required for HFD to promote ad hoc metabolic
(e.g., lactate accumulation) and transcriptional (e.g., hypoxia, andro-
gen response) programs to promote disease progression. Recently,
high lactate concentration has been associated to reduced sensitivity to

(Continued.) Experiment was performedwith three biological replicates (each biological replicate was the average of 5 technical replicates). In B and C,mean values
� SDare shown.D, Left, representativepictures ofHUVECcells grownonMatrigel treatedwithMCT-1 /MCT-4dual inhibitor syrosingopine (Syro, 10mmol/L) orDMSO
in the presence of lactate 10 mmol/L for 12 hours. Scale bar, 100 mm. Magnifications, �40 (right). Experiment was performed with two biological replicates (three
technical replicates/each) and repeated twice. E, Bar plot showing the fraction of motile and non-motile cells under lactate or PBS treatment for 3 hours. Cells were
previously pretreated for 72 hours. A P value is shown (two-sided Fisher exact test). Three independent experimentswith three biological replicateswere performed.
F, Mean square displacement (MSD) overtime and matching nonlinear fits (95% CI; 301 cells/condition; mean� SEM). G, MYC-CaP wound-healing assay. Bar plots
showing the percentage of wound closure after 48 hours of treatment with lactate/PBS (��, P¼ 0.0047) or with FX11/DMSO (�� , P¼ 0.0058), two-sided unpaired t
test; mean� SD. Three independent experiments with three biological replicates; each was performed. Two pictures/well were taken. H, Representative traction
maps of MYC-CaP cells treated with lactate or PBS. Cell contour is shown (black line). I, Box plot showing average force in MYC-CaP cells treated with 10 mmol/L
lactate (n ¼ 103) or PBS (n ¼ 95; � , P ¼ 0.0139; two-sided unpaired t test with Welch correction). Box-plot shows median value, box boundaries: 25th and 75th
percentiles; interquartile range, whiskers: min to max value. La, lactate; Pa, Pascal.
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enzalutamide (68), which is in line with our results of reactivation of
AR signaling under HFD. Downplayed as a simple waste product for
several decades, lactate has recently emerged as an “oncometabolite”
involved in all the main aspects of cancer progression, including cell
migration/invasion, angiogenesis, metastasis formation, epigenetic

control, and immune escape (9). The mechanisms of immune evasion
mediated by high levels of lactate include overexpression of the
immune checkpoints PD-1 and PD-L1 on Treg and tumor cells,
fueling of lactate-avid Treg cells, and polarization of macrophages
toward an M2-like phenotype (49–51). Conversely, inhibiting
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Figure 7.

High saturated fat intake andBMI are associatedwith prostate cancer tumors characterized by glycolytic features and an immunosuppressive TME.A,Comparison of
BMI in prostate cancer patient with high and low SFI. B and C, Enrichment plot of “Hallmark_glycolysis” gene set in patients with prostate cancer stratified for SFI
(B) and BMI (C). Normalized enrichment score (NES), FDR value, and number of cases are indicated. D, Box plots showing the proportion of tumor-infiltrating
macrophages using QuanTIseq deconvolution model. Number of cases and P values are indicated. E and F, Box plots comparing LDHAmRNA levels in patients with
prostate cancer with different Gleason score (GS; E) and BCR status (F). P values and number of patients are indicated; two-sided Mann–Whitney U test. Box plots
show median value, box boundaries: 25th and 75th percentiles; interquartile range, whiskers: Min to max value. G, Kaplan–Meier curves of disease-free survival. A P
value is indicated (log-rank test).H,Box plot comparing LDHAmRNA levels in patientswith prostate cancer with/without BCR from theMETA855 dataset. ForD and
H, Wilcoxon rank-sum test was used; P value and number of patients are indicated. Box plots show median value, box boundaries: 25th and 75th percentiles;
interquartile range (IQR), whiskers: max or min value before the 1.5x IQR fence. Dot plotted in the IQR represents the mean value. ns, not significant; PCa, prostate
cancer.

Boufaied et al.

Cancer Res; 84(11) June 1, 2024 CANCER RESEARCH1850



saturated FA intake (SFI) showed higher BMI (Fig. 7A) and increased
incidence of severely overweight/obese cases (about 35% and 15% in
prostate cancer with high and low SFI, respectively, Supplementary
Table S16). GSEA confirmed SFI-dependent enrichment of the gly-
colysis and glycolysis-promoting gene sets (i.e., hallmark_glycolysis,
hallmark_mTORC1_signalling, hallmark_PI3K_AKT_MTOR_signalling)
in prostate cancer but not in the adjacent normal tissue (Fig. 7B;
Supplementary Table S17). The glycolysis gene set was not enriched
by obesity per se (independent of FA intake) or by high SFI in lean
patients, suggesting that high SFI with concomitant features of
obesity is key in promoting the glycolytic switch (Fig. 7C, Supple-
mentary Fig. S9A–S9C, Supplementary Tables S18–S19). Although
these tumors had not been genetically characterized, prostate cancer
from patients with high SFI bears enhanced MYC-transcriptional
activity (MYC_targets_V1; Supplementary Table S17; ref. 15), in
line with the preclinical data. Deconvolution models based on bulk
RNA-seq uncovered a significant increased proportion of M2-like
macrophages in highly glycolytic prostate cancer from patients with
high SFI compared with low glycolytic prostate cancer or to prostate
cancer from patients with low SFI (Fig. 7D, Supplementary
Fig. S10). These data strongly suggest that prostate cancer acqui-
sition of glycolytic features contributes to shaping a TME support-
ive of cancer progression.

To confirm that acquiring a “glycolytic phenotype” is associated
with worse clinicopathological features, we interrogated both the
TCGA/PRAD and META855 datasets (43, 44). High levels of LDHA
were associated with increased GS, BCR, and shorter disease-free
survival in the TCGA/PRAD dataset (Fig. 7E–G). The META855
dataset confirmed increased LDHA mRNA levels in BCR patients
(Fig. 7H). Further multivariate analysis highlighted LDHA as inde-
pendent predictor of BCR (Fig. 8A). Taken together, both preclinical
and clinical data support the concept that obesogenic HFD, rich in
saturated FAs, cooperates with oncogenic transformation to promote a
tumor glycolytic switch that fosters prostate cancer progression
(Fig. 8B).

Discussion
Prostate cancer represents the second cause of cancer-related death

in men in the US and the third in Europe (10, 11). Although AR
signaling is themajor driver of thedisease, evidence is accumulating that
obesity and high consumption of saturated FAs contribute to the
developmentofmoreadvancedandlethalprostatecancer(12,13,42,58).
This is particularly worrisome in Western countries where prostate
cancer incidence is rising and both obesity and consumption of
unhealthy diets are increasing at alarming rates. The resulting socio-
economic impact is dramatic, highlighting the urgent need of improv-
ing therapeutic strategies and patient management (59).

Here, we explored whether the cooperation between obesogenic
HFD and prostate cancer genetic drive (i.e., MYC overexpression)

orchestrates specific metabolic programs that shape TME and support
prostate cancer progressionwith the goal to identify new approaches of
personalized nutrition and/or therapies targeting metabolic liabilities.
In contrast to the ketogenic diet, characterized by very high fat and
extremely low carbohydrate contents, our HFD, providing high fat but
also carbohydrate intake, better resembles the western diet, which is
associated with increased risk of obesity and obesity-like metabolic
features in humans (60).

Digital pathology analyses demonstrated that obesogenic HFD
accelerates MYC-driven IA development. However, unlike Blando
and colleagues (20), we report IA only in DLP. This is relevant because
DLP is the lobe that most closely resembles the human prostate
peripheral zone, where prostate cancer typically develops (61). The
integration of mass-spectrometry, RNA-seq, and 18FDG-PET imaging
approaches revealed that accelerated tumor progression is supported
by a metabolic shift toward aerobic glycolysis, which is fueled by
obesogenic HFD. NMR confirmed that intratumor lactate accumula-
tion is observed in MYC-transformed prostate from HFD-fed obese
mice, suggesting that obesity-associated hyperinsulinemia and hyper-
glycemia support the glycolytic shift in the murine model. Though
recognized as one of the hallmarks of cancer, increased aerobic
glycolysis or Warburg effect has not been a Leitmotiv in prostate
cancer, whose classic features are increased oxidativemetabolism and a
lipogenic phenotype (62). However, imaging studies with hyperpolar-
ized 13C-MR (HP-MR) spectrometry have recently shown lactate
accumulation in high-grade and castration-resistant prostate cancer.
This is compelling that aerobic glycolysis and lactate accumulation
indeed sustain prostate cancer aggressiveness and may represent a
therapeutic target in advanced prostate cancer (55, 62–66). Our study
fully aligns with and adds to these findings by showing that obesogenic
HFD alters nutrient availability and tumor metabolic dependencies to
boost prostate cancer progression. In an HFD-induced glucose- and
insulin-enriched environment, transformed prostate cancer cells, but
not their benign counterparts, become glucose-avid, enhance aerobic
glycolysis, and ultimately accumulate lactate. Despite MCT are shared
transporters for both lactate and ketone bodies (i.e., 3-beta-hydro-
xybutyrate), we did not observe alterations in ketone metabolism in
our model. No glycolytic shift was observed when MYC-CaP cells in
2D were exposed to HFD serum, highlighting the concerted involve-
ment of systemic metabolism and TME in MYC/HFD cooperation.
Leveraging scRNA-seq data and deconvolution methods, we demon-
strated that the glycolytic switch is not the result of HFD-induced
changes in tumor purity and it affectsmostly luminal cells, in particular
luminal cells expressing Ly6d, a marker of castration resistance (67).
Both metabolomics and transcriptomics data confirmed that MYC
and HFD work as partners in crime. Prior events of oncogenic
transformation are required for HFD to promote ad hoc metabolic
(e.g., lactate accumulation) and transcriptional (e.g., hypoxia, andro-
gen response) programs to promote disease progression. Recently,
high lactate concentration has been associated to reduced sensitivity to

(Continued.) Experiment was performedwith three biological replicates (each biological replicate was the average of 5 technical replicates). In B and C,mean values
� SDare shown.D, Left, representativepictures ofHUVECcells grownonMatrigel treatedwithMCT-1 /MCT-4dual inhibitor syrosingopine (Syro, 10mmol/L) orDMSO
in the presence of lactate 10 mmol/L for 12 hours. Scale bar, 100 mm. Magnifications, �40 (right). Experiment was performed with two biological replicates (three
technical replicates/each) and repeated twice. E, Bar plot showing the fraction of motile and non-motile cells under lactate or PBS treatment for 3 hours. Cells were
previously pretreated for 72 hours. A P value is shown (two-sided Fisher exact test). Three independent experimentswith three biological replicateswere performed.
F, Mean square displacement (MSD) overtime and matching nonlinear fits (95% CI; 301 cells/condition; mean� SEM). G, MYC-CaP wound-healing assay. Bar plots
showing the percentage of wound closure after 48 hours of treatment with lactate/PBS (��, P¼ 0.0047) or with FX11/DMSO (�� , P¼ 0.0058), two-sided unpaired t
test; mean� SD. Three independent experiments with three biological replicates; each was performed. Two pictures/well were taken. H, Representative traction
maps of MYC-CaP cells treated with lactate or PBS. Cell contour is shown (black line). I, Box plot showing average force in MYC-CaP cells treated with 10 mmol/L
lactate (n ¼ 103) or PBS (n ¼ 95; � , P ¼ 0.0139; two-sided unpaired t test with Welch correction). Box-plot shows median value, box boundaries: 25th and 75th
percentiles; interquartile range, whiskers: min to max value. La, lactate; Pa, Pascal.
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enzalutamide (68), which is in line with our results of reactivation of
AR signaling under HFD. Downplayed as a simple waste product for
several decades, lactate has recently emerged as an “oncometabolite”
involved in all the main aspects of cancer progression, including cell
migration/invasion, angiogenesis, metastasis formation, epigenetic

control, and immune escape (9). The mechanisms of immune evasion
mediated by high levels of lactate include overexpression of the
immune checkpoints PD-1 and PD-L1 on Treg and tumor cells,
fueling of lactate-avid Treg cells, and polarization of macrophages
toward an M2-like phenotype (49–51). Conversely, inhibiting
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Figure 7.

High saturated fat intake andBMI are associatedwith prostate cancer tumors characterized by glycolytic features and an immunosuppressive TME.A,Comparison of
BMI in prostate cancer patient with high and low SFI. B and C, Enrichment plot of “Hallmark_glycolysis” gene set in patients with prostate cancer stratified for SFI
(B) and BMI (C). Normalized enrichment score (NES), FDR value, and number of cases are indicated. D, Box plots showing the proportion of tumor-infiltrating
macrophages using QuanTIseq deconvolution model. Number of cases and P values are indicated. E and F, Box plots comparing LDHAmRNA levels in patients with
prostate cancer with different Gleason score (GS; E) and BCR status (F). P values and number of patients are indicated; two-sided Mann–Whitney U test. Box plots
show median value, box boundaries: 25th and 75th percentiles; interquartile range, whiskers: Min to max value. G, Kaplan–Meier curves of disease-free survival. A P
value is indicated (log-rank test).H,Box plot comparing LDHAmRNA levels in patientswith prostate cancer with/without BCR from theMETA855 dataset. ForD and
H, Wilcoxon rank-sum test was used; P value and number of patients are indicated. Box plots show median value, box boundaries: 25th and 75th percentiles;
interquartile range (IQR), whiskers: max or min value before the 1.5x IQR fence. Dot plotted in the IQR represents the mean value. ns, not significant; PCa, prostate
cancer.
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Multivariable analysis-biochemical recurrence

Variable HR (95% CI) P

Age 0.95 (0.94–0.96) 4.0643E–15

Preoperative PSA 1.00 (0.99–1.01) 4.7308E–01

Gleason score 1.53 (1.35–1.73) 1.0576E–11

Seminal vesicle invasion 1.44 (1.14–1.83) 2.1446E–03

Extracapsular extension 1.20 (0.97–1.50) 9.7082E–02

Surgical margins 1.52 (1.21–1.91)  3.2640E–04

LDHA  (≦90 percentile) Reference

LDHA  (>90 percentile) 1.39 (1.02–1.90) 3.8824E–02

A

B

0.0 0.5 1.0 1.5 2.0

Figure 8.

Tumor acquisition of glycolytic features is associatedwithworse prognosis.A,Multivariable analysis (MVA) using the proportional hazards regressionmodel. Hazard
ratio (HR) �95% confidence interval (CI) is shown. The P value was calculated with the Wald test. B, Graphical summary. The oncogene MYC promotes a broad
metabolic reprogramming. Obesogenic HFD not only enhances MYC-driven metabolic vulnerabilities (bold black) but also induces aerobic glycolysis and lactate
accumulation (bold red). The latter boosts angiogenesis, ECM remodeling, prostate cancer cell migration, immune evasion, generating a TME permissive of prostate
cancer progression. Red outline in hexagons/circles indicatesmetabolites that are increasedwith HFD inMYC-transformedDLP.aKG,a-ketoglutarate; FADH2, flavin
adenine dinucleotide; FA, fatty acid; Glc, glucose; Glu, glutamate; Gln, glutamine; LPL, lysophospholipid; OXPHOS, oxidative phosphorylation; NADH, nicotinamide
adenine dinucleotide; PL, phospholipid; PPP, pentose phosphate pathway; Pyr, pyruvate; Ser/Gly: serine/glycine SPL, sphingolipid; TG, triglyceride. Of note, food
images are not a direct translation of the murine diets used in this study.
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enhanced lactate efflux from cancer cells preserves T cell effector
functions and augments the effectiveness of immune checkpoint
blockade (69). Physiologic levels of lactate can, however, directly fuel
the TCA cycle, enhancing T-cell bioenergetic and biosynthetic capac-
ity (70). This strongly highlights the crucial role of lactate in shaping
immune cell phenotypes in both physiological and pathological con-
ditions. Inflammation-related pathways (i.e., IFN gamma response,
IFN alpha response, inflammatory response, TNFA signaling via
NFKB, see Fig. 3F) were also enriched in prostate cancer from mice
fed an HFD. Future studies using different dietary patterns and
isocaloric diets will be required to better characterize the interplay
with these inflammatory pathways. In this study, not only we con-
firmed that lactate boosts vascular tube formation (71), but we propose
that this event may be part of an adaptative response to maintaining
adequate nutrient and oxygen supply under hypoxia, which has
emerged fromGSEA of bothHFD_MYCprostates and prostate cancer
from patients with high SFI (Fig. 3F; Supplementary Table S17). We
also demonstrated that lactate directly promotes prostate cancer cell
migration and generation of higher traction forces on the underlying
ECM, thus increasing prostate cancer cell contractility and ECM
remodeling. The latter is crucial for cancer cell breaching through
the basement membrane and for the release of chemoattractants and
growth factors that promote neoangiogenesis and TME cell recruit-
ment (72).We also proved that low concentration of FX11, which does
not affect cell proliferation, is sufficient to inhibit prostate cancer cell
migration, opening a therapeutic window for LDHA inhibitors to
control disease progression without causing major side effects. Most
relevant, this study uncovers a scenario whereby HFD-induced met-
abolic rewiring acts synergistically on both prostate cancer cells and
TME to create a favorable milieu for invasive prostate cancer cells to
thrive. Although accommodating oncogene-driven exacerbated ana-
bolic and energetic needs of prostate cancer cells as the disease
progresses, obesogenic HFD concurrently fosters an immunosuppres-
sive TME through the intratumor accumulation of lactate. We indeed
observed that both TAM M2-like (F4/80þ CD260þ and F4/80þ PD-
L1þ) and Treg (FOXP3þ) infiltration were significantly increase when
lactate accumulates in IA from mice fed an HFD. These results are in
line with recent observations whereby lactate secretion from
PTEN/p53-deficient prostate cancer cells induces histone lactylation
(H3K18lac) within macrophages and suppresses their phagocytic
activity (73). Furthermore, our data suggest that formation of newly
leaky vessels and increased cell contractility may contribute to lactate-
induced TAM polarization and Treg infiltration. Further studies are,
however, required to better clarify these aspects. Taken together, our
preclinical findings bring forth the idea that pharmacological/dietary
interventions aimed at reversing lactate accumulation represent poten-
tial means to overcome/delay resistance to standard of care treatments
and improve response to immunotherapy, insofar largely ineffective in
advanced prostate cancer. This is strongly supported by a recent study
showing that reversal of lactate accumulation and PD-1–mediated
TAM immunosuppression though a PI3K inhibitor and anti-PD1
antibody, respectively, improve the efficacy of androgen deprivation
therapy (73). Inhibitors of LDHA and MCT are currently being
developed or tested in clinical trials and they may be soon available
for combinatory therapies (9).

Strikingly, preclinical findings translate into the clinical setting.
Interrogating the prospective human cohorts HPFS and PHS we
observed an increased BMI in patients with high-saturated FA intake
and demonstrated that prostate cancer from these patients displays
glycolytic features, in line with the results obtained in mice fed
obesogenic HFD. This was associated with increased proportion of

M2-like infiltrating macrophages, suggesting that prostate cancer
acquisition of glycolytic features shapes the TME to support disease
progression. Our results are consistent with recent evidence from
scRNA-seq experiments in humanmetastatic prostate cancer samples,
which revealed a direct correlation between tumor glycolytic activity
andmacrophage phagocytosis suppression (73). Obesity per se or high
SFI in lean patients was not sufficient to induce tumor glycolytic
features, suggesting that high SFI with concomitant features of obesity
is key in promoting the glycolytic switch. It is also likely that obesity-
associated modulation of hormonal axis and testosterone/estrogen
levels might contribute to the prostate cancer metabolic rewiring.

Analysis of TCGA andMETA855 datasets further confirmed earlier
evidence that acquiring a lactagenic phenotype, namely high levels of
LDHAmRNA, is associated with more aggressive tumor features and
worse prognosis (74), calling for clinical trials to test inhibitors of
LDHA and lactate efflux in advanced prostate cancer. Recently,
Sushentsev and colleagues (75) demonstrated the use of
[1–13C]pyruvate conversion to lactate HP-MR imaging as a biomarker
predictive of clinically relevant disease, providing (i) a noninvasive
approach to stratify high-risk patients and (ii) a potential tool to
monitor response to LDHA and MCT-4 inhibitors. Our future work
will specifically address this aspect.

In conclusion, this study identified lactate as a key mediator
connecting obesogenic HFD, TME modulation, and prostate cancer
progression, setting the stage for ad hoc dietary intervention (i.e., low
saturated fat diet) and/or the use of lactagenesis inhibitors in advanced
prostate cancer. Because intratumor lactate measurement is safely
applicable in the clinic, this study strongly supports lactate assessment
as both prognostic and predictive biomarker.
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Multivariable analysis-biochemical recurrence

Variable HR (95% CI) P

Age 0.95 (0.94–0.96) 4.0643E–15

Preoperative PSA 1.00 (0.99–1.01) 4.7308E–01

Gleason score 1.53 (1.35–1.73) 1.0576E–11

Seminal vesicle invasion 1.44 (1.14–1.83) 2.1446E–03

Extracapsular extension 1.20 (0.97–1.50) 9.7082E–02

Surgical margins 1.52 (1.21–1.91)  3.2640E–04

LDHA  (≦90 percentile) Reference

LDHA  (>90 percentile) 1.39 (1.02–1.90) 3.8824E–02

A

B

0.0 0.5 1.0 1.5 2.0

Figure 8.

Tumor acquisition of glycolytic features is associatedwithworse prognosis.A,Multivariable analysis (MVA) using the proportional hazards regressionmodel. Hazard
ratio (HR) �95% confidence interval (CI) is shown. The P value was calculated with the Wald test. B, Graphical summary. The oncogene MYC promotes a broad
metabolic reprogramming. Obesogenic HFD not only enhances MYC-driven metabolic vulnerabilities (bold black) but also induces aerobic glycolysis and lactate
accumulation (bold red). The latter boosts angiogenesis, ECM remodeling, prostate cancer cell migration, immune evasion, generating a TME permissive of prostate
cancer progression. Red outline in hexagons/circles indicatesmetabolites that are increasedwith HFD inMYC-transformedDLP.aKG,a-ketoglutarate; FADH2, flavin
adenine dinucleotide; FA, fatty acid; Glc, glucose; Glu, glutamate; Gln, glutamine; LPL, lysophospholipid; OXPHOS, oxidative phosphorylation; NADH, nicotinamide
adenine dinucleotide; PL, phospholipid; PPP, pentose phosphate pathway; Pyr, pyruvate; Ser/Gly: serine/glycine SPL, sphingolipid; TG, triglyceride. Of note, food
images are not a direct translation of the murine diets used in this study.
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enhanced lactate efflux from cancer cells preserves T cell effector
functions and augments the effectiveness of immune checkpoint
blockade (69). Physiologic levels of lactate can, however, directly fuel
the TCA cycle, enhancing T-cell bioenergetic and biosynthetic capac-
ity (70). This strongly highlights the crucial role of lactate in shaping
immune cell phenotypes in both physiological and pathological con-
ditions. Inflammation-related pathways (i.e., IFN gamma response,
IFN alpha response, inflammatory response, TNFA signaling via
NFKB, see Fig. 3F) were also enriched in prostate cancer from mice
fed an HFD. Future studies using different dietary patterns and
isocaloric diets will be required to better characterize the interplay
with these inflammatory pathways. In this study, not only we con-
firmed that lactate boosts vascular tube formation (71), but we propose
that this event may be part of an adaptative response to maintaining
adequate nutrient and oxygen supply under hypoxia, which has
emerged fromGSEA of bothHFD_MYCprostates and prostate cancer
from patients with high SFI (Fig. 3F; Supplementary Table S17). We
also demonstrated that lactate directly promotes prostate cancer cell
migration and generation of higher traction forces on the underlying
ECM, thus increasing prostate cancer cell contractility and ECM
remodeling. The latter is crucial for cancer cell breaching through
the basement membrane and for the release of chemoattractants and
growth factors that promote neoangiogenesis and TME cell recruit-
ment (72).We also proved that low concentration of FX11, which does
not affect cell proliferation, is sufficient to inhibit prostate cancer cell
migration, opening a therapeutic window for LDHA inhibitors to
control disease progression without causing major side effects. Most
relevant, this study uncovers a scenario whereby HFD-induced met-
abolic rewiring acts synergistically on both prostate cancer cells and
TME to create a favorable milieu for invasive prostate cancer cells to
thrive. Although accommodating oncogene-driven exacerbated ana-
bolic and energetic needs of prostate cancer cells as the disease
progresses, obesogenic HFD concurrently fosters an immunosuppres-
sive TME through the intratumor accumulation of lactate. We indeed
observed that both TAM M2-like (F4/80þ CD260þ and F4/80þ PD-
L1þ) and Treg (FOXP3þ) infiltration were significantly increase when
lactate accumulates in IA from mice fed an HFD. These results are in
line with recent observations whereby lactate secretion from
PTEN/p53-deficient prostate cancer cells induces histone lactylation
(H3K18lac) within macrophages and suppresses their phagocytic
activity (73). Furthermore, our data suggest that formation of newly
leaky vessels and increased cell contractility may contribute to lactate-
induced TAM polarization and Treg infiltration. Further studies are,
however, required to better clarify these aspects. Taken together, our
preclinical findings bring forth the idea that pharmacological/dietary
interventions aimed at reversing lactate accumulation represent poten-
tial means to overcome/delay resistance to standard of care treatments
and improve response to immunotherapy, insofar largely ineffective in
advanced prostate cancer. This is strongly supported by a recent study
showing that reversal of lactate accumulation and PD-1–mediated
TAM immunosuppression though a PI3K inhibitor and anti-PD1
antibody, respectively, improve the efficacy of androgen deprivation
therapy (73). Inhibitors of LDHA and MCT are currently being
developed or tested in clinical trials and they may be soon available
for combinatory therapies (9).

Strikingly, preclinical findings translate into the clinical setting.
Interrogating the prospective human cohorts HPFS and PHS we
observed an increased BMI in patients with high-saturated FA intake
and demonstrated that prostate cancer from these patients displays
glycolytic features, in line with the results obtained in mice fed
obesogenic HFD. This was associated with increased proportion of

M2-like infiltrating macrophages, suggesting that prostate cancer
acquisition of glycolytic features shapes the TME to support disease
progression. Our results are consistent with recent evidence from
scRNA-seq experiments in humanmetastatic prostate cancer samples,
which revealed a direct correlation between tumor glycolytic activity
andmacrophage phagocytosis suppression (73). Obesity per se or high
SFI in lean patients was not sufficient to induce tumor glycolytic
features, suggesting that high SFI with concomitant features of obesity
is key in promoting the glycolytic switch. It is also likely that obesity-
associated modulation of hormonal axis and testosterone/estrogen
levels might contribute to the prostate cancer metabolic rewiring.

Analysis of TCGA andMETA855 datasets further confirmed earlier
evidence that acquiring a lactagenic phenotype, namely high levels of
LDHAmRNA, is associated with more aggressive tumor features and
worse prognosis (74), calling for clinical trials to test inhibitors of
LDHA and lactate efflux in advanced prostate cancer. Recently,
Sushentsev and colleagues (75) demonstrated the use of
[1–13C]pyruvate conversion to lactate HP-MR imaging as a biomarker
predictive of clinically relevant disease, providing (i) a noninvasive
approach to stratify high-risk patients and (ii) a potential tool to
monitor response to LDHA and MCT-4 inhibitors. Our future work
will specifically address this aspect.

In conclusion, this study identified lactate as a key mediator
connecting obesogenic HFD, TME modulation, and prostate cancer
progression, setting the stage for ad hoc dietary intervention (i.e., low
saturated fat diet) and/or the use of lactagenesis inhibitors in advanced
prostate cancer. Because intratumor lactate measurement is safely
applicable in the clinic, this study strongly supports lactate assessment
as both prognostic and predictive biomarker.

Authors’ Disclosures
P.A. Sheridan reports personal fees from Metabolon during the conduct of the

study. X. Zhao reports personal fees from Veracyte, Inc., during the conduct of the
study; personal fees from Veracyte, Inc., outside the submitted work; and owns stock
of Veracyte, Inc. Y. Liu reports personal fees from Veracyte, Inc., during the conduct
of the study; personal fees from Veracyte, Inc., outside the submitted work; and owns
stocks of Veracyte Inc. E. Davicioni reports personal fees from Veracyte, Inc., during
the conduct of the study. D.E. Spratt reports personal fees fromAstellas, AstraZeneca,
Janssen, Pfizer, Novartis, Boston Scientific, and Bayer outside the submitted work.
L.A. Mucci reports personal fees from Convergent Therapeutics and Bayer Pharma-
ceuticals, and grants from AstraZeneca outside the submitted work. L. Marchionni
reports grants from NIH-NCI during the conduct of the study. D.P. Labb�e reports
other support from The Fonds de Recherche du Qu�ebec – Sant�e; grants from
Canadian Institutes of Health Research, and grants and other support from Prostate
Cancer Foundation during the conduct of the study. G. Zadra reports grants fromUS
Department of Defense andWorld Cancer Research Fund (WCRFUK), as part of the
World Cancer Research Fund International grant program during the conduct of the
study. No disclosures were reported by the other authors.

Authors’ Contributions
N. Boufaied: Conceptualization, formal analysis, investigation, visualization,

writing–original draft, writing–review and editing, bioinformatics and statistical
analyses. P. Chetta: Formal analysis, investigation, visualization, writing–original
draft, writing–review and editing. T. Hallal: Investigation, writing–original draft,
writing–review and editing. S. Cacciatore: Formal analysis, investigation, method-
ology, writing–review and editing. D. Lalli: Investigation, methodology, writing–
review and editing. C. Luthold: Investigation. K. Homsy: Investigation. E.L. Imada:
Formal analysis, murine RNA-seq analysis. S. Syamala: Investigation.
C. Photopoulos: Investigation. A. Di Matteo: Investigation, writing–review and
editing. A. de Polo: Investigation. A.M. Storaci: Investigation, writing–review and
editing. Y. Huang: Investigation, immunohistochemistry. F. Giunchi: Investigation,
Ki-67 IHC evaluation. P.A. Sheridan: Investigation, LC/MS-metabolomics.
G. Michelotti: Investigation, writing–review and editing, scientific support in meta-
bolomics.Q.-De Nguyen: Investigation, PET imaging experiments. X. Zhao: Formal

Boufaied et al.

Cancer Res; 84(11) June 1, 2024 CANCER RESEARCH1852



analysis, investigation, statistical analyses of human datasets. Y. Liu: Investigation,
support in analysis of human datasets. E. Davicioni: Resources, support with analysis
of human datasets. D.E. Spratt: Resources, support in analyses of human datasets.
S. Sabbioneda: Resources. G. Maga: Resources. L.A. Mucci: Resources, writing–
review and editing. C. Ghigna: Investigation, writing–review and editing.
L. Marchionni: Investigation, supervision of murine RNA-seq analysis. L.M. Butler:
Writing–review and editing, scientific support in data interpretation. L. Ellis:
Resources, writing–review and editing, scientific/technical support. F. Bordeleau:
Formal analysis, investigation, writing–review and editing. M. Loda: Resources,
investigation, pathology support. V. Vaira: Resources, investigation, writing–
review and editing. D.P. Labb�e: Resources, supervision, funding acquisition,
investigation, writing–original draft, project administration, writing–review and
editing.G. Zadra:Conceptualization, resources, formal analysis, supervision, funding
acquisition, investigation, visualization, writing–original draft, project administra-
tion, writing–review and editing.

Acknowledgments
T.Hallal is the recipient of the100Days acrossCanadaBursaryAward.A.DiMatteo

is supported by a fellowship from Fondazione Umberto Veronesi ETS. C. Ghigna is
supported by an Investigator grant (IG-21966) from AIRC Foundation for Cancer
Research. L.M. Butler is supported by a Principal Cancer Research fellowship produced
with the financial and other support of Cancer Council SA’s Beat Cancer Project on
behalf of its donors and the State Government of South Australia through the
Department of Health. F. Bordeleau is a Tier 2 Canada Research Chair in Tumor
Mechanobiology and Cellular Mechanoregulation. D.P. Labb�e is a William Dawson
Scholar ofMcGill University, a Lewis Katz—Young Investigator of the Prostate Cancer
Foundation and a Research Scholar—Junior 2 from The Fonds de Recherche du
Qu�ebec – Sant�e. This study was supported by the Canadian Institutes of Health
Research project grants (PJT-162246 toD.L. Labb�e andPJT-180368 toF. Bordeleau and
D.P. Labb�e), the Idea Development Award from the US Department of Defense
(PC150263 to G. Zadra), the Claudia Adams Barr Award in Innovative Basic Cancer
Research from theDana-FarberCancer Institute (DFCI; toG. Zadra), and a grant (IIG_
FULL_2022_020) funded from World Cancer Research Fund (WCRF UK) as part of

the World Cancer Research Fund International grant program (to G. Zadra). The
authors thankProf.Myles Brown (DFCI) for his supportwith experimentalmodels and
contribution to some murine samples. We thank Zach Herbert, Andrew Caruso,
Kristen Jones (DFCI), Anna Garbelli (CNR-IGM), Anna Maria Morotti, Marco Brevi,
Prof. Stefano Ferrero (Division of Pathology, Fondazione IRCCS Ca’Granda Ospedale
Maggiore Policlinico, Milan, Italy), Delfina Tosi (Department of Health Sciences,
University of Milan, San Paolo Hospital, Milan, Italy), Monica Campagnoli and Prof.
Ermanno Gherardi (Department of Molecular Medicine, University of Pavia, Italy),
Fazila Chouiali (Histopathology platform, Research Institute of the McGill University
HealthCentre,Montr�eal, Qu�ebec, Canada) for technical assistancewith RNA-seq, PET
imaging, phase-contrast acquisition, IHC, and digital scanning. We thank Ericka M.
Ebot (Harvard T.H. Chan School of Public Health, Boston, MA, currently at Foun-
dation Medicine, Cambridge, MA), Meng Yang (Harvard T.H. Chan School of Public
Health, Boston, MA, currently at Takeda, Cambridge, MA), and Jorge Chavarro
(Harvard T.H. Chan School of Public Health, Boston, MA) for investigation of human
cohorts, and Habiba El Fandy (DFCI, currently at Department of Pathology, National
Cancer Institute, Cairo, Egypt) for pathology support. We thank Noriko Uetani for
graphical summarydesign.Weare grateful toRadhaKalekar (DFCI, currently atBrown
University, Providence, RI), Debora L. Burkhart (DFCI), Kathryn Morel (DFCI,
currently at South Australian Immunogenomics Cancer Institute, Adelaide, Australia),
Carmen Priolo (Brigham and Women’s Hospital, Boston, MA), Emmanuele Crespan
and Chiara Mondello (CNR-IGM, Pavia, Italy), and Caroline Fidalgo Ribeiro (WCM,
New York) for technical/experimental support and reagents. Finally, we would like to
thank Profs. Mauro Botta and Mauro Patrone for the access to the NMR and
biochemical facilities at University of Piemonte Orientale “A. Avogadro,” Alessandria,
Italy.

Note
Supplementary data for this article are available at Cancer Research Online
(http://cancerres.aacrjournals.org/).

Received February 17, 2023; revised December 29, 2023; accepted April 5, 2024;
published first June 4, 2024.

References
1. Bluher M. Obesity: global epidemiology and pathogenesis. Nat Rev Endocrinol

2019;15:288–98.
2. Lauby-Secretan B, Scoccianti C, Loomis D, Grosse Y, Bianchini F, Straif K, et al.

Body fatness and cancer—viewpoint of the IARC working group. N Engl J Med
2016;375:794–8.

3. Goncalves MD, Hopkins BD, Cantley LC. Dietary fat and sugar in promoting
cancer development and progression. Annual Review of Cancer Biology 2019;31:
255–73.

4. Brandhorst S, LongoVD. Fasting and caloric restriction in cancer prevention and
treatment. Recent Results Cancer Res 2016;207:241–66.

5. Anderson AS, Martin RM, Renehan AG, Cade J, Copson ER, Cross AJ, et al.
Cancer survivorship, excess body fatness, and weight-loss intervention-where
are we in 2020? Br J Cancer 2021;124:1057–65.

6. de Groot S, Lugtenberg RT, Cohen D, Welters MJP, Ehsan I, Vreeswijk MPG,
et al. Fasting mimicking diet as an adjunct to neoadjuvant chemotherapy for
breast cancer in the multicentre randomized phase 2 DIRECT trial.
Nat Commun 2020;11:3083.

7. Vernieri C, Fuca G, Ligorio F, Huber V, Vingiani A, Iannelli F, et al. Fasting-
mimicking diet is safe and reshapes metabolism and antitumor immunity in
patients with cancer. Cancer Discov 2022;12:90–107.

8. Lyssiotis CA, Kimmelman AC. Metabolic interactions in the tumor microen-
vironment. Trends Cell Biol 2017;27:863–75.

9. Baltazar F, Afonso J, Costa M, Granja S. Lactate beyond a waste metabolite:
metabolic affairs and signaling in malignancy. Front Oncol 2020;10:231.

10. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J
Clin 2022;72:7–33.

11. Ferlay J, ColombetM, Soerjomataram I, Dyba T, Randi G, BettioM, et al. Cancer
incidence and mortality patterns in Europe: estimates for 40 countries and 25
major cancers in 2018. Eur J Cancer 2018;103:356–87.

12. Shirazipour CH, Freedland SJ. Obesity, visceral adiposity, and prostate cancer:
What is the role of lifestyle interventions? Cancer 2019;125:2730–1.

13. Cao Y, Ma J. Body mass index, prostate cancer-specific mortality, and biochem-
ical recurrence: a systematic review and meta-analysis. Cancer Prev Res 2011;4:
486–501.

14. Lin PH, Freedland SJ. Dietary intake and prostate cancer, continued pursuit for
evidence. Transl Androl Urol 2019;8:S246–S9.

15. Labb�e DP, Zadra G, Yang M, Reyes JM, Lin CY, Cacciatore S, et al. High-fat diet
fuels prostate cancer progression by rewiring themetabolome and amplifying the
MYC program. Nat Commun 2019;10:4358.

16. Gurel B, Iwata T, Koh CM, Jenkins RB, Lan F, Van Dang C, et al. Nuclear MYC
protein overexpression is an early alteration in human prostate carcinogenesis.
Mod Pathol 2008;21:1156–67.

17. Sabnis HS, Somasagara RR, Bunting KD. Targeting MYC dependence by
metabolic inhibitors in cancer. Genes 2017;8:114.

18. Ellwood-Yen K, Graeber TG, Wongvipat J, Iruela-Arispe ML, Zhang J, Matusik
R, et al. Myc-driven murine prostate cancer shares molecular features with
human prostate tumors. Cancer Cell 2003;4:223–38.

19. Nguyen QD, Perumal M, Waldman TA, Aboagye EO. Glucose metabolism
measured by [(1)(8)F]fluorodeoxyglucose positron emission tomography is
independent of PTEN/AKT status in human colon carcinoma cells.
Transl Oncol 2011;4:241–8.

20. Blando J, Moore T, Hursting S, Jiang G, Saha A, Beltran L, et al. Dietary energy
balancemodulates prostate cancer progression inHi-Mycmice. Cancer Prev Res
2011;4:2002–14.

21. Gertych A, Ing N, Ma Z, Fuchs TJ, Salman S, Mohanty S, et al. Machine learning
approaches to analyze histological images of tissues from radical prostatecto-
mies. Comput Med Imaging Graph 2015;46:197–208.

22. Dehaven CD, Evans AM, Dai H, L KA. Organization of GC/MS and LC/MS
metabolomics data into chemical libraries. J Cheminform 2010;2:9.

23. Marshall I, Higinbotham J, Bruce S, Freise A. Use of voigt lineshape
for quantification of in vivo 1H spectra. Magn Reson Med 1997;37:
651–7.

High-Fat Diet and MYC Promote Lactate Accumulation

AACRJournals.org Cancer Res; 84(11) June 1, 2024 1853

24. Serkova N, Fuller TF, Klawitter J, Freise CE, Niemann CU. H-NMR-based
metabolic signatures ofmild and severe ischemia/reperfusion injury in rat kidney
transplants. Kidney Int 2005;67:1142–51.

25. Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C. Salmon provides fast and
bias-aware quantification of transcript expression. Nat Methods 2017;14:417–9.

26. Robinson MD, Oshlack A. A scaling normalization method for differential
expression analysis of RNA-seq data. Genome Biol 2010;11:R25.

27. Smyth GK. Linear models and empirical bayes methods for assessing differential
expression inmicroarray experiments. Stat Appl GenetMol Biol 2004;3:Article3.

28. Law CW, Chen Y, Shi W, Smyth GK. voom: precision weights unlock linear
model analysis tools for RNA-seq read counts. Genome Biol 2014;15:R29.

29. de Groot AE, Myers KV, Krueger TEG, Kiemen AL, Nagy NH, Brame A, et al.
Characterization of tumour-associated macrophages in prostate cancer trans-
genic mouse models. Prostate 2021;81:629–47.

30. Magnuson AM, Kiner E, Ergun A, Park JS, Asinovski N, Ortiz-Lopez A, et al.
Identification and validation of a tumour-infiltrating Treg transcriptional sig-
nature conserved across species and tumour types. ProcNatl Acad Sci USA 2018;
115:E10672–E81.

31. Graham MK, Chikarmane R, Wang R, Vaghasia A, Gupta A, Zheng Q, et al.
Single-cell atlas of epithelial and stromal cell heterogeneity by lobe and strain in
the mouse prostate. Prostate 2023;83:286–303.

32. Graham MK, Wang R, Chikarmane R, Wodu B, Vaghasia A, Gupta A, et al.
Convergent alterations in the tumor microenvironment of MYC-driven human
and murine prostate cancer. bioRxiv 2023;17:2023.09.07.553268.

33. Chen Z, Quan L, Huang A, Zhao Q, Yuan Y, Yuan X, et al. seq-ImmuCC: cell-
centric view of tissue transcriptomemeasuring cellular compositions of immune
microenvironment from mouse RNA-seq data. Front Immunol 2018;9:1286.

34. Petitprez F, Levy S, Sun CM, Meylan M, Linhard C, Becht E, et al. The murine
microenvironment cell population counter method to estimate abundance of
tissue-infiltrating immune and stromal cell populations inmurine samples using
gene expression. Genome Med 2020;12:86.

35. Finotello F,MayerC, Plattner C, LaschoberG,RiederD,HacklH, et al.Molecular
and pharmacological modulators of the tumour immune contexture revealed by
deconvolution of RNA-seq data. Genome Med 2019;11:34.

36. Yoshihara K, Shahmoradgoli M, Martinez E, Vegesna R, Kim H, Torres-Garcia
W, et al. Inferring tumour purity and stromal and immune cell admixture from
expression data. Nat Commun 2013;4:2612.

37. Revkov E, Kulshrestha T, Sung KW, Skanderup AJ. PUREE: accurate pan-cancer
tumor purity estimation from gene expression data. Commun Biol 2023;6:394.

38. Califano JP, Reinhart-King CA. The effects of substrate elasticity on endothelial
cell network formation and traction force generation. Annu Int Conf IEEE Eng
Med Biol Soc 2009;2009:3343–5.

39. Bordeleau F,Mason BN, Lollis EM,MazzolaM, Zanotelli MR, Somasegar S, et al.
Matrix stiffening promotes a tumor vasculature phenotype. Proc Natl Acad Sci
USA 2017;114:492–7.

40. Huynh J, Bordeleau F, Kraning-Rush CM, Reinhart-King CA. Substrate stiffness
regulates PDGF-induced circular dorsal ruffle formation through MLCK.
Cell Mol Bioeng 2013;6. doi: 10.1007/s12195-013-0278-7.

41. Mulligan JA, Bordeleau F, Reinhart-King CA, Adie SG. Traction force micros-
copy for noninvasive imaging of cell forces. Adv Exp Med Biol 2018;1092:
319–49.

42. Ebot EM, Gerke T, Labb�e DP, Sinnott JA, Zadra G, Rider JR, et al. Gene
expression profiling of prostate tissue identifies chromatin regulation as a
potential link between obesity and lethal prostate cancer. Cancer 2017;123:
4130–8.

43. Cancer Genome Atlas Research N. Themolecular taxonomy of primary prostate
cancer. Cell 2015;163:1011–25.

44. Spratt DE, YousefiK,Deheshi S, Ross AE,DenRB, Schaeffer EM, et al. Individual
patient-level meta-analysis of the performance of the decipher genomic classifier
in high-risk men after prostatectomy to predict development of metastatic
disease. J Clin Oncol 2017;35:1991–8.

45. Qiu X, Boufaied N, Hallal T, Feit A, de Polo A, Luoma AM, et al. MYC drives
aggressive prostate cancer by disrupting transcriptional pause release at andro-
gen receptor targets. Nat Commun 2022;13:2559.

46. Sreekumar A, Poisson LM, Rajendiran TM, Khan AP, Cao Q, Yu J, et al.
Metabolomic profiles delineate potential role for sarcosine in prostate cancer
progression. Nature 2009;457:910–4.

47. Kim JW, Gao P, Liu YC, Semenza GL, Dang CV. Hypoxia-inducible factor 1 and
dysregulated c-Myc cooperatively induce vascular endothelial growth factor and
metabolic switches hexokinase 2 and pyruvate dehydrogenase kinase 1. Mol Cell
Biol 2007;27:7381–93.

48. Dang CV. The interplay between MYC and HIF in the Warburg effect.
Ernst Schering Found Symp Proc 2007:35–53.

49. San-Millan I, Brooks GA. Reexamining cancer metabolism: lactate production
for carcinogenesis could be the purpose and explanation of the Warburg effect.
Carcinogenesis 2017;38:119–33.

50. Watson MJ, Vignali PDA, Mullett SJ, Overacre-Delgoffe AE, Peralta RM,
Grebinoski S, et al. Metabolic support of tumour-infiltrating regulatory T cells
by lactic acid. Nature 2021;591:645–51.

51. Kumagai S, Koyama S, Itahashi K, TanegashimaT, LinYT, Togashi Y, et al. Lactic
acid promotes PD-1 expression in regulatory T cells in highly glycolytic tumour
microenvironments. Cancer Cell 2022;40:201–18.

52. Noe JT, Rendon BE, Geller AE, Conroy LR, Morrissey SM, Young LEA, et al.
Lactate supports a metabolic-epigenetic link in macrophage polarization.
Sci Adv 2021;7:eabi8602.

53. Jennings MR, Munn D, Blazeck J. Immunosuppressive metabolites in tumoural
immune evasion: redundancies, clinical efforts, and pathways forward.
J Immunother Cancer 2021;9:e003013.

54. de la Cruz-Lopez KG,Castro-Munoz LJ, Reyes-HernandezDO,Garcia-Carranca
A, Manzo-Merino J. Lactate in the regulation of tumour microenvironment and
therapeutic approaches. Front Oncol 2019;9:1143.

55. Sriram R, Van Criekinge M, DeLos Santos J, Ahamed F, Qin H, Nolley R, et al.
Elevated tumour lactate and efflux in high-grade prostate cancer demonstrated
by hyperpolarized (13)Cmagnetic resonance spectroscopy of prostate tissue slice
cultures. Cancers 2020;12:537.

56. Le A, Cooper CR, GouwAM, Dinavahi R,Maitra A, Deck LM, et al. Inhibition of
lactate dehydrogenase a induces oxidative stress and inhibits tumour progres-
sion. Proc Natl Acad Sci USA 2010;107:2037–42.

57. Kraning-Rush CM, Califano JP, Reinhart-King CA. Cellular traction stresses
increase with increasing metastatic potential. PLoS ONE 2012;7:e32572.

58. Van Blarigan EL, Kenfield SA, Yang M, Sesso HD, Ma J, Stampfer MJ, et al. Fat
intake after prostate cancer diagnosis and mortality in the physicians’ health
study. Cancer Causes Control 2015;26:1117-.

59. Hecker J, Freijer K,HiligsmannM, Evers S. Burden of disease study of overweight
and obesity; the societal impact in terms of cost-of-illness and health-related
quality of life. BMC Public Health 2022;22:46.

60. Clemente-Suarez VJ, Beltran-Velasco AI, Redondo-Florez L, Martin-Rodriguez
A, Tornero-Aguilera JF. Global impacts of Western diet and its effects on
metabolism and health: a narrative review. Nutrients 2023;15:2749.

61. Toivanen R, Shen MM. Prostate organogenesis: tissue induction, hormonal
regulation, and cell type specification. Development 2017;144:1382–98.

62. Zadra G, Loda M. Metabolic vulnerabilities of prostate cancer: diagnostic
and therapeutic opportunities. Cold Spring Harb Perspect Med 2018;8:
a030569.

63. Bok R, Lee J, Sriram R, Keshari K, Sukumar S, Daneshmandi S, et al. The role of
lactate metabolism in prostate cancer progression and metastases revealed by
dual-agent hyperpolarized (13)C MRSI. Cancers 2019;11:257.

64. Granlund KL, Tee SS, Vargas HA, Lyashchenko SK, Reznik E, Fine S, et al.
Hyperpolarized MRI of Human prostate cancer reveals increased lactate with
tumour grade driven by monocarboxylate transporter 1. Cell Metab 2020;31:
105–14.

65. Pereira-Nunes A, Simoes-Sousa S, Pinheiro C, Miranda-Goncalves V, Granja S,
Baltazar F. Targeting lactate production and efflux in prostate cancer.
Biochim Biophys Acta Mol Basis Dis 2020;1866:165894.

66. Ippolito L, Comito G, ParriM, IozzoM, Duatti A, Virgilio F, et al. Lactate rewires
lipid metabolism and sustains a metabolic–epigenetic axis in prostate cancer.
Cancer Res 2022;82:1267–82.

67. Barros-Silva JD, Linn DE, Steiner I, Guo G, Ali A, Pakula H, et al. Single-cell
analysis identifies LY6D as amarker linking castration-resistant prostate luminal
cells to prostate progenitors and cancer. Cell Rep 2018;25:3504–18.

68. Giafaglione JM, Crowell PD, Delcourt AML, Hashimoto T, Ha SM, Atmakuri A,
et al. Prostate lineage-specific metabolism governs luminal differentiation and
response to antiandrogen treatment. Nat Cell Biol 2023;25:1821–32.

69. Renner K, Bruss C, Schnell A, Koehl G, Becker HM, Fante M, et al. Restricting
glycolysis preserves T-cell effector functions and augments checkpoint therapy.
Cell Rep 2019;29:135–50.

70. Kaymak I, Luda KM, Duimstra LR, Ma EH, Longo J, DahabiehMS, et al. Carbon
source availability drives nutrient utilization in CD8(þ) T cells. CellMetab 2022;
34:1298–311.

71. Ruan GX, Kazlauskas A. Lactate engages receptor tyrosine kinases Axl, Tie2, and
vascular endothelial growth factor receptor 2 to activate phosphoinositide
3-kinase/Akt and promote angiogenesis. J Biol Chem 2013;288:21161–72.

Boufaied et al.

Cancer Res; 84(11) June 1, 2024 CANCER RESEARCH1854



analysis, investigation, statistical analyses of human datasets. Y. Liu: Investigation,
support in analysis of human datasets. E. Davicioni: Resources, support with analysis
of human datasets. D.E. Spratt: Resources, support in analyses of human datasets.
S. Sabbioneda: Resources. G. Maga: Resources. L.A. Mucci: Resources, writing–
review and editing. C. Ghigna: Investigation, writing–review and editing.
L. Marchionni: Investigation, supervision of murine RNA-seq analysis. L.M. Butler:
Writing–review and editing, scientific support in data interpretation. L. Ellis:
Resources, writing–review and editing, scientific/technical support. F. Bordeleau:
Formal analysis, investigation, writing–review and editing. M. Loda: Resources,
investigation, pathology support. V. Vaira: Resources, investigation, writing–
review and editing. D.P. Labb�e: Resources, supervision, funding acquisition,
investigation, writing–original draft, project administration, writing–review and
editing.G. Zadra:Conceptualization, resources, formal analysis, supervision, funding
acquisition, investigation, visualization, writing–original draft, project administra-
tion, writing–review and editing.

Acknowledgments
T.Hallal is the recipient of the100Days acrossCanadaBursaryAward.A.DiMatteo

is supported by a fellowship from Fondazione Umberto Veronesi ETS. C. Ghigna is
supported by an Investigator grant (IG-21966) from AIRC Foundation for Cancer
Research. L.M. Butler is supported by a Principal Cancer Research fellowship produced
with the financial and other support of Cancer Council SA’s Beat Cancer Project on
behalf of its donors and the State Government of South Australia through the
Department of Health. F. Bordeleau is a Tier 2 Canada Research Chair in Tumor
Mechanobiology and Cellular Mechanoregulation. D.P. Labb�e is a William Dawson
Scholar ofMcGill University, a Lewis Katz—Young Investigator of the Prostate Cancer
Foundation and a Research Scholar—Junior 2 from The Fonds de Recherche du
Qu�ebec – Sant�e. This study was supported by the Canadian Institutes of Health
Research project grants (PJT-162246 toD.L. Labb�e andPJT-180368 toF. Bordeleau and
D.P. Labb�e), the Idea Development Award from the US Department of Defense
(PC150263 to G. Zadra), the Claudia Adams Barr Award in Innovative Basic Cancer
Research from theDana-FarberCancer Institute (DFCI; toG. Zadra), and a grant (IIG_
FULL_2022_020) funded from World Cancer Research Fund (WCRF UK) as part of

the World Cancer Research Fund International grant program (to G. Zadra). The
authors thankProf.Myles Brown (DFCI) for his supportwith experimentalmodels and
contribution to some murine samples. We thank Zach Herbert, Andrew Caruso,
Kristen Jones (DFCI), Anna Garbelli (CNR-IGM), Anna Maria Morotti, Marco Brevi,
Prof. Stefano Ferrero (Division of Pathology, Fondazione IRCCS Ca’Granda Ospedale
Maggiore Policlinico, Milan, Italy), Delfina Tosi (Department of Health Sciences,
University of Milan, San Paolo Hospital, Milan, Italy), Monica Campagnoli and Prof.
Ermanno Gherardi (Department of Molecular Medicine, University of Pavia, Italy),
Fazila Chouiali (Histopathology platform, Research Institute of the McGill University
HealthCentre,Montr�eal, Qu�ebec, Canada) for technical assistancewith RNA-seq, PET
imaging, phase-contrast acquisition, IHC, and digital scanning. We thank Ericka M.
Ebot (Harvard T.H. Chan School of Public Health, Boston, MA, currently at Foun-
dation Medicine, Cambridge, MA), Meng Yang (Harvard T.H. Chan School of Public
Health, Boston, MA, currently at Takeda, Cambridge, MA), and Jorge Chavarro
(Harvard T.H. Chan School of Public Health, Boston, MA) for investigation of human
cohorts, and Habiba El Fandy (DFCI, currently at Department of Pathology, National
Cancer Institute, Cairo, Egypt) for pathology support. We thank Noriko Uetani for
graphical summarydesign.Weare grateful toRadhaKalekar (DFCI, currently atBrown
University, Providence, RI), Debora L. Burkhart (DFCI), Kathryn Morel (DFCI,
currently at South Australian Immunogenomics Cancer Institute, Adelaide, Australia),
Carmen Priolo (Brigham and Women’s Hospital, Boston, MA), Emmanuele Crespan
and Chiara Mondello (CNR-IGM, Pavia, Italy), and Caroline Fidalgo Ribeiro (WCM,
New York) for technical/experimental support and reagents. Finally, we would like to
thank Profs. Mauro Botta and Mauro Patrone for the access to the NMR and
biochemical facilities at University of Piemonte Orientale “A. Avogadro,” Alessandria,
Italy.

Note
Supplementary data for this article are available at Cancer Research Online
(http://cancerres.aacrjournals.org/).

Received February 17, 2023; revised December 29, 2023; accepted April 5, 2024;
published first June 4, 2024.

References
1. Bluher M. Obesity: global epidemiology and pathogenesis. Nat Rev Endocrinol

2019;15:288–98.
2. Lauby-Secretan B, Scoccianti C, Loomis D, Grosse Y, Bianchini F, Straif K, et al.

Body fatness and cancer—viewpoint of the IARC working group. N Engl J Med
2016;375:794–8.

3. Goncalves MD, Hopkins BD, Cantley LC. Dietary fat and sugar in promoting
cancer development and progression. Annual Review of Cancer Biology 2019;31:
255–73.

4. Brandhorst S, LongoVD. Fasting and caloric restriction in cancer prevention and
treatment. Recent Results Cancer Res 2016;207:241–66.

5. Anderson AS, Martin RM, Renehan AG, Cade J, Copson ER, Cross AJ, et al.
Cancer survivorship, excess body fatness, and weight-loss intervention-where
are we in 2020? Br J Cancer 2021;124:1057–65.

6. de Groot S, Lugtenberg RT, Cohen D, Welters MJP, Ehsan I, Vreeswijk MPG,
et al. Fasting mimicking diet as an adjunct to neoadjuvant chemotherapy for
breast cancer in the multicentre randomized phase 2 DIRECT trial.
Nat Commun 2020;11:3083.

7. Vernieri C, Fuca G, Ligorio F, Huber V, Vingiani A, Iannelli F, et al. Fasting-
mimicking diet is safe and reshapes metabolism and antitumor immunity in
patients with cancer. Cancer Discov 2022;12:90–107.

8. Lyssiotis CA, Kimmelman AC. Metabolic interactions in the tumor microen-
vironment. Trends Cell Biol 2017;27:863–75.

9. Baltazar F, Afonso J, Costa M, Granja S. Lactate beyond a waste metabolite:
metabolic affairs and signaling in malignancy. Front Oncol 2020;10:231.

10. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J
Clin 2022;72:7–33.

11. Ferlay J, ColombetM, Soerjomataram I, Dyba T, Randi G, BettioM, et al. Cancer
incidence and mortality patterns in Europe: estimates for 40 countries and 25
major cancers in 2018. Eur J Cancer 2018;103:356–87.

12. Shirazipour CH, Freedland SJ. Obesity, visceral adiposity, and prostate cancer:
What is the role of lifestyle interventions? Cancer 2019;125:2730–1.

13. Cao Y, Ma J. Body mass index, prostate cancer-specific mortality, and biochem-
ical recurrence: a systematic review and meta-analysis. Cancer Prev Res 2011;4:
486–501.

14. Lin PH, Freedland SJ. Dietary intake and prostate cancer, continued pursuit for
evidence. Transl Androl Urol 2019;8:S246–S9.

15. Labb�e DP, Zadra G, Yang M, Reyes JM, Lin CY, Cacciatore S, et al. High-fat diet
fuels prostate cancer progression by rewiring themetabolome and amplifying the
MYC program. Nat Commun 2019;10:4358.

16. Gurel B, Iwata T, Koh CM, Jenkins RB, Lan F, Van Dang C, et al. Nuclear MYC
protein overexpression is an early alteration in human prostate carcinogenesis.
Mod Pathol 2008;21:1156–67.

17. Sabnis HS, Somasagara RR, Bunting KD. Targeting MYC dependence by
metabolic inhibitors in cancer. Genes 2017;8:114.

18. Ellwood-Yen K, Graeber TG, Wongvipat J, Iruela-Arispe ML, Zhang J, Matusik
R, et al. Myc-driven murine prostate cancer shares molecular features with
human prostate tumors. Cancer Cell 2003;4:223–38.

19. Nguyen QD, Perumal M, Waldman TA, Aboagye EO. Glucose metabolism
measured by [(1)(8)F]fluorodeoxyglucose positron emission tomography is
independent of PTEN/AKT status in human colon carcinoma cells.
Transl Oncol 2011;4:241–8.

20. Blando J, Moore T, Hursting S, Jiang G, Saha A, Beltran L, et al. Dietary energy
balancemodulates prostate cancer progression inHi-Mycmice. Cancer Prev Res
2011;4:2002–14.

21. Gertych A, Ing N, Ma Z, Fuchs TJ, Salman S, Mohanty S, et al. Machine learning
approaches to analyze histological images of tissues from radical prostatecto-
mies. Comput Med Imaging Graph 2015;46:197–208.

22. Dehaven CD, Evans AM, Dai H, L KA. Organization of GC/MS and LC/MS
metabolomics data into chemical libraries. J Cheminform 2010;2:9.

23. Marshall I, Higinbotham J, Bruce S, Freise A. Use of voigt lineshape
for quantification of in vivo 1H spectra. Magn Reson Med 1997;37:
651–7.

High-Fat Diet and MYC Promote Lactate Accumulation

AACRJournals.org Cancer Res; 84(11) June 1, 2024 1853

24. Serkova N, Fuller TF, Klawitter J, Freise CE, Niemann CU. H-NMR-based
metabolic signatures ofmild and severe ischemia/reperfusion injury in rat kidney
transplants. Kidney Int 2005;67:1142–51.

25. Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C. Salmon provides fast and
bias-aware quantification of transcript expression. Nat Methods 2017;14:417–9.

26. Robinson MD, Oshlack A. A scaling normalization method for differential
expression analysis of RNA-seq data. Genome Biol 2010;11:R25.

27. Smyth GK. Linear models and empirical bayes methods for assessing differential
expression inmicroarray experiments. Stat Appl GenetMol Biol 2004;3:Article3.

28. Law CW, Chen Y, Shi W, Smyth GK. voom: precision weights unlock linear
model analysis tools for RNA-seq read counts. Genome Biol 2014;15:R29.

29. de Groot AE, Myers KV, Krueger TEG, Kiemen AL, Nagy NH, Brame A, et al.
Characterization of tumour-associated macrophages in prostate cancer trans-
genic mouse models. Prostate 2021;81:629–47.

30. Magnuson AM, Kiner E, Ergun A, Park JS, Asinovski N, Ortiz-Lopez A, et al.
Identification and validation of a tumour-infiltrating Treg transcriptional sig-
nature conserved across species and tumour types. ProcNatl Acad Sci USA 2018;
115:E10672–E81.

31. Graham MK, Chikarmane R, Wang R, Vaghasia A, Gupta A, Zheng Q, et al.
Single-cell atlas of epithelial and stromal cell heterogeneity by lobe and strain in
the mouse prostate. Prostate 2023;83:286–303.

32. Graham MK, Wang R, Chikarmane R, Wodu B, Vaghasia A, Gupta A, et al.
Convergent alterations in the tumor microenvironment of MYC-driven human
and murine prostate cancer. bioRxiv 2023;17:2023.09.07.553268.

33. Chen Z, Quan L, Huang A, Zhao Q, Yuan Y, Yuan X, et al. seq-ImmuCC: cell-
centric view of tissue transcriptomemeasuring cellular compositions of immune
microenvironment from mouse RNA-seq data. Front Immunol 2018;9:1286.

34. Petitprez F, Levy S, Sun CM, Meylan M, Linhard C, Becht E, et al. The murine
microenvironment cell population counter method to estimate abundance of
tissue-infiltrating immune and stromal cell populations inmurine samples using
gene expression. Genome Med 2020;12:86.

35. Finotello F,MayerC, Plattner C, LaschoberG,RiederD,HacklH, et al.Molecular
and pharmacological modulators of the tumour immune contexture revealed by
deconvolution of RNA-seq data. Genome Med 2019;11:34.

36. Yoshihara K, Shahmoradgoli M, Martinez E, Vegesna R, Kim H, Torres-Garcia
W, et al. Inferring tumour purity and stromal and immune cell admixture from
expression data. Nat Commun 2013;4:2612.

37. Revkov E, Kulshrestha T, Sung KW, Skanderup AJ. PUREE: accurate pan-cancer
tumor purity estimation from gene expression data. Commun Biol 2023;6:394.

38. Califano JP, Reinhart-King CA. The effects of substrate elasticity on endothelial
cell network formation and traction force generation. Annu Int Conf IEEE Eng
Med Biol Soc 2009;2009:3343–5.

39. Bordeleau F,Mason BN, Lollis EM,MazzolaM, Zanotelli MR, Somasegar S, et al.
Matrix stiffening promotes a tumor vasculature phenotype. Proc Natl Acad Sci
USA 2017;114:492–7.

40. Huynh J, Bordeleau F, Kraning-Rush CM, Reinhart-King CA. Substrate stiffness
regulates PDGF-induced circular dorsal ruffle formation through MLCK.
Cell Mol Bioeng 2013;6. doi: 10.1007/s12195-013-0278-7.

41. Mulligan JA, Bordeleau F, Reinhart-King CA, Adie SG. Traction force micros-
copy for noninvasive imaging of cell forces. Adv Exp Med Biol 2018;1092:
319–49.

42. Ebot EM, Gerke T, Labb�e DP, Sinnott JA, Zadra G, Rider JR, et al. Gene
expression profiling of prostate tissue identifies chromatin regulation as a
potential link between obesity and lethal prostate cancer. Cancer 2017;123:
4130–8.

43. Cancer Genome Atlas Research N. Themolecular taxonomy of primary prostate
cancer. Cell 2015;163:1011–25.

44. Spratt DE, YousefiK,Deheshi S, Ross AE,DenRB, Schaeffer EM, et al. Individual
patient-level meta-analysis of the performance of the decipher genomic classifier
in high-risk men after prostatectomy to predict development of metastatic
disease. J Clin Oncol 2017;35:1991–8.

45. Qiu X, Boufaied N, Hallal T, Feit A, de Polo A, Luoma AM, et al. MYC drives
aggressive prostate cancer by disrupting transcriptional pause release at andro-
gen receptor targets. Nat Commun 2022;13:2559.

46. Sreekumar A, Poisson LM, Rajendiran TM, Khan AP, Cao Q, Yu J, et al.
Metabolomic profiles delineate potential role for sarcosine in prostate cancer
progression. Nature 2009;457:910–4.

47. Kim JW, Gao P, Liu YC, Semenza GL, Dang CV. Hypoxia-inducible factor 1 and
dysregulated c-Myc cooperatively induce vascular endothelial growth factor and
metabolic switches hexokinase 2 and pyruvate dehydrogenase kinase 1. Mol Cell
Biol 2007;27:7381–93.

48. Dang CV. The interplay between MYC and HIF in the Warburg effect.
Ernst Schering Found Symp Proc 2007:35–53.

49. San-Millan I, Brooks GA. Reexamining cancer metabolism: lactate production
for carcinogenesis could be the purpose and explanation of the Warburg effect.
Carcinogenesis 2017;38:119–33.

50. Watson MJ, Vignali PDA, Mullett SJ, Overacre-Delgoffe AE, Peralta RM,
Grebinoski S, et al. Metabolic support of tumour-infiltrating regulatory T cells
by lactic acid. Nature 2021;591:645–51.

51. Kumagai S, Koyama S, Itahashi K, TanegashimaT, LinYT, Togashi Y, et al. Lactic
acid promotes PD-1 expression in regulatory T cells in highly glycolytic tumour
microenvironments. Cancer Cell 2022;40:201–18.

52. Noe JT, Rendon BE, Geller AE, Conroy LR, Morrissey SM, Young LEA, et al.
Lactate supports a metabolic-epigenetic link in macrophage polarization.
Sci Adv 2021;7:eabi8602.

53. Jennings MR, Munn D, Blazeck J. Immunosuppressive metabolites in tumoural
immune evasion: redundancies, clinical efforts, and pathways forward.
J Immunother Cancer 2021;9:e003013.

54. de la Cruz-Lopez KG,Castro-Munoz LJ, Reyes-HernandezDO,Garcia-Carranca
A, Manzo-Merino J. Lactate in the regulation of tumour microenvironment and
therapeutic approaches. Front Oncol 2019;9:1143.

55. Sriram R, Van Criekinge M, DeLos Santos J, Ahamed F, Qin H, Nolley R, et al.
Elevated tumour lactate and efflux in high-grade prostate cancer demonstrated
by hyperpolarized (13)Cmagnetic resonance spectroscopy of prostate tissue slice
cultures. Cancers 2020;12:537.

56. Le A, Cooper CR, GouwAM, Dinavahi R,Maitra A, Deck LM, et al. Inhibition of
lactate dehydrogenase a induces oxidative stress and inhibits tumour progres-
sion. Proc Natl Acad Sci USA 2010;107:2037–42.

57. Kraning-Rush CM, Califano JP, Reinhart-King CA. Cellular traction stresses
increase with increasing metastatic potential. PLoS ONE 2012;7:e32572.

58. Van Blarigan EL, Kenfield SA, Yang M, Sesso HD, Ma J, Stampfer MJ, et al. Fat
intake after prostate cancer diagnosis and mortality in the physicians’ health
study. Cancer Causes Control 2015;26:1117-.

59. Hecker J, Freijer K,HiligsmannM, Evers S. Burden of disease study of overweight
and obesity; the societal impact in terms of cost-of-illness and health-related
quality of life. BMC Public Health 2022;22:46.

60. Clemente-Suarez VJ, Beltran-Velasco AI, Redondo-Florez L, Martin-Rodriguez
A, Tornero-Aguilera JF. Global impacts of Western diet and its effects on
metabolism and health: a narrative review. Nutrients 2023;15:2749.

61. Toivanen R, Shen MM. Prostate organogenesis: tissue induction, hormonal
regulation, and cell type specification. Development 2017;144:1382–98.

62. Zadra G, Loda M. Metabolic vulnerabilities of prostate cancer: diagnostic
and therapeutic opportunities. Cold Spring Harb Perspect Med 2018;8:
a030569.

63. Bok R, Lee J, Sriram R, Keshari K, Sukumar S, Daneshmandi S, et al. The role of
lactate metabolism in prostate cancer progression and metastases revealed by
dual-agent hyperpolarized (13)C MRSI. Cancers 2019;11:257.

64. Granlund KL, Tee SS, Vargas HA, Lyashchenko SK, Reznik E, Fine S, et al.
Hyperpolarized MRI of Human prostate cancer reveals increased lactate with
tumour grade driven by monocarboxylate transporter 1. Cell Metab 2020;31:
105–14.

65. Pereira-Nunes A, Simoes-Sousa S, Pinheiro C, Miranda-Goncalves V, Granja S,
Baltazar F. Targeting lactate production and efflux in prostate cancer.
Biochim Biophys Acta Mol Basis Dis 2020;1866:165894.

66. Ippolito L, Comito G, ParriM, IozzoM, Duatti A, Virgilio F, et al. Lactate rewires
lipid metabolism and sustains a metabolic–epigenetic axis in prostate cancer.
Cancer Res 2022;82:1267–82.

67. Barros-Silva JD, Linn DE, Steiner I, Guo G, Ali A, Pakula H, et al. Single-cell
analysis identifies LY6D as amarker linking castration-resistant prostate luminal
cells to prostate progenitors and cancer. Cell Rep 2018;25:3504–18.

68. Giafaglione JM, Crowell PD, Delcourt AML, Hashimoto T, Ha SM, Atmakuri A,
et al. Prostate lineage-specific metabolism governs luminal differentiation and
response to antiandrogen treatment. Nat Cell Biol 2023;25:1821–32.

69. Renner K, Bruss C, Schnell A, Koehl G, Becker HM, Fante M, et al. Restricting
glycolysis preserves T-cell effector functions and augments checkpoint therapy.
Cell Rep 2019;29:135–50.

70. Kaymak I, Luda KM, Duimstra LR, Ma EH, Longo J, DahabiehMS, et al. Carbon
source availability drives nutrient utilization in CD8(þ) T cells. CellMetab 2022;
34:1298–311.

71. Ruan GX, Kazlauskas A. Lactate engages receptor tyrosine kinases Axl, Tie2, and
vascular endothelial growth factor receptor 2 to activate phosphoinositide
3-kinase/Akt and promote angiogenesis. J Biol Chem 2013;288:21161–72.

Boufaied et al.

Cancer Res; 84(11) June 1, 2024 CANCER RESEARCH1854



72. Winkler J, Abisoye-Ogunniyan A, Metcalf KJ, Werb Z. Concepts of extracellular
matrix remodelling in tumour progression and metastasis. Nat Commun 2020;
11:5120.

73. Chaudagar K, Hieromnimon HM, Khurana R, Labadie B, Hirz T, Mei S, et al.
Reversal of lactate and PD-1–mediated macrophage immunosuppression con-
trols growth of PTEN/p53-deficient prostate cancer. Clin Cancer Res 2023;
29:1952–68.

74. Pertega-GomesN, Felisbino S,Massie CE,Vizcaino JR, CoelhoR, Sandi C, et al. A
glycolytic phenotype is associated with prostate cancer progression and aggres-
siveness: a role for monocarboxylate transporters as metabolic targets for
therapy. J Pathol 2015;236:517–30.

75. Sushentsev N,McLeanMA,Warren AY, Benjamin AJV, Brodie C, Frary A, et al.
Hyperpolarised 13C-MRI identifies the emergence of a glycolytic cell population
within intermediate-risk human prostate cancer. Nat Commun 2022;13:466.

AACRJournals.org Cancer Res; 84(11) June 1, 2024 1855

High-Fat Diet and MYC Promote Lactate Accumulation


