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In brief

Despite progress in therapeutic

approaches that could delay T1D onset,

early detection of this autoimmune

disease remains challenging. Patil et al.

evaluate the utility of machine learning for

early prediction of T1D and demonstrate

the feasibility of modeling of T1D based

on single-cell profiling of islets.
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SUMMARY
Type 1 diabetes (T1D) is a chronic condition in which beta cells are destroyed by immune cells. Despite prog-
ress in immunotherapies that could delay T1D onset, early detection of autoimmunity remains challenging.
Here, we evaluate the utility of machine learning for early prediction of T1D using single-cell analysis of islets.
Using gradient-boosting algorithms, we model changes in gene expression of single cells from pancreatic
tissues in T1D and non-diabetic organ donors. We assess if mathematical modeling could predict the likeli-
hood of T1D development in non-diabetic autoantibody-positive donors. While most autoantibody-positive
donors are predicted to be non-diabetic, select donorswith unique gene signatures are classified as T1D.Our
strategy also reveals a shared gene signature in distinct T1D-associated models across cell types, suggest-
ing a common effect of the disease on transcriptional outputs of these cells. Our study establishes a prece-
dent for using machine learning in early detection of T1D.
INTRODUCTION

Muscle and adipose tissues respond to insulin to increase

glucose uptake. Insulin is a hormone that is made by specialized

cells called beta cells positioned in the islets of Langerhans in the

pancreas. In the autoimmune disease type 1 diabetes (T1D),

which arises from a complicated interplay between genetic

and environmental factors, T cells attack and destroy beta cells.

During the early stages of the autoimmune process, autoanti-

bodies (AAbs) against pancreatic islets can frequently be de-

tected in the serum, and the presence of multiple AAbs is a

strong predictor of T1D progression.1 Although the discovery

of insulin was a milestone in T1D research that made the survival

of millions of patients possible, insulin therapy fails to provide

complete protection against diabetes-associated complica-

tions. Recent research has revealed various immune cell types

and secreted cytokines responsible for beta cell destruction.2

These findings have led to the development of therapies to

slow down or prevent T1D onset. For example, blocking T cells

using teplizumab was recently approved by the FDA and has

been reported to delay progression to clinical T1D in high-risk

participants by 2 years.3 Moreover, multiple clinical trials
Cell Reports Medicine 5, 101535, M
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including tumor necrosis factor-a (TNF-a) inhibition using goli-

mumab4,5 or regulatory T cell-based therapies6 are actively pur-

sued as opportunities to delay T1D onset in at-risk individuals.

Despite these breakthroughs and the thrilling prospects pre-

sented by ongoing immunotherapy trials for T1D, the unmet clin-

ical need is to reliably identify individuals fated to develop T1D at

the earliest possible stages and substantially delay or prevent

the disease onset.

In this work, we evaluated the feasibility of modeling early mo-

lecular events in tissues relevant to the etiology of T1D usingma-

chine learning and single-cell transcriptomic maps of individual

cells from pancreatic tissues. The JDRF-supported nPOD7 and

the NIDDK-supported HPAP consortia8,9 are ongoing efforts,

collecting pancreatic tissues and immune-related organs from

hundreds of controls, non-diabetic but islet AAb-positive

(AAb+), and T1D organ donors. Among numerous genomics

and molecular assays, the revolutionizing single-cell transcrip-

tomics (single-cell RNA sequencing [scRNA-seq]) has become

a standard technology to study T1D development. The first se-

ries of human donor islets analyzed by our team at HPAP

released transcriptional profiles of islets in 24 non-diabetic con-

trol (CTL), AAb+, and T1D donors across more than �80,000
ay 21, 2024 ª 2024 The Author(s). Published by Elsevier Inc. 1
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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cells.10 In Fasolino et al., we reported a surprising correlation be-

tween the expression level of around 1,000 genes in beta cells,

but not any other cell types, with anti-glutamic acid decarboxy-

lase (GAD) AAb levels detected in the serum of AAb+ donors,

suggesting that the progression of the autoimmunity process is

reflected in the transcriptome of AAb+ beta cells. Despite the

new insights gained from scRNA-seq profiling in this study and

other reports,11 many questions related to the early molecular

events leading to autoimmunity in T1D remain unanswered. For

example, it is not clear if there are consensus transcriptional

changes associated with T1D in different islet cell populations

across the human population. In addition, it remains unknown

whether there are any consensus transcriptional changes asso-

ciated with T1D progression that can be detected at early stages

of autoimmunity in AAb+ donors.

Although statistical strategies for differential gene expression

analysis have been developed to address such questions, the

agreement of differentially expressed genes identified through

various approaches is very low,12 and choosing the best

approach to select differentially expressed genes is chal-

lenging.10,13–18 Here, we aimed to model T1D progression using

machine learning approaches employing scRNA measurements

from 50 organ donors, acquired through the HPAP program. We

reasoned that machine learning strategies, which can learn pat-

terns from data, may identify consensus changes in gene expres-

sion associated with T1D for cells in pancreatic tissues at predia-

betic stages. A machine learning model is trained to perform a

task by receiving several examples of input data, such as gene

counts as features, with corresponding output labels, e.g., indi-

vidual cells labeled as T1D, AAb+, or CTL. The model then up-

dates internal parameters to enhance prediction accuracy. We

devised a machine learning classifier based on the extreme

gradient boosting19 (XGBoost) algorithm and carried out classifi-

cations of single cells across the three donor groups. Remarkably,

we report that T1D can be modeled by the XGBoost algorithm

with high accuracy using solely islet cell transcriptomic data

from T1D and CTL donors. Interestingly, our classifier reported

T1D-like islet cells in a subset of AAb+ donors, demonstrating

that the transcriptional adaptations that occur in islets of patients

with T1D are already initiated in some AAb+ donors. Considering

the inaccessibility of the pancreatic tissues, our model using sin-

gle cells from islets cannot be used directly to predict early stages

of T1D in living individuals. Nonetheless, our study reports the util-

ity of machine learning algorithms in the early detection of molec-

ular changes in T1D using single-cell transcriptomics.

RESULTS

scRNA-seq data in human pancreatic islets
We took advantage of our most recent release of scRNA-seq ex-

periments in the HPAP program across 50 donors in three

groups, namely T1D (n = 9), AAb+ (n = 10), and CTL (n = 31) (Fig-

ure 1A). The preprocessing of scRNA-seq data included filtering

low-quality cells, doublet removal, and dimensionality reduction,

similar to our previously described protocol.20,21 The total num-

ber of cells obtained after processing the scRNA-seq data

across all conditions was �169,000 (Figure 1B). Considering

variability in tissue isolation and surgical procedures, different
2 Cell Reports Medicine 5, 101535, May 21, 2024
numbers of cells were incorporated from each donor across cor-

responding conditions (Figures S1A–S1C). We annotated indi-

vidual cells based on the expression of known marker genes

using scSorter22 and reported the frequency of 10 different cell

types across conditions (Figure 1C). Overall, acinar, alpha, and

beta cells were the largest cell populations with 43,401,

47,988, and 36,837 cells, respectively (Figure 1C). The percent-

age of acinar and alpha cells was evenly distributed across

different donor groups (Figure 1D). Expectedly, beta cells were

significantly less abundant in T1D donors compared to other

donor groups, reflecting the autoimmune destruction of this

cell type (Figures 1D and S1D). Conversely, ductal cells were

more abundant in tissues collected from T1D donors than the

other two groups, reflecting the difficulty of isolating pure islets

from these donors (Figure 1D). The cell-type annotation and

composition across different groups were also consistent with

previously published studies.10,20,21 The expression of marker

genes across major cell types such as acinar (PRSS1), alpha

(GCG), beta (INS), delta (SST), ductal (KRT19), endothelial

(VWF), epsilon (GHRL), immune (NCF2),pancreatic polypeptide

(PP) (PPY), and stellates (COL1A1) further corroborated cell an-

notations across all the samples combined (Figures 1E and

S2). Together, we compiled high-quality transcriptional data

generated by HPAP and annotated major cell types in islets of

three donor groups.

Performance of the machine learning model on scRNA-
seq islet data
We aimed to devise three binary classifiers using single cells be-

tween any pair of donor groups: (1) single cells from T1D vs. sin-

gle cells from AAb+ donors, (2) single cells from T1D vs. single

cells from CTL donors, and (3) single cells from AAb+ vs. single

cells from CTL donors. We followed two distinct strategies to

build a model across donor groups. In the first strategy, which

we refer to as ‘‘unannotated’’ classification, all cells from each

donor group were combined and used for training and testing

purposes.We reasoned that this approach could take advantage

of all cells in our scRNA-seq measurements, improving the per-

formance of our classification. The strategy’s disadvantage is

the uneven number of cell types across different donor groups,

making the frequency of a particular cell type enriched in a class

as the driver of the training process. In the second strategy,

which we refer to as ‘‘annotated’’ classification, cells of each

donor group with the same annotation, e.g., alpha cells in

AAb+ donors, were combined and used for training and testing

purposes, leading to the development of one classifier per anno-

tated cell type. The advantage of this approach is that only

changes in gene expression of the same cell type would be

used to classify cells from different disease groups. However,

in this strategy, subsets of cells are utilized for training and

testing steps compared to the unannotated approach, poten-

tially influencing the performance of our classification.

For both annotated and unannotated strategies, we divided in-

dividual cells into training and testing groups and subjected the

training data to hyperparameter optimization (HPO) using the

XGBoost algorithm. After performing HPO using a 5-fold cross-

validation procedure, we obtained the optimal parameter set,

which was used for training and testing the final model. We
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Figure 1. scRNA-seq reveals the cell populations of the human pancreatic islets in CTL, AAb+, and T1D donors
(A) The complete workflow depicting the scRNA-seq and machine learning workflow using human pancreatic islet tissue samples.

(B) Pie chart showing the number of cells and donor distribution across different biological conditions.

(C) Uniform manifold approximation and projection (UMAP) plot showing the scSorter cell classification of islet cells.

(D) Stacked bar chart showing the percentage-wise distribution of cell types across AAb+, control, and T1D donors.

(E) Multiple feature plots UMAPs depicting the validation of cell-type-specific expression of marker genes. Acinar cells (PRSS1 high), alpha cells (GCG high), beta

cells (INS high), delta cells (SST high), ductal cells (KRT19 high), endothelial cells (VWF high), epsilon cells (GHRL high), immune (NCF2 high), PP cells (PPY high),

and stellate cells (COL1A1 high).

Article
ll

OPEN ACCESS
performed 100 repetitions of the above procedure by randomly

shuffling the training data (i.e., random sampling without

replacement). In the unannotated XGBoost classifier built for all

cells, the T1D vs. AAb+ and T1D vs. CTL binary classifiers per-

formed exceptionally well, averaging �99% accuracy, �99%

sensitivity, and �97% specificity. The AAb+ vs. CTL classifier

demonstrated an accuracy of �96% and a specificity of

�88%. The relatively small decrease in performance in the
AAb+ vs. CTL comparison likely reflects the similarity in tran-

scriptional landscapes of single cells from AAb+ and CTL donors

(Figure 2B; Table S1). We also compared the performance of

XGBoost with other machine learning models such as a support

vector machine (SVM) with linear kernel, a SVM with radial

kernel, and naive Bayes methods across all these pairwise com-

parisons and observed that XGBoost outperformed the other

models (Figure S3A; Table S2).
Cell Reports Medicine 5, 101535, May 21, 2024 3
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Figure 2. Classification performance of ma-

chine learning model on scRNA-seq islet

data

(A) A schematic workflow of XGBoost and perfor-

mance. The machine-learning-based XGBoost

model was built for gene selection and classifica-

tion. The dotted lines show the training and testing

procedures, where T denotes the gradient boosting

tree models. The double lines show 100 repetitions

of the entire workflow.

(B) Boxplots depicting a pairwise comparison of the

XGBoost method across all cells (unannotated) in

the dataset.

(C) Performance of XGBoost acrossmajor cell types

for T1D vs. CTL comparison using boxplots.

(D) Performance of XGBoost acrossmajor cell types

for T1D vs. AAb+ comparison using boxplots.

(E) Performance of XGBoost across major cell types

for AAb+ vs. CTL comparison using boxplots.
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In the annotated classification between T1D and CTL groups

built for each annotated cell type, the XGBoost method per-

formed exceptionally well on our three metrics in the acinar,

alpha, beta, and ductal cells. However, binary classification using

delta cells or immune cells, which contained fewer cells

compared to other cell types, demonstrated a reduced perfor-

mance (Figure 2C). Similar results were observed in the T1D vs.

AAb+ and AAb+ vs. CTL comparisons (Figures 2D and 2E). Addi-

tionally, the average standard deviation in the comparisons of

T1D vs. CTL, T1D vs. AAb+, and AAb+ vs. CTL across 100 repe-

titions were found to be very low (<1%), demonstrating the

robustness and stability of XGBoost models (Table S1). Of note,

the comparison of XGBoost with SVMsor naive Bayes across an-

notated cells further demonstrated the superiority of XGBoost
4 Cell Reports Medicine 5, 101535, May 21, 2024
models (Figure S3B; Table S2). Taking

these results altogether, the annotated

XGBoost classifier exhibited high perfor-

mance across all cell-type comparisons.

Top-ranked genes selected from the
machine learning model and
pathway enrichment analysis
A major reason for our choice of XGBoost

over other machine learning algorithms

such as convolutional neural networks is

the interpretability and transparency in

the XGBoost’s decision-making process.

In particular, XGBoost produces feature

importance rankings, allowing us to under-

stand which features, i.e., genes, drove

predictions. In contrast, neural networks

are often considered ‘‘black boxes,’’ mak-

ing it challenging to interpret their predic-

tions.23 To better understand which

features drove the high-performance pre-

dictions across single cells, we obtained

the key gene signatures for each compari-

son and used two strategies: (1) we ranked
the lists of genes based on the robust ranking algorithm (RRA)

approach24 (Tables S3, S4, and S5) and (2) we examined the un-

ranked list of genes based on their selection frequency across

100 repetitions (Tables S6, S7, and S8). These top-selected

genes were used for downstream pathway or protein-protein

interaction (PPI) analysis to further compare gene signatures

associated with three clinical conditions. The ranked list of genes

with p < 0.05 based on the RRA approach obtained from the un-

annotated T1D vs. CTL classifier was enriched with genes anno-

tated as ‘‘lipid mRNA metabolic process,’’ ‘‘defense to external

biotic,’’ and ‘‘antimicrobial’’ pathways (Figure 3A). The 20

KEGG pathways (false discovery rate [FDR] < 0.05) enriched

within the top features (ranked genes with p < 0.05) of unanno-

tated and annotated T1D vs. CTL classifiers were related to
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HIV and human papillomavirus infections in addition to cytokine

signaling (Figures 3B, S4, and S5).

We next aimed to assess whether there are consensus tran-

scriptional changes associated with T1D in different islet cell pop-

ulations across donors and evaluated commonality among top

features (i.e., genes) across different cell types. We applied the

RRA approach again but now on the ranked list of genes across

cell types. This strategy can produce reliable and consistent rank-

ings even in the presence of noisy or incomplete data. In the T1D

vs. CTL classification, while more than 100 genes were uniquely

detected in classifiers built on each annotated cell type such as

acinar, alpha, ductal, and beta cells, 66 genes were common

across classifiers of all annotated cell types based on their high

RRA scores, suggesting that changes in the transcriptional out-

puts of these genes occur across T1D islets independent of their

cellular ontogeny (Figure 3C). In particular, ‘‘neutrophil degranula-

tion,’’ ‘‘ER-phagosome pathway,’’ and ‘‘pancreatic secretion’’

were enriched within this set of 66 common genes associated
Cell Repo
with models based on annotated cell types

(Figure 3D). Moreover, in AAb+ vs. CTL and

T1D vs. AAb+classifiers, both commonand

unique genes across different annotated

cell types were detected, suggesting the

relevance of multiple pathways to changes

in cells from AAb+ donors (Figures 3E and

3F). Hence, despite a clear manifestation

of autoimmunity associated with beta cells,

our modeling strategy reports shared

changes in transcriptional landscapes of

distinct cell types of islets. Together, the

XGBoost classifiers based on training the

model using single cells grouped as

different cell types revealed the link be-

tweenmultiple genes and pathways associ-

ated with T1D and AAb positivity.

One reason for choosing the XGBoost

classifier in our modeling strategy was
to extract top features associated with T1D across different

cell types. Although statistical approaches performing differ-

ential expression (DE) analysis also aim to determine genes

with different expression between disease groups, there are

numerous concerns related to these approaches, which are

described in the discussion. Nonetheless, we also followed

two DE analysis approaches as complementary strategies:

(1) DE gene lists obtained from individual cells in pairwise

comparisons of different donor groups using Wilcoxon rank-

sum tests (Tables S9, S10, and S11) and (2) DE gene lists ob-

tained by performing individual donor-wise pseudobulk anal-

ysis using DESeq2 (Tables S12, S13, and S14). There was

no consensus on these two strategies. Single-cell-based DE

analysis reports too many genes to be differentially expressed

(�11,000) and pseudobulk-based DE analysis reports too few

genes (�10) to be differentially expressed. Hence, the DE-

based approaches fail to reliably detect disease-associated

genes.
rts Medicine 5, 101535, May 21, 2024 5
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Expression of HLA class I genes in beta cells across
healthy and T1D donors
We next focused on beta cell classifiers within all three groups

and focused on genes with selection frequencies higher than

50% across 100 iterations following the unranked gene selection

approach. In particular, we examined the enrichment of highly

frequent genes as top features within KEGG pathways

(Figures 4A and 4B). Among the top 10 significant pathways

(FDR < 0.05), ‘‘type 1 diabetes mellitus’’ and ‘‘antigen process-

ing’’ were found among the highly frequent features of T1D vs.

CTL and T1D vs. AAb+ classifiers for beta cells (Tables S15

and S16). The specific genes involved in T1D and antigen pro-

cessing and presentation pathways were predominantly from

HLA class I, i.e., HLA-A, HLA-B, HLA-C, and HLA-E. Addition-

ally, these genes were detected across all 100 repetitions of

modeling, suggesting that HLA class I genes were reproducible

top features across donors.

Next, we created a PPI network map with significant genes

as nodes and their connections as edges. We further applied

the MCODE algorithm25 on the PPI network map and obtained

three clusters or key modules (Figure 4C). All the HLA class I
6 Cell Reports Medicine 5, 101535, May 21, 2024
proteins were grouped into one cluster

that was significant (p < 0.05). In the

beta cell classification, genes encoding

the HLA class I proteins were signifi-

cantly upregulated in T1D donors

compared to CTL donors (Figure 4F).

Additional significant clusters contained

genes important for mitochondrial func-

tion and transcriptional elongation.

Next, we analyzed the expression of the

HLA class I genes in CTL and T1D beta

cells individually (Figure 4F). The dots in-

side the violin plots represent individual

donors, where the cell-level gene counts

were aggregated into pseudobulk

counts. Strikingly, the HLA class I genes

were upregulated within the few remain-

ing beta cells from T1D donors (Fig-

ure 4F). Modeling differences in beta

cells of T1D and CTL donors suggest

that small residues of beta cells in T1D

donors express high levels of HLA class

I genes. These results are in agreement

with prior findings of increased HLA class
I expression in islets from patients with T1D obtained using

antibody staining.26

We followed a comprehensive and robust resampling

approach with over 100 iterations and additional cross-valida-

tions. To ensure an unbiased modeling strategy, the test data-

sets from the 100 iterations in the outer loop were independent

of the training set. Nevertheless, we generated scRNA-seq

data in new sets of T1D and CTL organ donors and assessed

the significance of predicted genes in this confirmatory donor

cohort that were not utilized for testing or training (Table S17).

We first performed gene set enrichment analysis and examined

the enrichment of the top features predicted by our model in

up- or down-regulated genes in two T1D donors compared to

two CTL donors in this confirmatory cohort. Remarkably, we

found that the top predicted genes based on our model were

significantly enriched across major cell types such as alpha, im-

mune, and ductal cells in T1D donors (Figure S6A). Moreover,

HLA class I genes in addition to other top features predicted

by our model demonstrated increased expression levels in

T1D, but not CTL, organ donors in this confirmatory cohort

(Figure S6B).
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Prediction of AAb+ cells using classification models
from annotated cells in T1D and CTL donors
One key goal in this study was to evaluate whether any subset of

islet cells from AAb+ organ donors demonstrate transcriptional

similarity to those from T1D individuals and, if such a similarity

can be modeled, the expression of which genes can classify a

single AAb+ cell as a T1D cell. Hence, for each annotated cell

type, we used the trained T1D vs. CTL classifier, where cells

from T1D donors were labeled as class 1 and cells from CTL do-

nors were labeled as class 0. We tested how this model pre-

dicted the class of AAb+ cells. Using the probability scores ob-

tained for each individual cell from the AAb+ donor group, we

determined the predicted class of a cell where a probability of

>0.5 is classified as T1D and less than 0.5 as CTL. Although

90% of cells from AAb+ donors were predicted to be non-dia-

betic (class 0), around 10% of cells were classified as T1D

across different cell types (class 1) (Figure 5A). Importantly,

these ‘‘T1D-like’’ cells were not present at uniform abundance

among all organ donors but were highly enriched among spe-

cific donors, in particular donors labeled as HPAP092 and

HPAP107 (Figure 5A). Strikingly, the beta cells classified as

T1D from AAb+ donors had transcriptomic signatures of HLA

class I genes extremely similar to the T1D group (Figure 5B).

We also compared the expression of alpha cells from AAb+ do-

nors classified as T1D and observed similar results, where HLA

class I genes were upregulated in those AAb+ cells that were

predicted as T1D (Figure 5C). The pancreatic alpha cells are

known to have a key role in the development of diabetes melli-

tus.27,28 It has been reported that the alpha cells from donors

with recent-onset T1D demonstrate reduced glucagon secre-

tion and dysregulated gene expression.29 Another study using

immunofluorescence staining showed that the majority of HLA

class I genes are expressed on pancreatic alpha cells and are

particularly hyperexpressed in the T1D group.30 We further

combined all the cells from the two AAb+ donors that were

majorly predicted as T1D and compared their HLA class I genes

between all groups. We confirmed that the HLA-A, HLA-B,

HLA-C, and HLA-E genes were highly upregulated in cells

from AAb+ donors predicted as T1D, which might reflect that

autoimmunity had already progressed in these AAb+ individuals

(Figure 5D). Projection of cells from these donors highlights their

distribution across the uniform manifold approximation (UMAP)

(Figures S7A and B). In addition, we created a module gene

score for HLA class I genes and observed a similar enrichment

of this pathway in AAb+ and T1D donor groups compared

to CTL donors (Figure S7C). Of note, HPAP107 is an organ

donor expressing both GAD and IA-2 AAbs, indicative of further

disease progression, while HPAP092 is a single GAD AAb+

donor. Together, our modeling strategy discovered that a sub-

set of cells in specific AAb+ organ donors have transcriptional

patterns resembling those typically found in islets of T1D

donors.
Figure 5. Prediction of AAb+ cells using trained T1D-CTL classifier ac

(A) Distribution of cells misclassified as T1D in different cell types.

(B) Comparing the average expression of HLA-I genes among beta cells from AA

(C) Comparing the average expression of HLA-I genes among alpha cells from A

(D) Comparing the average expression of HLA-I genes among all cell types from
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Prediction of AAb+ cells using classification models
from unannotated cells in T1D and CTL donors
We next compared transcriptomic differences and similarities

between T1D, AAb+, and CTL groups using our pretrained unan-

notated T1D-CTL classifier. Among ten AAb+ donors, different

percentages of cells from six AAb+ donors were classified as

T1D, with the majority belonging to the HPAP092 donor (Fig-

ure 6A). We next sought to evaluate transcriptional profiles of

the AAb+ cells that were predicted as T1D. To provide a refer-

ence for these T1D-like cells, we first focused on significant

genes obtained in unannotated T1D vs. CTL, T1D vs. AAb+,

and AAb+ vs. CTL classifiers (Tables S6, S7, and S8). We

checked the gene selection frequency of HLA class I, HLA class

II, and non-HLA genes across different unannotated classifiers

(Figure 6B). The selection frequency of HLA class I genes was

higher compared to some of the HLA class II genes. In addition,

we also checked the selection frequency of non-HLA genes

including INS, IL32, TNFAIP3, and LMO7 that have been associ-

ated with T1D pathology.31,32 The expression of HLA class I and

II genes among all the AAb+ cells from HPAP092 classified as

T1D had a similar expression pattern to the T1D group

(Figures 6D and 6E). Previous studies have shown the inherited

risk for T1D to be largely determined by specific HLA-DQA1,

HLA-DQB1, HLA-DRA, HLA-DPA1, and HLA-DRB1 al-

leles.31,33,34 The expression of HLA-DPB1 was found to be

higher in endocrine cell types of single-cell islet data from dia-

betic individuals.10 We also observed a down-regulation of the

INS gene in AAb+ cells (HPAP092), which was similar to the

T1D group (Figure 6F). Moreover, the IL32, TNFAIP3, and

LMO7 genes were found to be upregulated in AAb+ cells pre-

dicted to be in the T1D class (HPAP092). Previously, an associ-

ation to T1D had been reported for these non-HLA genes

(INS,31,32 TNFAIP3,32,35 LMO7,32,36 and IL3237). The similarities

between the transcript levels of the HLA class I (Figure 6D),

HLA class II (Figure 6E), and non-HLA genes (Figure 6F)

observed between AAb+ cells predicted as T1D and the actual

T1D group suggest that in specific AAb+ organ donors, the path-

ogenic process toward T1D had progressed further than that in

typical AAb+ individuals. Altogether, modeling of the transcrip-

tomic differences between islets cells from T1D and CTL donors

using either an annotated or an unannotated classifier revealed

individual cells from AAb+ donors with transcriptional similarity

to those from T1D donors.

Donor-wise classification using the LOOCV strategy
To evaluate the performance accuracy per donor, we applied a

unique splitting criterion for testing and training purposes and

implemented the leave-one-out cross-validation (LOOCV) strat-

egy. We trained the model based on cells from all donors except

one and tested the model’s performance on the one donor left

out of the training step. This process was repeated across all do-

nors. Remarkably, in this analysis, the AAb+ donor HPAP092
ross major cell types

b+ donors classified as T1D with other conditions.

Ab+ donors classified as T1D with other conditions.

two AAb+ donors classified as T1D with other conditions.
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was classified as T1D across all the annotated cell-type compar-

isons (Figure S8). For evaluation purposes, we considered

LogNormalize data (RNA assay) in addition to the default

SCTransform (SCT assay) data. Similar results were observed

on the RNA assay where the AAb+ donor HPAP092 was classi-

fied as T1D across all the annotated cell types (Figure S9). These

results from the LOOCV strategy confirmed of our previous ob-

servations (Figure 5A). The mean classification accuracy values

for each annotated cell type using the LOOCV strategy were be-

tween 80% and 90% for most cell types except �72% for the

beta cell classifier in both the SCT assay (Figure S10) and RNA

assay (Figure S11). This is likely caused by the very few beta cells

remaining in several of the donors; for instance, the islets recov-

ered from donors HPAP021 and HPAP022 had only two beta

cells each among the total 4,410 and 864 cells analyzed, respec-

tively. This low beta cell count in a subset of T1D donors led to

lower overall accuracy by the annotated beta cell classifier of

T1D vs. AAb+ using LOOCV. In contrast, when we had employed

the annotated beta cell classifier for T1D vs. AAb+ without the

LOOCV strategy, all the beta cells were pooled together, leading

to high prediction accuracy.

Expression of CXCL8 gene in cell types across healthy,
AAb+, and T1D donors
Another key finding based on top predicted features relates to

the expression of CXCL8, which is commonly known to be

involved in the immune system’s response to inflammation. We

observed that among cytokines and chemokines, CXCL8 was

the only cytokine other than IL32 that was selected across all

training instances for the T1D-CTL comparison (Figure S12A).

Next, we checked the selection of CXCL8 across classifiers for

annotated cell types and found that among T1D-AAb+ classi-

fiers, CXCL8 was selected majorly in ductal and immune cell

types (Figure S12B). We also compared the expression of

CXCL8 across individual donors to understand the expression

at the donor level. Strikingly, CXCL8 was highly expressed only

in one AAb+ donor (HPAP092), who was classified as a T1D

donor based on our machine learning approach (Figures S12C

and S12F). Evaluating the expression abundance at the cell-

type level across conditions demonstrated that ductal, immune,

and stellate cells had similar expression patterns for CXCL8 in

AAb+ and T1D donors, with the percentage of cells expressing

CXCL8 being the highest in T1D (�55%) and AAb+ donors

(�42%) compared to CTL donors (�22%) (Figures S12D–

S12E). Lastly, wemeasured the expression of CXCL8 in our inde-

pendent cohort and observed higher expression in ductal cells of

the T1D group (Figure S6C). Together, the results of our machine

learning strategy pinpointed changes in gene expression in T1D

and AAb cohorts that were reproducibly detected across donors

at the single-cell level.
Figure 6. Prediction of AAb+ cells using trained T1D-CTL classifier ac

(A) Distribution of AAb+ cells predicted as T1D using trained T1D-CTL classifier

(B) Selection frequency of genes from HLA-I and HLA-II class.

(C) Selection frequency of genes from non-HLA class relevant to T1D.

(D) Comparing the average expression of HLA-I genes among all cells from HPA

(E) Comparing the average expression of HLA-II genes among all cells from HPA

(F) Comparing the average expression of non-HLA genes among all cells from H
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DISCUSSION

Although substantial progress has been made over the past de-

cades in our understanding of the alterations in the pancreas of

patients with T1D, the underlying molecular processes of dis-

ease progression from healthy to AAb positivity to T1D remain

to be elucidated fully. Using scRNA-seq islet data from 50+ hu-

man organ donors, we performed a comprehensive analysis by

applying a machine learning approach on the large islet gene

expression data from T1D, AAb+, and CTL individuals to under-

stand the disease progression at the single-cell level.

There are several tools useful for a broad range of concepts in

the single-cell field; however, some of the key measurements,

such as DE analysis, remain challenging. Single-cell data are

often sparse, heterogeneous, and multidimensional in nature,

and it becomes challenging to perform differential state analysis.

There is a high level of noise and dropouts (zero values),38 and

the data also encompass a large amount of biological vari-

ability.39 At present, there are three approaches to performing

DE analysis in scRNA-seq data: (1) the individual cell approach

where cell-level DE measurements are performed using a nega-

tive binomial generalized linear model or Wilcoxon rank-sum

tests, (2) the pseudobulk approach where the cell-level counts

are aggregated into pseudobulk counts for DE analysis using

bulk RNA-seq tools such as edgeR and DESeq2, and (3) mixed

modeling with random effects where sample-level inferences

are considered. Overall, the individual cell approach developed

for scRNA-seq was outperformed by pseudobulk and mixed-

modeling approaches40 through a well-controlled FDR. Howev-

er, these two approaches reveal a lack of consensus for DE anal-

ysis.10 While the computational time required for analyzing data

through the mixed-modeling approach is understood to be

extremely high compared to pseudobulk even in a down-

sampled dataset,17,18,40 Zimmerman et al.41 described the pseu-

dobulk approach as conservative, where many DE genes were

not detected. Additionally, the agreement of DE genes identified

through various approaches was very low.12 Hence, choosing

the best approach to select DE genes remains challenging.10

In this study, we focused on the XGBoost method to achieve

insights into the prediabetic and diabetic disease states of

pancreatic islets. Sparse read counts are a main characteristic

of scRNA-seq data, which is important to consider when per-

forming differential gene expression analysis. The superior per-

formance and robustness of the XGBoost method on high-

throughput gene expression studies42–45 led to its increased

popularity in single-cell biology,46–50 and this approach remains

more powerful compared to other machine learning approaches,

including neural networks.50 To the best of our knowledge, there

is no literature using the machine learning approach to identify

gene signatures and classification of cells into relevant disease
ross all cells together

for all cells.

P092 AAb+ donor classified as T1D.

P092 AAb+ donor classified as T1D.

PAP092 AAb+ donor classified as T1D.
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states on single-cell data from T1D donors. We demonstrate

excellent performance of XGBoost classifiers built for T1D vs.

CTL, T1D vs. AAb+, and AAb+ vs. CTL comparisons across all

cells and individual cell types compared to other classifiers

such as linear or radial SVM and naive Bayes methods. The

average accuracy, sensitivity, and specificity obtained from

100 repetitions were found to be higher in the T1D vs. CTL com-

parison compared to the AAb+ vs. CTL one, likely because of the

high similarity of the latter two states. In addition, the top-

selected gene lists obtained for each of these comparisons

were found to be upregulated in several key pathways, such as

the T1D and antigen processing and presentation pathways,

with special enrichment seen in beta cells. The genes involved

in these pathways belonged to HLA class I; therefore, we

measured their individual expression in beta cells and found

that they were more highly expressed in T1D donors than in

CTL donors. We also evaluated the expression of these genes

in an independent cohort and found that the expression levels

were indeed consistently upregulated in T1D donors compared

to CTL donors.

Increased expression of HLA class I genes in T1D has been re-

ported in the past. Benkahla et al.30 reported hyperexpression of

HLA class I genes in T1D donors through immunofluorescence

staining and microscopic image analysis. Hamilton-Williams

et al.51 used the non-obese diabetic mice model and showed

that hyperglycemia was observed in those mice that exhibited

higher major histocompatibility complex class I expression in

beta cells. Richardson et al.52 performed enteroviral capsid pro-

tein vp1 staining on a large cohort of neonatal, pediatric control,

and T1D groups and observed hyperexpression only in T1D do-

nors. Nejentsev et al.53 reported the contribution of HLA-A,

HLA-B, and HLA-C toward T1D. In contrast to these studies,

Skog et al.54 performed staining through immunohistochemical

staining tomeasure protein expression and RNA-seq tomeasure

mRNA expression in non-diabetic controls and patients with

T1D; however, they reported no changes in theHLA class I genes

across these groups. Using imagingmass cytometry,Wang et al.

found HLA-A, -B, and -C expression to be upregulated in islets

from short-, but not long-, duration T1D and also overexpressed

in beta cells in very recent onset disease.55 Detecting this gene

signature in T1D-like AAb+ cells in our study further demon-

strates the upregulation of this pathway at the early stages of

autoimmunity.

A surprising discovery from this study is the observation that a

subset of non-diabetic donors positive for islet AAbs contain sig-

nificant numbers of pancreatic cells with gene expression pro-

files that do not resemble AAb�, non-diabetic controls as ex-

pected but rather those present in the pancreas of T1D

individuals. It is tempting to speculate that those AAb+ individ-

uals with a large proportion of T1D-like pancreatic cells would

have been the ones to progress to the diabetic statemore rapidly

than those in whom these cells are not present. Another surpris-

ing finding from our study was the consistent upregulation of

CXCL8 in these AAb+ and T1D donors, especially in ductal cells

as predicted by our machine learning models. Only few studies

discussed the role ofCXCL8 in T1D,56,57 with the primary factors

of T1D disease being immune dysregulation and inflammation,

where several cytokines and chemokines contribute to the in-
flammatory process; we speculate that CXCL8 would be a po-

tential biomarker in the AAb+ and T1D conditions. Unfortunately,

it is impossible to test this hypothesis due to the cross-sectional

nature of our study and the fact that the human pancreas cannot

be biopsied safely. Nevertheless, this finding provides strong ev-

idence that the transcriptomic changes that occur during the

pathogenesis of T1D are not simply a consequence of the hyper-

glycemic state; rather, they appear to be an integral part of dis-

ease progression. Our future studies will focus on examining the

utility of machine learning approaches in peripheral blood

collected from T1D individuals.

Limitations of the study
In this study, we used scRNA-seq data and applied machine

learning approaches to train our models. The machine learning

models required large computational resources to train because

of the high-dimensional nature of single-cell transcriptomic data.

Another limitation is that the biomarkers identified could not be

tested due to the cross-sectional nature of our study since hu-

man pancreas cannot be biopsied safely.
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Software and algorithms

Cell Ranger v3.0.1 10X Genomics https://www.10xgenomics.com/support/software/cell-ranger/latest

R R Development
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scDblFinder v1.8.0 Germain et al.59 https://bioconductor.org/packages/release/bioc/html/scDblFinder.html

SingleCellExperiment v1.16.0 Amezquita et al.60 https://bioconductor.org/packages/release/bioc/html/SingleCellExperiment.html

sctransform v0.3.3 Hafemeister et al.61 https://satijalab.org/seurat/articles/sctransform_vignette.html

This study Patil et al.20 https://github.com/AbhijeetRPatil/ML_Islets)
RESOURCE AVAILABILITY

Lead contact
Correspondence and requests for materials should be addressed to Lead Contact, Golnaz Vahedi (vahedi@pennmedicine.

upenn.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability
The pancreatic islet sequencing data and processed scRNA-seq Seurat object can be found in PANCDB (https://hpap.pmacs.

upenn.edu/analysis). The scripts used for scRNA-seq data processing and machine learning modeling are available on GitHub

(https://github.com/AbhijeetRPatil/ML_Islets). Any additional information required to reanalyze the data reported in this work paper

is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Our study does not include animals, plants, microbe strains, cell lines, primary cell cultures. Pancreatic islets were procured by the

HPAP consortium (RRID:SCR_016202; https://hpap.pmacs.upenn.edu), part of the Human Islet Research Network (https://

hirnetwork.org/), with approval from the University of Florida Institutional ReviewBoard (IRB # 201600029) and the United Network

for Organ Sharing (UNOS).

METHOD DETAILS

We present an overview of the ML-based XGBoost approach for the classification of pancreatic scRNA-seq islet data from different

conditions (Figure 1A). The complete process included the procurement of human islet tissues, the preparation of a single-cell sus-

pension and 10x Genomics sample processing.

We used R programming language62 to perform all the computations, including data pre-processing, MLmodel building, and down-

stream calculations and visualizations. The caret,63 dplyr,64 andmatrix65 packageswere used for datawrangling tasks and Seurat58 for

workingwith the scRNA-seq object. The plotswere generated using ggplot2,66 ggpubr,67 and cowplot.68 TheMLmodelwasbuilt using

XGBoost19 for classification purposes, and the gene selection was performed using Ckmeans.1d.dp.69,70 All ML computations,

including hyperparameter optimization tasks, were performed through parallel computing using #cores between 30 to 100.62
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scRNA-seq data description and analysis
The single-cell sequencing (scRNA-seq) experiments were performed using the Single-cell 30 Reagent v2 and v3 kits from 10X Ge-

nomics. The detailed clinical information of donors showing their medical history, BMI, age, auto-islet antibody test, HbA1c, and

C-peptide levels is provided (Table S17). The libraries were processed using 10X Genomics Cell Ranger v6.1 software which aligns

the reads and generates feature-barcode matrices (3’ gene expression data) using a collection of several pipelines.71 The experi-

mental details and pre-processing steps for all the samples from pancreatic-islet data were followed as described previously.21,72

We first obtained HPAP samples from different biological conditions such as auto-antibody positive (AAb+; n = 10; cells = 36,244),

type 1 diabetes (T1D; n = 9; cells = 34,524), and healthy controls (CTL; n = 31; cells = 123,102). The AAb+ samples were determined

based on the AAb+ screening test to measure the levels of antibodies against glutamic acid decarboxylase (GAD) to determine pos-

itivity.21,72 The combined feature-barcode matrix, including cells from all HPAP samples, added to a total of 193,870 cells. We pre-

processed the raw data following the protocol described previously,21,72 excluding type-2 diabetes (T2D) samples. We also per-

formed an additional quality control step by removing the mitochondrial and ribosomal reads from the raw data. We then used

the exact pipeline described in21,72 for downstream analysis using Seurat v4.1.058 for creating the single-cell object, scDblFinder

v1.8.059 for removing doublets from the data, SingleCellExperiment v1.16.060 for data wrangling, sctransform v0.3.361 for data trans-

formation through normalization and scaling, and finally scSorter v0.0.222 for cell-type annotations. The final processed and anno-

tated scRNA-seq data object contained a total of 169,027 cells and 30,002 genes for which transcripts could be detected in at least

on cell.

Machine learning classification network architecture and training protocol
The annotated scRNA-seq data includes 50 HPAP donor samples with 169,027 cells and 30,002 genes from three groups of CTL

(n = 31), AAb+ (n = 10), and T1D (n = 9). The XGBoost machine learning framework is constituted of inner and outer loops. In the outer

loop, we first randomly split the pre-processed SCT normalized single-cell data into training and testing sets with 70% and 30% of

HPAP samples, respectively. In the inner loop, the training was subjected to hyperparameter tuning, and a 5-fold cross-validation

was performed across 200 sub-training model iterations to select the best model with a minimum error rate. We repeated this hyper-

parameter optimization procedure ten times to select the best weights and parameters. The final best weights and parameters ob-

tained were applied to the complete 70% of the training data matrix to obtain the final best training model. Lastly, we applied 30% of

the test data matrix on the best-trained model to evaluate predictions. We used the evaluation metrics of accuracy, sensitivity, and

specificity on the test data to measure the performance of the model. Along with these metrics, we also obtained the ranked list of

genes, also called the best features, from the best-trained model.

To increase the robustness of our approach and attain reliable results, we repeated this entire process which consists of randomly

splitting the single-cell data into training (70%) and testing (30%) by using random sampling without replacement in the outer loop for

100 iterations. The mean and SD classification accuracy, sensitivity, and specificity across 100 XGBoost iterations were calculated

for the final average performance evaluation. For the final significant gene selection, we built a matrix of genes X iterations. The

ranked list of genes obtained in each outer loop iteration was added to the matrix. We counted the gene occurrences across all

100 iterations and ranked them accordingly. The final significant gene list consisted of the list of genes with the count showing

how many times they were selected in the best-trained model in 100 iterations. The complete workflow of the XGBoost scRNA-

seq ML framework is shown in Figure 2A. Lastly, we also evaluated several other machine learning models such as support vector

machines (SVMs) with linear and radial kernels,73 and naive bayes74 methods for comparing the performance with XGBoost method.

XGBoost method
eXtreme Gradient Boosting (XGBoost)19 is an extension of gradient-boosted decision trees (GBDT) and is specifically optimized to

provide faster computations through parallel and distributed computing. This ensemble learning method uses a boosting approach

to improve prediction accuracy by building many aggregated trees to form a single consensus prediction model.75 The least squares

loss function is used to reduce the loss.76 The XGBoost method creates trees, and the residuals obtained from previous trees are

given as input to the subsequent tree, which improves the overall prediction by modeling the errors. For each tree sequence, a sub-

sample of training data is randomly drawnwithout replacement from the entire training data and is used to fit the tree and compute the

model update. Additional trees are not allowed to be added after reaching the pre-specifiedmaximum threshold or if themodels con-

verges and the performance does not improve which helps to avoid over parametrization. Overall, this highly effective scalable tree

boosting system was originally proposed for sparse data and weighted quantile sketch for approximate tree learning.19 XGBoost

method is applied in a wide range of applications such as regression, classification, ranking, and user-defined prediction problems.

Feature importance score
The trained XGBoost model automatically provides a feature importance score.77 The score indicates how important the feature

(gene in this study) was used for the model’s prediction. The feature importance score was obtained for each trained model. We

selected the genes with non-zero importance scores for all models. We obtained the ranked lists of genes across 100 repetitions

of train-test splits.
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Hyperparameter optimization (HPO)
The XGBoost method uses several parameters to control the bias-variance tradeoffs. The tree-based boosting models could suffer

from overfitting; however, the XGBoost method provides several parameters, such as maximum tree depth, minimum leaf weight,

and minimum split gain, which helps to avoid overfitting. Additionally, it adds randomness to the model during the training phase,

making it more robust to noise. Following are the list of parameters set during cross validation on training,max_depth-the maximum

depth of the tree between 3 and 7, gamma-represents the minimum loss reduction required to make a further partition on a leaf node

of the tree and it was set between 0 and 0.2, eta-the step size of each boosting step was set using random uniform distribution be-

tween 0.01 and 0.3, themin_child_weight-was set to 30 as large number is usually conservative, subsample-the subsample ratio will

randomly sample the training data prior to growing trees which will avoid overfitting was set between 0.5 and 0.8 using random uni-

form distribution, colsample_bytree-was also set between 0.5 and 0.8, cv.nrounds-200 represents the maximum number of rounds

for cross validation, and the cv.nfold = 5 shows the 5-fold cross validation, early_stopping_rounds = 100 which helps the model to

stop training further if the best performance was achieved, eval_metric=logloss was used to minimize the loss, Binary=logistic was

used for performing logistic regression for binary classification and output the probabilities, nthreads = 30, for parallelization of all the

tasks. In each inner loop, we iterated ten times over the list of above-described parameters to identify the best parameters and used

them to train the XGBoost model and test the predictions through the test dataset. Lastly, this procedure was repeated 100 times in

the outer loop, and the average performance metrics were calculated.

Leave one out cross-validation strategy (LOOCV)
Weused a special case of k-fold cross-validation called LOOCVwhere for each sample in the dataset, removing that sample (testing),

training was performed on all the remaining samples. We used the LOOCV instead of previous criteria of training (70%) and testing

(30%), where random sampling without replacement was considered in the outer loop for 100 iterations. The same parameters pre-

viously mentioned in HPO pipeline were used here for optimizing the model during training. The LOOCV helps to classify disease vs.

normal group at subject level where the subject being tested is classified as either disease or normal.

Evaluating performance
We measure the performance of XGBoost models using averages of accuracy, sensitivity, and specificity obtained across 100 iter-

ations. The equations for thesemetrics with respect to true positive (TP), true negative (TN), false negative (FN), and false positive (FP)

are as follows:

The classification accuracy of the model is defined as the ratio of correctly predicted instances (TP + TN) to the total number of

instances in the dataset (TP + TN + FP + FN)

Accuracy =
TP+TN

TP+TN+FP+FN

Sensitivity measures the model’s ability to correctly identify positive instances (TP) out of all the instances that are actually positive

(TP + FN).

Sensitivity =
TP

TP+FN

And finally, Specificity shows the model’s ability to correctly identify negative instances (TN) out of all the instances that are actually

negative (TN + FP).

Specificity =
TN

TN+FP
Gene selection and pathway enrichment analysis
We obtained the ranked lists across 100 repetitions of train-test splits (Methods, section- Feature Importance score) and followed

two strategies with different criteria to obtain list of ranked gene lists:

Ranked gene selection

We aggregated the ranked lists across 100 repetitions by preserving the ranks by applying the robust rank aggregation (RRA)24

method to obtain the final ranked list of genes in a given comparison. RRA is a statistical technique used to combine rankings

frommultiple sources into a single, aggregated ranking that is robust to noise, inconsistencies, and outliers in the individual rankings.

The RRA method assigns scores in terms of P-values for each gene to determine the significance level. We used genes with P-value

<0.05 for the final ranked list of genes for all comparisons (Tables S3–S5).

Unranked gene selection

Weaggregated the ranked lists across 100 repetitions by ignoring the ranks and focusing on the number of times a genewas selected

across 100 repetitions. For example, in beta cells of T1D vs. CTL classifier results, if gene INS is selected 80 times among 100 rep-

etitions, then a selection frequency score of 80 was assigned to INS. The final ordered list of genes with score as gene selection fre-

quency among 100 repetitions for all comparisons (Tables S6–S8).
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For the ranked list of genes, we performed pathway analysis using the ClusterProfiler78 tool. The clusters were created for the gene

ontology (GO) biological process (BP) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways based on the ranked list of

genes across each comparison. Our analysis determined the GO biological processes BP and KEGG pathways with an adjusted

P-value <0.05 as statistically significant (Tables S18–S20). Next, we created a shared list of ranked genes using the RRA method

and performed GO and KEGG pathway analysis using clusterProfiler78 and Metascape,79 based on the ranked gene lists obtained

for different cell types. The ranked gene lists across different cell types in each comparison (Tables S3–S5) were given as input to the

RRAmethod. The obtained shared list of ranked genes was called ‘‘RRA_combined’’ and reported along with the corresponding GO

and KEGG pathways (Tables S21–S23).

For the unranked list of genes, the publicly available databases such as the ‘database for annotation, visualization, and integrated

discovery’ (DAVID, version 6.8) bioinformatics web server80 was used to identify various biological pathways of significant genes

through a set of functional annotation tools. We first filtered high confidence genes by selection genes with a selection frequency

of greater than 50 and used the GO81,82 and the KEGG83–85 databases for pathway enrichment analysis in the DAVID database.

The GO classifies the gene functionalities into three categories: biological processes (BP), cellular component (CC), and molecular

function (MF), and the KEGG database provides an overview of high-level gene functions and biological signaling pathways. Our

analysis determined the GO and KEGG terms with false discovery rate (FDR) < 0.05 as statistically significant (Tables S15, S16,

and S24).

Protein-protein interaction networks and gene modules selection
The Search Tool for Retrieval of Interacting proteins database (STRINGdb v11)86 was used to identify the various protein-protein

interaction networks (PPI) of significant gene lists based on the medium confidence score of 0.7. The loaded PPI network from

STRINGdb86 was analyzed using the open-source Cytoscape87,88 tool. Cytoscape is a bioinformatics software used for visualizing

and integrating highly complex PPI networks through several supported plugins. The StringApp87 within Cytoscape is used to load

the raw PPI network, and the network analyzer89 plugin is used to measure the degree of interaction between nodes and display the

up/down-regulated genes. Finally, we applied the molecular complex detection (MCODE)25 clustering-based algorithm for further

splitting the network into modules/clusters that helped identify the densely connected regions. We used the default parameters (de-

gree cutoff = 2, node score cut-off = 0.2, k-core = 2, and max.depth = 100) to filter and identify key clusters in the network. We

selected the top modules from each analysis group to show the degree of interactions.

Differential expression analysis
The differential expression (DE) analysis was performed on the LogNormalized data using Seurat’s ‘FindMarkers’ function58 where

the DE test uses non-parametric Wilcoxon rank-sum test as default to test for the DE genes between two groups of cells within same

cell type across different conditions. Here, each cell is treated as an independent replicate. We also performed pseudobulk analysis

where the gene counts of all cells within donors were aggregated using Seurat’s ‘AggregateExpression’ and the sample level DE

analysis was performed using DESeq2.90 In both individual single-cell and pseudobulk strategies, the significant DE genes were

filtered based on threshold of adjusted p-value <0.05.

QUANTIFICATION AND STATISTICAL ANALYSIS

The differentially expressed genes were determined based on adjusted p-value <0.05 in both individual cells and Pseudobulk stra-

tegies using non-parametric Wilcoxon rank-sum test and DESeq2 approaches respectively.
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