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SUMMARY
Population-based genomic screening may help diagnose individuals with disease-risk variants. Here, we
perform a genome-first evaluation for nine disorders in 29,039 participants with linked exome sequences
and electronic health records (EHRs). We identify 614 individuals with 303 pathogenic/likely pathogenic or
predicted loss-of-function (P/LP/LoF) variants, yielding 644 observations; 487 observations (76%) lack a cor-
responding clinical diagnosis in the EHR. Upon further investigation, 75 clinically undiagnosed observations
(15%) have evidence of symptomatic untreated disease, including familial hypercholesterolemia (3 of 6 [50%]
undiagnosed observations with disease evidence) and breast cancer (23 of 106 [22%]). These genetic find-
ings enable targeted phenotyping that reveals new diagnoses in previously undiagnosed individuals. Disease
yield is greater with variants in penetrant genes for which disease is observed in carriers in an independent
cohort. The prevalence of P/LP/LoF variants exceeds that of clinical diagnoses, and some clinically undiag-
nosed carriers are discovered to have disease. These results highlight the potential of population-based
genomic screening.
INTRODUCTION

A major endeavor of precision medicine is to leverage genetic

data to improve the diagnosis and risk stratification of genetic

disorders.1,2 Most genetic tests are applied to Mendelian disor-

ders driven by a single gene mutation, such as familial breast

cancer caused by a deleterious mutation in BRCA1 or

BRCA2.3,4 The American College ofMedical Genetics andGeno-

mics has released guidelines for reporting secondary findings

from clinical genomic sequencing.5 These vetted disease-pre-

disposition genes are clinically actionable, but their use in popu-

lation screening has not yet been determined.6 In addition,

ClinVar7 and ClinGen8 advance the clinical interpretation of var-

iants with annotations of pathogenicity, including pathogenic/

likely pathogenic (P/LP), which is useful for genomic screening,

since P/LP variants can be selected.

The increasing use of exome sequencing has permitted an

assessment of the prevalence of P/LP variants in the population

for numerous genetic diseases.9,10 Notably, the allelic preva-

lence of P/LP variants has been shown to exceed the estimated
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disease prevalence attributed to P/LP variants.11,12 This indi-

cates at least three possibilities: (1) incompletely penetrant vari-

ants, in which the presence of a variant does not always result in

disease;13 (2) underdiagnosed disease, where an individual with

the variant expresses disease but is not clinically diagnosed; or

(3) a combination of the two. In familial hypercholesterolemia,

causative genetic variants may be highly penetrant, and the dis-

order is often underdiagnosed and undertreated.14 Monogenic

cardiac diseases have also been examined recently for underdi-

agnosis; a study of Noonan syndrome found that 67% of individ-

uals with P/LP variants in PTPN11 had a probable missed clinical

diagnosis, while a study of hereditary transthyretin amyloidosis-

induced heart failure showed that just 10 of 67 individuals with

TTR V112I and disease had a clinical diagnosis.15,16

Population-based genomic screening can help fill the gaps in

the clinical diagnosis of genetic disorders. The identification of

individuals carrying clinical variants in known disease predispo-

sition genes leads to targeted phenotyping and can improve

diagnostic yield relative to a genetic-agnostic approach.17,18

This genome-first strategy, defined as identifying variants first
ay 21, 2024 ª 2024 The Author(s). Published by Elsevier Inc. 1
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 1. Schematic of genome-first assessment of pathogenic/likely pathogenic or predicted loss-of-function (P/LP/LoF) variants in the

BioMe Biobank at Mount Sinai and UK Biobank

(A) Study design for genome-first evaluation in the BioMe Biobank at Mount Sinai using the plakophilin 2 (PKP2) W538Ter variant as an example. A total of P/LP/

LoF variants in non-recessive monogenic genes for nine genetic disorders were curated: (1) variants reported as P/LP in the ClinVar repository with a minimum

review status of two (multiple submitters) and previously unreported LoF variants identified by Variant Effect Predictor were obtained, and (2) non-recessive genes

with a monogenic disease predisposition were identified from Online Mendelian Inheritance in Man and corroborated with literature review. A total of 29,039

participants with exome sequence and electronic health record (EHR) data were included in the study. This yielded 644 observations of 303 P/LP/LoF variants in

614 individuals. As an example, PKP2W538Ter was identified in seven individuals, of whom two had a prior clinical diagnosis of cardiomyopathy in the EHR. The

remaining five individuals lacked a clinical diagnosis, of whom two (40%) were discovered to have EHR evidence of cardiomyopathy. This procedure was

repeated for all variants to produce a dataset of the percentage of clinically undiagnosed observations that had evidence of disease, which was used to assess

factors associated with the presence of disease in clinically undiagnosed individuals. Factors comprised the gene containing the variant, age of individuals,

disease, and symptoms.

(B) Evaluation of clinically undiagnosed but symptomatic individuals with P/LP/LoF variants in BioMe Biobank by gene penetrance observed in UK Biobank. A

total of 34 target genes were identified in an independent cohort from UK Biobank, for which disease was either observed in individuals with P/LP/LoF variants in

the gene (19 penetrant genes) or not observed (15 non-penetrant genes). The proportion of clinically undiagnosed observations with disease evidence in BioMe

Biobank was then compared between the penetrant genes and non-penetrant genes.
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and then evaluating relevant phenotypes,19 was adopted in

recent studies to detect hereditary breast and ovarian cancer

syndrome, Lynch syndrome, and familial hypercholesterolemia

(tier 1 conditions designated by the Centers for Disease Control

and Prevention [CDC]) in individuals with no prior diagnosis.20,21

However, the value of genomic screening and extent of underdi-

agnosis across most genetic disorders are uncertain. Moreover,

prior studies have not addressed the selection of genes and age

of individuals carrying variants. Variants conventionally classified

as P/LP do not always cause disease (incomplete penetrance),

and penetrance estimates depend on individuals’ age (i.e.,

age-dependent penetrance);13,22 obtaining variants that are

observed to occur with disease in real-world populations is

important for conducting genome-first assessments but has

not been studied.

Here, we asked whether exome sequencing in a large health-

care system has diagnostic utility in individuals lacking clinical

diagnoses from routine care. We used a genome-first approach

to evaluate individuals with clinical variants on a systematic level
2 Cell Reports Medicine 5, 101518, May 21, 2024
for monogenic disorders in a cohort of 29,039 participants from

an electronic health record (EHR)-linked clinical care biobank.

First, individuals harboring P/LP or predicted loss-of-function

(LoF) variants in known disease predisposition genes from a prior

study13 were identified, including many who lacked a clinical

diagnosis for the disease corresponding to their variant. Second,

clinically undiagnosed individuals were evaluated for EHR evi-

dence of disease symptoms and findings informed by their geno-

type. This permitted the discovery of individuals with P/LP/LoF

variants who had EHR evidence of symptomatic disease but

were not medicated or clinically diagnosed with the disease

and motivated an investigation into the genetic and clinical fac-

tors driving this phenomenon.

RESULTS

Summary of the study population and variants
The study design is shown in Figure 1. The study population

included 29,039 individuals from the BioMe Biobank (BioMe)



Table 1. Baseline demographic traits and clinical diagnoses in a

clinical care cohort of 29,039 individuals

Trait

All participants

(n = 29,039)

Individuals with P/LP/LoF

variants (n = 614)

Age, mean (SD) years 59 (16) 59 (16)

Female, n (%) 17,353 (60) 1,143 (62)

Ethnicity, n (%)

African 7,190 (25) 114 (19)

Asian 1,349 (4.6) 28 (4.6)

European 9,376 (32) 242 (39)

Hispanic 8,528 (29) 182 (30)

Other 2,596 (8.9) 48 (7.8)

Clinical diagnoses, n (%)

Amyotrophic lateral

sclerosis

7 (0.024) 1/21 (4.8)

Breast cancer 1,488 (5.2) 62/168 (37)

Cardiomyopathy 823 (2.8) 78/213 (37)

Colorectal cancer 218 (0.75) 2/19 (11)

Endometrial cancer 115 (0.40) 1/13 (7.7)

Hypercholesterolemia 4,460 (15) 5/11 (45)

Prostate cancer 474 (1.6) 2/2 (100)

Retinitis pigmentosa 15 (0.052) 3/175 (1.7)

Type 2 diabetes 7,044 (24) 1/1 (100)

Demographic traits and prevalence of clinical diagnoses are shown for all

study participants and in a subset of individuals carrying variants re-

ported as pathogenic/likely pathogenic in ClinVar with a minimum review

status of two or variants of predicted LoF molecular consequence (P/LP/

LoF variants). The denominator of the proportion of clinical diagnoses in

the second column refers to the number of individuals carrying variants

corresponding to the disease for each row (e.g., for cardiomyopathy,

213 individuals carry cardiomyopathy-predisposition variants, of whom

78 have a clinical diagnosis of cardiomyopathy). An overview of baseline

traits among individuals clinically diagnosed with each disease in the

electronic health record (EHR) is provided (Table S2). Clinical diagnoses

were identified by International Classification of Diseases 10 (ICD-10)

codes in the EHR. Ethnicity, self-reported ethnicity; other ethnicity,

miscellaneous ethnicities other than those listed; n, number; SD, stan-

dard deviation.
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with exome sequence and EHR phenotype data who passed

quality control (STAR Methods). The mean age was 59 years

(standard deviation [SD], 16 years); 17,353 (60%) were female;

7,190 (25%), 1,349 (4.6%), 9,376 (32%), and 8,528 (29%) were

of African, Asian, European, and Hispanic ethnicities, respec-

tively; and614 (2.1%) had at least oneP/LP/LoF variant (Tables 1,

S1, and S2). The prevalence of clinical diagnoses ranged

from >20% for common conditions (e.g., 7,044 [24%] diagnosed

with type 2 diabetes) to <1% for rare disorders (e.g., 15 [0.052%]

diagnosed with retinitis pigmentosa).

P/LP/LoF variants from a previous study13 were curated for a

set of nine genetic disorders: 303 P/LP/LoF variants in 54 genes

corresponding to the nine diseaseswere identified in the exomes

of 614 individuals, yielding 644 observations of variants in indi-

viduals (Tables S1 and S3). Among these individuals harboring

P/LP/LoF variants, the mean number of unique P/LP/LoF vari-

ants per person was 1.0 (SD, 0.16; range, 1–2). The diseases
with the largest number of observations of variants in individuals

were cardiomyopathy (n = 234 observations [36%]), retinitis pig-

mentosa (n = 175 [27%]), and familial breast cancer (n = 168

[26%]) (Table 2). Demographic traits for individuals carrying

P/LP/LoF variants are summarized in Table 1. The mean age of

individuals with P/LP/LoF variants was 59 years (SD, 16 years);

371 (60%) were female; and 114 (19%), 28 (4.6%), 242 (39%),

and 182 (30%) were of African, Asian, European, and Hispanic

ethnicities, respectively.

Assessment of the clinical diagnosis and phenotype of
individuals with P/LP/LoF variants
We systematically evaluated the clinical diagnosis and pheno-

type of individuals with P/LP/LoF variants by examining their

EHR for diagnoses and traits of diseases expected with each

of the variants they carried. These observations of variants in

individuals were categorized into three distinct groups based

on the presence or absence of a clinical diagnosis and symp-

toms of disease corresponding to the variant (STAR Methods;

Tables S4, S5, and S6): (1) 157 of 644 observations (24%)

had a clinical diagnosis of the disease corresponding to the

variant recorded in the EHR. Of the 487 observations without

a clinical diagnosis, (2) 412 (85%) did not have EHR evidence

of disease, and (3) 75 (15%) had EHR evidence of disease (Fig-

ure 2). Of the 75 individuals in the last group, 40 (53%) had P

variants, 3 (4%) had LP variants, and 32 (43%) had LoF vari-

ants. None of the individuals in the last group had received a

medication specifically indicated for treatment of the disease

(Table S5), and the findings were consistent across different

ancestries (Table S7).

We focused on the third group—individuals with P/LP/LoF

variants who had EHR evidence of symptomatic disease but

were not clinically diagnosed or medicated—as the primary

outcome of interest to assess underdiagnosis for most of the

subsequent analyses. We investigated factors contributing to

smaller or larger proportions of these underdiagnosed obser-

vations, including the gene containing the variant, age of indi-

viduals, and disease and symptoms corresponding to the

variant.

Clinically undiagnosed individuals with evidence of
disease stratified by genes
Population genomic screening would ideally use variants in

penetrant geneswith disease observed in real-world populations

to increase clinical yield. We tested this hypothesis by

comparing the proportion of clinically undiagnosed observations

with disease evidence in BioMe for 19 penetrant genes and 15

non-penetrant genes observed in UK Biobank (STAR Methods).

The median proportion of clinically undiagnosed observations

that had disease evidence was 25% (interquartile range [IQR],

33) for penetrant genes compared to 0% (IQR, 29) for non-pene-

trant genes (p = 9.73 10�5). Using linear regression adjusted for

age, we observed a 10-percentage point increase (SE = 4.3) in

clinically undiagnosed observations that had disease evidence

for penetrant genes compared to non-penetrant genes (p =

0.02). A larger proportion of penetrant genes had R20% obser-

vations with disease evidence compared to non-penetrant

genes (odds ratio = 1.09 adjusted for age; 95% confidence
Cell Reports Medicine 5, 101518, May 21, 2024 3



Table 2. Clinical diagnosis and phenotypes for 644 observations of pathogenic/likely pathogenic or loss-of-function (P/LP/LoF)

variants in 614 individuals

Disease Genes Variants Observations, n

+Dx, n (% of

observations)

�Dx -Sx, n (% of �Dx

observations)

�Dx +Sx, n (% of �Dx

observations)

Amyotrophic lateral sclerosis 4 19 21 1 (4.8) 15 (80) 5 (20)

Cardiomyopathy 21 151 234 80 (34) 124 (81) 30 (19)

Colorectal cancer 7 16 19 2 (11) 15 (88) 2 (12)

Endometrial cancer 1 1 13 1 (7.7) 8 (67) 4 (33)

Familial breast cancer 4 64 168 62 (37) 83 (78) 23 (22)

Familial hypercholesterolemia 1 7 11 5 (45) 3 (50) 3 (50)

Monogenic diabetes 1 1 1 1 (100) – –

Prostate cancer 1 2 2 2 (100) – –

Retinitis pigmentosa 15 42 175 3 (1.7) 164 (95) 8 (4.7)

A total of 644 observations of 303 pathogenic/likely pathogenic or predicted LoF (P/LP/LoF) variants carried by 614 individuals were identified for nine

diseases. Observations were first categorized by whether the disease corresponding to the variant was clinically diagnosed (+Dx) or not clinically diag-

nosed (�Dx) in the individual with the variant. Electronic health records (EHRs) of clinically undiagnosed individuals were then evaluated and catego-

rized by whether evidence of symptomatic disease was present (+Sx) or absent (�Sx). This resulted in three distinct groups: (1) clinically diagnosed

(+Dx), (2) no clinical diagnosis and no EHR evidence of disease (�Dx�Sx), and (3) no clinical diagnosis but EHR evidence of disease (�Dx +Sx). n (% of

observations), number and percentage of the observations of individuals with P/LP/LoF variants; n (% of�Dx observations), number and percentage of

the observations of individuals with P/LP/LoF variants lacking a clinical diagnosis. Genes, number of disease predisposition genes containing the P/LP/

LoF variants; Variants, number of P/LP/LoF variants; –, not applicable, as all observations formonogenic diabetes and prostate cancer were diagnosed

with the corresponding disease.
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interval [CI], 1.03–1.17; p = 0.004). These trends were consistent

across three age groups of individuals who were at least 20, 40,

and 60 years old (Figure 3).

Of medical importance, the American College of Medical Ge-

netics andGenomics secondary findings (ACMGSF) v.3.1 genes

are vetted disease predisposition genes with clinical actionabil-

ity,5 but the clinical utility of population screening for individuals

with variants in these genes has not been established.6 We

therefore assessed the diagnoses and phenotypes of individuals

with P/LP/LoF variants in ACMGSF v.3.1 genes comprising 22 of

54 genes (41%) (Figure S1). A greater proportion of observations

of ACMGSF v.3.1 gene variants in individuals had a correspond-

ing clinical diagnosis for the expected disease than non-ACMG

SF v.3.1 gene variants (134 of 396 [34%] versus 23 of 248

[9.3%], p = 1.6 3 10�13). There was also a greater proportion

of clinically undiagnosed observations with evidence of

disease for ACMG SF v.3.1 gene variants (57 of 262 [22%])

compared to variants in non-ACMG SF v.3.1 genes (18 of 225

[8.0%]) (p = 2.6 3 10�5).

Underdiagnosis stratified by disease and symptoms
Next, we evaluated the phenotype of individuals without a clin-

ical diagnosis carrying P/LP/LoF variants for each of the nine ge-

netic disorders (Table 2; Figure 4). Genetic disorders are diverse,

with different affected systems and clinical manifestations,

whichmay be differentially detected and reported in a healthcare

setting. The proportion of clinically undiagnosed observations

with evidence of disease varied by genetic disorder, with a me-

dian of 22% (IQR, 14) across all nine disorders. The greatest pro-

portion of clinically undiagnosed observations with evidence of

disease was noted for familial hypercholesterolemia (3 of 6

[50%]), endometrial cancer (4 of 12 [33%]), amyotrophic lateral

sclerosis (5 of 20 [25%]), breast cancer (23 of 106 [22%]), and
4 Cell Reports Medicine 5, 101518, May 21, 2024
cardiomyopathy (30 of 154 [19%]). All observations of mono-

genic diabetes and prostate cancer were diagnosed. In terms

of absolute numbers, cardiomyopathy had themost clinically un-

diagnosed observations, with evidence of disease with 30 such

observations.

We reasoned that the symptoms associated with greater risk

of hospitalization may be better detected and recorded in a

healthcare setting and, therefore, more prevalent in our analysis

of disease evidence. Hence, we investigated the association of

symptom hospitalization risk and prevalence of symptoms

detected as evidence of disease in clinically undiagnosed obser-

vations of variants in individuals, using a score23 for adverse phe-

notypes ranging from 0 (lowest risk of hospitalization and death)

to 1 (highest risk of hospitalization and death) (Table S8). There

was a positive association between symptom score and preva-

lence of symptoms detected in observations lacking a

clinical diagnosis with a 4.6-percentage point increase (95%

CI, 2.6–6.6) in the prevalence of symptoms per 0.1 increase in

symptom score (p = 6.7 3 10�5) (Figure S2). The symptom

with the lowest score (breast enlargement) was found in just

1.9% of observations without a clinical diagnosis for breast

cancer, while the symptom with the highest score (acute cardiac

failure) was found in 58% of observations without a clinical

diagnosis for cardiomyopathy.

Genome-first identification of new diagnoses in
clinically undiagnosed individuals
Weundertook a detailed case series analysis of clinically undiag-

nosed individuals carrying P/LP/LoF variants in plakophilin 2

(PKP2) and low-density lipoprotein receptor (LDLR) genes who

had EHR evidence of symptomatic disease as examples for

demonstrating how a genome-first evaluation can guide a

targeted phenotypic evaluation and reveal new diagnoses.
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Figure 2. Assessment of the clinical diagnosis and phenotypes of

644 observations of 303 pathogenic/likely pathogenic or predicted

LoF (P/LP/LoF) variants in 614 individuals

Observations were categorized into three distinct groups: (1) clinically diag-

nosed (+Dx), where the individual with a P/LP/LoF variant had a prior clinical

diagnosis for the genetic disorder corresponding to the variant; (2) no clinical

diagnosis and no evidence of disease (�Dx �Sx), where the individual with a

P/LP/LoF variant lacked a prior clinical diagnosis for the corresponding ge-

netic disorder and had no electronic health record (EHR) evidence of disease

symptoms or findings; and (3) no clinical diagnosis but evidence of disease

(�Dx +Sx), where the individual with a P/LP/LoF variant lacked a clinical

diagnosis for the corresponding genetic disorder but had EHR evidence of

disease symptoms or findings. The latter group was the primary outcome of

interest for downstream analyses, comprising 75 of 487 (15%) clinically un-

diagnosed observations that had EHR evidence of symptomatic untreated

disease.
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Seven individuals harbored the P/LoF PKP2 W538Ter variant

(NM_004572.3:c.1613G>A), of whom five (71%) lacked a clinical

diagnosis of cardiomyopathy (Figure 1). Of these five individuals,

two (40%) were found to have EHR evidence of cardiomyopathy.

Physician notes, including for electrocardiograms and echo-

cardiography, for these two individuals were reviewed and

summarized. Both individuals presented with multiple syncopal

episodes, palpitations, and chest pain along with marked

tachycardia and prolonged QRS duration on the electrocardio-

gram. These findings in two individuals with PKP2 W538Ter

suggested a diagnosis of arrhythmogenic right ventricular car-

diomyopathy according to the 2010 Task Force Criteria.24

Of 11 individuals with P/LP/LoF variants in LDLR, six (55%)

were missing a corresponding clinical diagnosis, of whom

three (50%) had EHR evidence of familial hypercholesterolemia

and carried three different P/LP/LoF variants (NM_000527.

4:c.772G>T, p.E258Ter; NM_000527.4:c.1860G>T, p.W620C;

andNM_000527.4:c.590G>A,p.C197Y).Physiciannotes and lipid

panel results for the three individualswere obtained and reviewed.

All individuals presented on at least three occasions with chest

pain, at least oneoccasionwith claudication, and inone individual,

one occasion with ischemic stroke due to an occluded carotid ar-

tery. Elevated total cholesterol and low-density lipoprotein choles-

terol levelswere noted in all individuals onmultiple occasions, and

one individual hada familyhistoryofmyocardial infarctionandcor-

onary artery bypass grafting. These findings in three individuals

withP/LP/LoFvariants inLDLR indicatedadiagnosisof familial hy-

percholesterolemia based on the Simon-Broome criteria.25
DISCUSSION

Here, we performed a population-based genome-first evaluation

of individuals carrying P/LP/LoF variants for nine genetic disor-

ders in a large clinical care cohort, using a rich set of phenotype

data to characterize individuals lacking a clinical diagnosis. The

diagnostic utility of exome sequencing was assessed compre-

hensively for a wide array of diseases and revealed a preponder-

ance of individuals with P/LP/LoF variants missing a relevant

diagnosis in the EHR: 487 of 644 observations (76%) of variants

in individuals lacked a corresponding clinical diagnosis. Individ-

uals with evidence of symptomatic but clinically undiagnosed

disease were identified by targeted phenotype assessment

tailored to each person’s genetic risk profile, such as a cardio-

vascular-specific evaluation for those with variants in cardiomy-

opathy-predisposition genes, demonstrating how precision

medicine can be achieved with the integration of genomic and

clinical data. We also interrogated key factors driving the detec-

tion of underdiagnosed disease. For example, not all clinically

undiagnosed individuals had manifestations of disease, attrib-

uted in part to some P variants not associated with disease;13

we found a greater prevalence of disease evidence in individuals

with variants in genes observed to be penetrant in an indepen-

dent cohort, emphasizing the importance of prioritizing genetic

variation with demonstrable disease occurrence (e.g., pene-

trance) in the population rather than presumed pathogenicity.

Using a combination of phenotypes captured in the EHR,

we observed that most individuals carrying P/LP/LoF variants

lacked a relevant clinical diagnosis and, notably, some also

had evidence of untreated symptomatic disease. This suggests

a need to improve diagnostic approaches for individuals carrying

P/LP/LoF variants. One possibility explored in the current study

is to use a genome-first approach, screening for deleterious

variants in well-known and empirically supported disease pre-

disposition genes, the presence of which triggers a targeted

disease evaluation in individuals with the variant. Such informa-

tion gained from exome sequencing facilitated new genome-

informed diagnoses for several individuals who were missing a

clinical diagnosis from routine care. For example, the finding

of a P/LP/LoF PKP2 variant in two undiagnosed individuals

informed a targeted evaluation of cardiac phenotypes in the

EHR that supported a diagnosis of cardiomyopathy, while the

identification of P/LP/LoF LDLR variants in three undiagnosed in-

dividuals guided an assessment of their cardiovascular and

lipidic EHRprofile that indicated a diagnosis of familial hypercho-

lesterolemia. Guidelines for genetic testing of cardiomyopathy,

familial hypercholesterolemia, and other inherited cardiovascu-

lar diseases hinge on a clinical diagnosis of the condition in

the individual and/or the individual’s family to trigger genetic

testing10; similarly, genetic testing for hereditary cancers is rec-

ommended for individuals with a personal and/or family history

of clinically diagnosed disease.26–28 Instead, we implemented

a genome-first testing29 strategy to diagnose genetic disorders

in the population that may otherwise have been missed with

the standard of care.

Calls have been growing to use genomic sequencing to obtain

a genetic diagnosis,9–11 and nascent efforts have increased the

diagnostic yield of several genetic disorders.14,15,30 These have
Cell Reports Medicine 5, 101518, May 21, 2024 5



Figure 3. Rates of disease evidence found in

clinically undiagnosed individuals with path-

ogenic/likely pathogenic or predicted LoF

(P/LP/LoF) variants in BioMe Biobank

(BioMe) for genes with versus without dis-

ease occurrence in UK Biobank (UKB)

A subset of 34 genes and six diseases that had

clinically undiagnosed observations in BioMe were

identified in UKB. Disease was observed in in-

dividuals from UKB with P/LP/LoF variants in 19

genes (penetrant genes) and not observed for 15

genes (non-penetrant genes) (STARMethods). Yield

of disease evidence in BioMe was then compared

for P/LP/LoF variants found in penetrant genes

versus non-penetrant genes. For each gene, clini-

cally undiagnosed observations were evaluated for

electronic health record evidence of symptomatic

disease, and the proportion of observations with

disease evidence was categorized as 0% (blue),

between 0% and 20% (tan), orR20% (red). This analysis was completed three times using individuals who wereR20,R40, andR60 years of age. For example,

for individualsR40 years of age, 14 of 18 (78%) genes with disease observed in UKB hadR20% observations with disease evidence compared to 4 of 11 (36%)

genes with no disease observed in UKB.
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predominantly targeted three conditions designated tier 1 by the

CDC.31 The present study adds to this literature a systematic

evaluation of nine disorders beyond solely tier 1 conditions.

Whereas previous studies have focused on small clinical cohorts

of individuals with a family or personal history of disease, we

used a large sample of unrelated individuals from a non-dis-

ease-ascertained cohort. Furthermore, we examined the clinical

yield of variants in many ACMG SF v.3.1 genes; the ACMG has

called for population screening studies of these clinically action-

able genes,5,6 andwe found that 1 in 4 clinically undiagnosed ob-

servations of variants in ACMG SF v.3.1 genes had disease evi-

dence in the population. We also accounted for variable disease

risk of P/LP/LoF variants and the age of individuals.13 It was pre-

viously unclear whether the lack of clinical diagnosis in geneti-

cally predisposed individuals is due to absence of disease, as

in the case of incomplete penetrance and/or younger age, or

presence of disease that is underdiagnosed. We assessed

both of these factors; we evaluated the prevalence of disease ev-

idence in clinically undiagnosed individuals who had variants in

penetrant genes in an independent cohort from UK Biobank

and in three age groups of individuals. Individuals with variants

in penetrant genes had a greater prevalence of disease evidence

than those with variants in non-penetrant genes, and age-strat-

ified analyses showed consistent trends across the three age

groups. Together, these results indicate that clinically undiag-

nosed individuals who have positive disease expression in the

EHR are underdiagnosed, rather than simply lacking disease

as a product of incompletely penetrant variants or younger age.

Clinical actionability of genetic findings is crucial to consider.

Many genes in the study are in the CDC tier 1 genomic applica-

tions and the ACMGSF v.3.1, both of which comprise conditions

for which early detection and intervention can reduce morbidity

and mortality. Among the 75 individuals with clinical manifesta-

tions but no diagnosis, 57 (76%) had variants in ACMG SF

v.3.1 genes, and 25 (33%) had variants in CDC tier 1 genes.

This includes 3 individuals with LDLR variants whowould be can-

didates for targeted lipid-lowering therapy and 22 individuals
6 Cell Reports Medicine 5, 101518, May 21, 2024
with BRCA1/BRCA2 variants who would be candidates for

earlier mammography and breast cancer screening. Further-

more, a higher prevalence of clinical manifestations was

observed among individuals carrying variants in penetrant

genes; this suggests that penetrant genetic variation resulting

in clinical manifestations that can be targeted by clinical inter-

ventions and treatment should be prioritized for genomic

screening. Notably, most individuals carrying P/LP/LoF variants

were of European ancestry, owing in part to the predominance

of clinically interpreted variants identified in Europeans and un-

derrepresentation of non-European ancestries in genetic data-

bases, populations, and biobanks.32,33 Further inclusion of

diverse ancestries in clinical and population genetic studies will

help identify and characterize more clinically relevant variants

in non-European ancestries.

In conclusion, the findings of this population-based genome-

first study demonstrate the untapped potential of using exome

sequencing in healthcare systems to assess individuals carrying

P/LP/LoF variants. We used exome data not yet part of routine

clinical care in an EHR setting to inform a targeted strategy of

phenotyping individuals at genetic risk for nine diseases. These

data motivate the development and implementation of popula-

tion-based genomic screening programs, which should be

tested prospectively to diagnose individuals in the population

who carry demonstrably deleterious genetic variation in well-

known disease predisposition genes.

Limitations of the study
There were several study limitations. First, disease symptoms

were identified in part by International Classification of Diseases

10 (ICD-10) diagnosis codes. ICD-10 codes are commonly used

to ascertain phenotypes in biobank studies;34,35 however, we

cannot exclude the possibility of some misclassification. Impor-

tantly, we supplemented ICD-10-based phenotypes with a

thorough review of physician notes in the EHR (Table S6). This

provided a check for accuracy of ICD-10 diagnosis codes and

captured additional symptoms that may have otherwise been



Figure 4. Evidence of symptomatic disease in clinically undiag-

nosed observations of variants in individuals from BioMe

The proportion of clinically undiagnosed observations that had electronic

health record evidence of disease is depicted along with the 95% CIs (error

bars) for three age groups and each of the seven disorders: amyotrophic lateral

sclerosis (ALS), cardiomyopathy (CM), colorectal cancer (CRC), endometrial

cancer (EC), familial breast cancer (FBC), familial hypercholesterolemia (FH),

and retinitis pigmentosa (RP). The mean age of diagnosis is listed below each

disease on the x axis. Monogenic diabetes (MD) and prostate cancer (PC) are

not shown, as they both had zero observations lacking a clinical diagnosis (i.e.,

all individuals with MD or PC variants were diagnosed with the disease).
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missed with an exclusively ICD-10-based phenotyping strategy.

Nonetheless, not all phenotypes will be captured in the EHR, as

individuals may have received care elsewhere, provider ICD-10

coding may not be standardized, and known biases exist when

using ICD-10 diagnosis codes. Second, subgroups stratified

by age had smaller sample sizes than in the primary analysis,

particularly for the older age groups, which may account for

more variability in the proportions of disease evidence in these

subgroups. Furthermore, variants have heterogeneous effects

on disease onset, including some instances where large-effect

size variants are associated with earlier onset of disease; hence,

age should be considered as a risk factor for disease. Third, a

few of the disorders were associated with little to no detection

of symptoms in the EHR, such as retinitis pigmentosa. It is

possible that these individuals were seen by specialists in

ophthalmology. Specialized tests and evaluations documented

outside the standard physician note and diagnosis code system

in the EHR would not have been detected in our analysis,

possibly decreasing the number of clinically undiagnosed indi-

viduals with disease evidence. Another possibility is that some

diseases and their manifestations are more evident to patients;

symptoms associated with greater risk of hospitalization were

more prevalent among observations of disease evidence.

Fourth, while this study illuminated several important factors

contributing to missing clinical diagnoses for genetic disorders,

other reasons remain unknown. These include socioeconomic

determinants, insurance status, access to healthcare systems,
health literacy, environmental and lifestyle factors, demo-

graphics, and biological factors. Future studies are needed to

further scrutinize the differences between individuals with ge-

netic predisposition for disease who have and have not received

a clinical diagnosis.
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Materials availability
This study did not generate new unique reagents.

Data and code availability
d All data associated with this study are present in the paper or Supplementary Material and use existing data from a previous

study.13 A tabulated summary of all variants analyzed in the study is found in Table S3. This comprehensive list is annotatedwith

information regarding genomic location, gene, associated disease, variant effect, amino acid change, ClinVar clinical signifi-

cance and review status, minor allele frequencies in gnomAD, and minor allele frequencies in BioMe. In addition, this complete

list has been deposited in Mendeley and its DOI is listed in the key resources table. Individual-level data, including sequencing,

EHR phenotypes, and physician notes analyzed in this study are not publicly available due to Institutional Review Board (IRB)

restrictions and research participant privacy concerns; however, requests from accredited researchers for access to data rele-

vant to this manuscript can be made by contacting the lead contact.

d Any additional information required to reanalyze the data reported in this work paper is available from the lead contact upon

request.

d No custom code was generated in this study.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Study design
A genome-first approach was applied to a population-based cohort whereby individuals carrying P/LP/LoF variants were identified

and then phenotyped for the relevant genetic disorder. A schematic of the study’s assessment of clinically undiagnosed individuals

with P/LP/LoF variants is shown (Figure 1A). A diverse set of nine genetic disorders was analyzed: amyotrophic lateral sclerosis, car-

diomyopathy, colorectal cancer, endometrial cancer, familial breast cancer, familial hypercholesterolemia, monogenic diabetes,

prostate cancer, and retinitis pigmentosa. These were selected from a previous study13 to ensure representation of a range of

different systems (cardiac, neoplastic, metabolic, ocular, etc.) and prevalence (rare and common), and diseases that are analyzable

in the EHR. Clinical diagnosis of disease was defined by the presence of a corresponding ICD-10 diagnosis code used in a previous

study13 (Table S4).
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Individuals with P/LP/LoF variants were categorized phenotypically on the basis of their clinical diagnosis and disease symptoms

extracted from the EHR. Evidence of symptomatic disease comprised ICD-10 codes and physician notes for symptoms captured by

a set of curated clinical criteria (Table S6). This genome-first approach of first identifying individuals at high genetic risk for disease

and then examining their ICD-10 codes, physician notes, and medications has been used previously.15,16,36 This produced three

distinct groups of individuals: clinically diagnosed (with a clinical diagnosis of the relevant disease), no clinical diagnosis and no ev-

idence of disease (no clinical diagnosis and no EHR evidence of symptomatic disease), or no clinical diagnosis but has evidence of

disease (EHR evidence of symptomatic disease but no clinical diagnosis). This latter group was the outcome of interest for most an-

alyses unless otherwise stated. We reviewed the EHR pharmacy record and confirmed that all clinically undiagnosed individuals with

evidence of disease were not treated with a disease-specific medication, defined as a medication with an indication specific to the

disease of interest (Table S5). Medication indications were obtained from Drugbank.37

The study protocols were approved by the IRB at Mount Sinai (GCO#07–0529; STUDY-11-01139) and written informed consent

was obtained for all participants. Use of data from the UK Biobank was approved under application number 16218 in the UK Biobank

Resource. The study used de-identified genetic and EHR data for research purposes only.

Study participants
A cohort of participants from an EHR-linked population-based biobank (BioMe) was included in the study. BioMe consists of over

60,000 individuals of African, Hispanic, European, Asian, and other self-reported ethnicities who were recruited from outpatient cen-

ters in the Mount Sinai Health System from 2007 onwards. All individuals in BioMe consented to providing biological and DNA sam-

ples linked to de-identified EHRs. Exome sequencing and quality control were performed for the first 31,250 participants. Samples

with discordance between genetic sex and recorded sex, low coverage, contamination, low call rate, or duplications were excluded,

leaving 30,813 samples. Those without complete demographic data (n = 345), younger than 20 years of age (n = 610), or without

ICD-10 diagnosis data (n = 819) were excluded, leaving a set of 29,039 samples for analysis.

METHOD DETAILS

Variant sequencing and selection
Exome sequence data and variant call files (VCFs) were generated by the RegeneronGenetics Center (preparation and quality control

described extensively elsewhere13). The average 20X coveragewas 95%and greater than 99%of the samples hadmore than 85%of

the targeted bases covered at 20X or more. Briefly, 9,202,884 variants were called in the samples and the Goldilocks Filter (GF) was

applied to the VCFs.38 For single nucleotide polymorphisms (SNPs), cells with depth-normalized quality scores <3 or depth of

coverage <7 were set to missing. For insertions and deletions (indels), cells with depth-normalized quality scores <5 or depth of

coverage <10 were set to missing. Variant sites were then filtered, whereby sites of heterozygous variation that failed the Allele Bal-

ance (AB) cutoff were removed. SNP sites requiredR1 sample to carry an alternate ABR15% and indel sites requiredR1 sample to

carry an alternate AB R20%. These site filters left 8,761,478 variants after GF. Next, sites with missing genotypes for >2% of indi-

viduals in the dataset (267,955 sites) were removed. ABwas calculated for biallelic SNPs and 320,877 sites with AB <0.3 or >0.8 were

removed, leaving 8,172,646 sites. Lastly, the dataset was filtered to regions within the target regions of the exome capture platform

(IDT xGen capture platform; 4,256,827 sites) and separated into two file sets for biallelic andmultiallelic sites (3,948,623 and 308,204,

respectively). All variants were ascertained from VCFs using PLINK (version 2.0).39

Variants in the analysis were derived from a set of P/LP/LoF exonic variants (LoF variants in genesmediating disease via LoFmech-

anism) without recessive inheritance (excluded due to insufficient sample size) that were previously characterized in BioMe.13 The

previous study assessed population-based penetrance of a wide array of variants, while the present study investigated clinical un-

derdiagnosis of individuals carrying rare P/LP/LoF variants, factors associatedwith underdiagnosis, and optimization of genome-first

approaches for clinical utility. P/LP variants reported in ClinVar and previously unreported variants with a LoFmolecular consequence

(splice acceptor/donor, stop gained/lost, frameshift, or start lost) annotated by Variant Effect Predictor40 were identified. Variants in

the last exon or last 50 base pairs of the penultimate exon were considered not LoF due to a predicted lack of efficient nonsense-

mediated decay, with exception for variants predicted to delete over 20% of the gene. Only LoF variants present in MANE Select

or MANE Plus Clinical transcripts were retained.41 LoF variants in a gene were then mapped to disease based on prior P/LP variant

submissions in ClinVar linking genes to diseases (e.g., BRCA1 LoF variants mapped to breast cancer). Variants with benign, uncer-

tain, or conflicting clinical significance in ClinVar and predicted synonymous consequence were removed, as were variants in genes

with recessive inheritance reported in Online Mendelian Inheritance in Man.42 ClinVar variants were further restricted to those re-

ported by multiple clinical testing labs or reviewed by an expert panel such as ClinGen.8 Rare LoF variants with ancestry-specific

allele frequency <0.001 in BioMe and ancestry-specific allele frequency <0.001 in or absent from gnomAD v3.1.243 were included.

This yielded 303 P/LP/LoF variants in 54 disease-predisposition genes corresponding to nine genetic disorders (Table S1).

Analysis of genes, age, diseases, and symptoms in clinically undiagnosed individuals
Importantly, the evaluation of disease in clinically undiagnosed individuals with P/LP/LoF variants accounted for different genes,

ages, diseases, and symptoms. First, we hypothesized that a genome-first approach using variants in genes for which disease is

observed in real-world non-disease ascertained populations would result in higher diagnostic yield. Although all variants in the target
Cell Reports Medicine 5, 101518, May 21, 2024 e2
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genes had evidence of pathogenicity, expected pathogenicity does not always translate to occurrence of disease in the population.13

Population genomic screeningwould ideally use variants in geneswith disease observed in real-world populations to increase clinical

yield. We tested this hypothesis by first identifying 19 target genes for which disease was observed in individuals with any P/LP/LoF

variants in the gene in an independent cohort fromUKBiobank13 (penetrant) and 15 target genes for which disease was not observed

(non-penetrant) in UK Biobank, and then comparing the proportion of clinically undiagnosed observations with disease evidence in

BioMe for penetrant genes versus non-penetrant genes (Figure 1B). The exome sequence and EHR data used to characterize dis-

ease-associated genes from the UK Biobank have been previously described.13 The proportion of observations of individuals with

variants who had symptomatic evidence of disease in BioMe was then compared for variants in the penetrant genes versus non-

penetrant genes.

Second, the presence or absence of disease evidence may be explained by age; for example, younger individuals may not have

manifested the disease yet. To address this, we separately evaluated the proportion of clinically undiagnosed observations that had

evidence of disease in three age groups of individuals R20 years, R40 years, and R60 years.

Third, genetic disorders are heterogeneous in terms of affected systems and clinical presentation, such that certain diseases and

symptoms may be better detected in the healthcare setting. We therefore examined the proportion of clinically undiagnosed obser-

vations of variants in individuals with evidence of disease for each genetic disorder and the prevalence of each symptom detected.

We tested the hypothesis that symptoms associated with hospitalization would be better detected and have a higher prevalence in

our analysis using a previously published score23 on an ordinal scale ranging from 0 (smallest hospitalization and mortality risk) to 1

(greatest hospitalization and mortality risk) assigned to each of the 39 disease symptoms (Table S8).

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis
Differences in categorical and continuous variables were assessed with a two-sided unpaired Fisher’s exact test and t-test, respec-

tively. Individuals with at least one allele for a P/LP/LoF variant were identified and the proportions of observations of variants in

individuals with 1) a clinical diagnosis; 2) no clinical diagnosis or evidence of disease; and 3) no clinical diagnosis but have

evidence of disease were determined. Analyses of disease in clinically undiagnosed observations were stratified by gene, age

groups (R20 years,R40 years,R60 years), and disease. Multivariable linear regression adjusted for age was used tomodel the pro-

portion of clinically undiagnosed observations with evidence of disease as a function of gene category (penetrant gene versus gene

without penetrant in UK Biobank) and to model the prevalence of symptoms in clinically undiagnosed observations as a function of

symptom score. All statistical tests and plots were generated with R (version 3.5.3).
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