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Abstract

As the volume of next generation sequencing data increases, an urgent need for algorithms to 

efficiently process the data arises. Universal hitting sets (UHS) were recently introduced as an 

alternative to the central idea of minimizers in sequence analysis with the hopes that they could 

more efficiently address common tasks such as computing hash functions for read overlap, sparse 

suffix arrays, and Bloom filters. A UHS is a set of k-mers that hit every sequence of length L, 

and can thus serve as indices to L-long sequences. Unfortunately, methods for computing small 

UHSs are not yet practical for real-world sequencing instances due to their serial and deterministic 

nature, which leads to long runtimes and high memory demands when handling typical values of 

k (e.g. k > 13). To address this bottleneck, we present two algorithmic innovations to significantly 

decrease runtime while keeping memory usage low: (i) we leverage advanced theoretical and 

architectural techniques to parallelize and decrease memory usage in calculating k-mer hitting 

numbers; and (ii) we build upon techniques from randomized Set Cover to select universal k-mers 

much faster. We implemented these innovations in PASHA, the first randomized parallel algorithm 

for generating nearoptimal UHSs, which newly handles k > 13. We demonstrate empirically that 

PASHA produces sets only slightly larger than those of serial deterministic algorithms; moreover, 

the set size is provably guaranteed to be within a small constant factor of the optimal size. 

PASHA’s runtime and memory-usage improvements are orders of magnitude faster than the 

current best algorithms. We expect our newly-practical construction of UHSs to be adopted in 

many high-throughput sequence analysis pipelines.
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1 Introduction

The NIH Sequence Read Archive [8] currently contains over 26 petabases of sequence 

data. Increased use of sequence-based assays in research and clinical settings creates high 

computational processing burden; metagenomics studies generate even larger sequencing 

datasets [17, 19]. New computational ideas are essential to manage and analyze these data. 

To this end, researchers have turned to k-mer-based approaches to more efficiently index 

datasets [7].

Minimizer techniques were introduced to select k-mers from a sequence to allow efficient 

binning of sequences such that some information about the sequence’s identity is preserved 

[18]. Formally, given a sequence of length L and an integer k, its minimizer is the 

lexicographically smallest k-mer in it. The method has two key advantages: selected k-mers 

are close; and similar k-mers are selected from similar sequences. Minimizers were adopted 

for biological sequence analysis to design more efficient algorithms, both in terms of 

memory usage and runtime, by reducing the amount of information processed, while not 

losing much or any information [12]. The minimizer method has been applied in a large 

number of settings [4, 6, 20].

Orenstein and Pellow et al. [14, 15] generalized and improved upon the minimizer idea by 

introducing the notion of a universal hitting set (UHS). For integers k and L, set Uk, L is called 

a universal hitting set of k-mers if every possible sequence of length L contains at least one 

k-mer from Uk, L. Note that a UHS for any given k and L only needs to be computed once. 

Their heuristic DOCKS finds a small UHS in two steps: (i) remove a minimum-size set of 

vertices from a complete de Bruijn graph of order k to make it acyclic; and (ii) remove 

additional vertices to eliminate all (L − k)-long paths. The removed vertices comprise the 

UHS. The first step was solved optimally, while the second required a heuristic. The method 

is limited by runtime to k ≤ 13, and thus applicable to only a small subset of minimizer 

scenarios. Recently, Marçais et al. [10] showed that there exists an algorithm to compute 

a set of k-mers that covers every path of length L in a de Bruijn graph of order k. This 

algorithm gives an asymptotically optimal solution for a value of k approaching L. Yet this 

condition is rarely the case for real applications where 10 ≤ k ≤ 30 and 100 ≤ L ≤ 300. The 

results of Marçais et al. show that for k ≤ 30, the results are far from optimal for fixed 

L. A more recent method by DeBlasio et al. [3] can handle larger values of k, but with 

L ≤ 21, which is impractical for real applications. Thus, it is still desirable to devise faster 

algorithms to generate small UHSs.

Here, we present PASHA (Parallel Algorithm for Small Hitting set Approximation), the 

first randomized parallel algorithm to efficiently generate nearoptimal UHSs. Our novel 

algorithmic contributions are twofold. First, we improve upon the process of calculating 

vertex hitting numbers, i.e. the number of (L − k)-long paths they go through. Second, we 

build upon a randomized parallel algorithm for Set Cover to substantially speedup removal 

of k-mers for the UHS—the major time-limiting step—with a guaranteed approximation 

ratio on the k-mer set size. PASHA performs substantially better than current algorithms at 

finding a UHS in terms of runtime, with only a small increase in set size; it is consequently 
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applicable to much larger values of k. Software and computed sets are available at: 

pasha.csail.mit.edu and github.com/ekimb/pasha.

2 Background and Preliminaries

Preliminary Definitions

For k ≥ 1 and finite alphabet ∑, directed graph Bk = (V , E) is a de Bruijn graph of order 

k if V  and E represent k- and (k + 1)-long strings over ∑, respectively. An edge may exist 

from vertex u to vertex v if the (k − 1)-suffix of u is the (k − 1)-prefix of v. For any edge 

(u, v) ∈ E with label L, labels of vertices u and v are the prefix and suffix of length k of L, 

respectively. If a de Bruijn graph contains all possible edges, it is complete, and the set of 

edges represents all possible (k + 1)-mers. An l = (L − k))-long path in the graph, i.e. a path 

of l edges, represents an L-long sequence over ∑ (for further details, see [1]).

For any L-long string s over ∑, k-mer set M hits s if there exists a k-mer in M that is a 

contiguous substring in s. Consequently, universal hitting set (UHS) Uk, L is a set of k-mers 

that hits any L-long string over Σ. A trivial UHS is the set of all k-mers, but due to its size 

|Σ|k , it does not reduce the computational expense for practical use. Note that a UHS for 

any given k and L does not depend on a dataset, but rather needs to be computed only once.

Although the problem of computing a universal hitting set has no known hardness results, 

there are several NP-hard problems related to it. In particular, the problem of computing a 

universal hitting set is highly similar, although not identical, to the (k, L)-hitting set problem, 

which is the problem of finding a minimum-size k-mer set that hits an input set of L-long 

sequences. Orenstein and Pellow et al. [14, 15] proved that the (k, L)-hitting set problem 

is NP-hard, and consequently developed the near-optimal DOCKS heuristic. DOCKS relies 

on the Set Cover problem, which is the problem of finding a minimum-size collection of 

subsets S1, …, Sk of finite set U whose union is U.

The DOCKS Heuristic

DOCKS first removes from a complete de Bruijn graph of order k a decycling set, turning 

the graph into a directed acyclic graph (DAG). This set of vertices represent a set of k-mers 

that hits all sequences of infinite length. A minimum-size decycling set can be found by 

Mykkelveit’s algorithm [13] in O |Σ|k  time. Even after all cycles, which represent sequences 

of infinite length, are removed from the graph, there may still be paths representing 

sequences of length L, which also need to be hit by the UHS. DOCKS removes an additional 

set of k-mers that hits all remaining sequences of length L, so that no path representing an 

L-long sequence, i.e. a path of length l = L − k, remains in the graph.

However, finding a minimum-size set of vertices to cover all paths of length l in a directed 

acyclic graph (DAG) is NP-hard [16]. In order to find a small, but not necessarily minimum-

size, set of vertices to cover all l-long paths, Orenstein and Pellow et al. [14, 15] introduced 

the notion of a hitting number, the number of l-long paths containing vertex v, denoted 

by T(v, l). DOCKS uses the hitting number to prioritize removal of vertices that are likely 
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to cover a large number of paths in the graph. This, in fact, is an application of the 

greedy method for the Set Cover problem, thus guaranteeing an approximation ratio of 

O 1 + log maxvT(v, l)  on the removal of additional k-mers.

The hitting numbers for all vertices can be computed efficiently by dynamic programming: 

For any vertex v and 0 ≤ i ≤ l, DOCKS calculates the number of i-long paths starting at 

v, D(v, i), and the number of i-long paths ending at v, F(v, i). Then, the hitting number is 

directly computable by

T(v, l) = ∑
i = 0

l
F(v, i) ⋅ D(v, l − i)

(1)

and the dynamic programming calculation in graph G = V ′, E′  is given by

∀v ∈ V ′, D(v, 0) = F(v, 0) = 1
D(v, i) = ∑(v, u) ∈ E′ D(u, i − 1)
F(v, i) = ∑(u, v) ∈ E′ F(u, i − 1)

(2)

Overall, DOCKS performs two main steps: First, it finds and removes a minimum-size 

decycling set, turning the graph into a DAG. Then, it iteratively removes vertex v with 

the largest hitting number T(v, l) until there are no l-long paths in the graph. DOCKS is 

sequential: In each iteration, one vertex with the largest hitting number is removed and 

added to the UHS output, and the hitting numbers are recalculated. Since the first phase of 

DOCKS is solved optimally in polynomial time, the bottleneck of the heuristic lies in the 

removal of the remaining set of k-mers to cover all paths of length l = L − k in the graph, 

which represent all remaining sequences of length L.

As an additional heuristic, Orenstein and Pellow et al. [14, 15] developed DOCKSany 

with a similar structure as DOCKS, but instead of removing the vertex that hits the most 

(L − k)-long paths, it removes a vertex that hits the most paths in each iteration. This reduces 

the runtime by a factor of L, as calculating the hitting number T(v) for each vertex can be 

done in linear time with respect to the size of the graph. DOCKSanyX extends DOCKSany 

by removing X vertices with the largest hitting numbers in each iteration. DOCKSany and 

DOCKSanyX run faster compared to DOCKS, but the resulting hitting sets are larger.

3 Methods

Overview of the Algorithm.

Similar to DOCKS, PASHA is run in two phases: First, a minimum-size decycling set is 

found and removed; then, an additional set of k-mers that hits remaining L-long sequences 

is removed. The removal of the decycling set is identical to that of DOCKS; however, in 

PASHA we introduce randomization and parallelization to efficiently remove the additional 

set of k-mers. We present two novel contributions to efficiently parallelize and randomize 
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the second phase of DOCKS. The first contribution leads to a faster calculation of hitting 

numbers, thus reducing the runtime of each iteration. The second contribution leads to 

selecting multiple vertices for removal at each iteration, thus reducing the number of 

iterations to obtain a graph with no (L − k)-long paths. Together, the two contributions 

provide orthogonal improvements in runtime.

Improved Hitting Number Calculation

Memory Usage Improvements.—We reduce memory usage through algorithmic and 

technical advances. Instead of storing the number of i-long paths for 0 ≤ i ≤ l in both F
and D, we apply the following approach (Algorithm 1): We compute D for all v ∈ V  and 

0 ≤ i ≤ l. Then, while computing the hitting number, we calculate F  for iteration i. For this 

aim, we define two arrays: Fcurr and F prev, to store only two instances of i-long path counts for 

each vertex: The current and previous iterations. Then, for some j, we compute Fcurr based 

on F prev, set F prev = Fcurr, and add Fcurr(v) ⋅ D(v, l − j) to the hitting number sum. Lastly, we 

increase j, and repeat the procedure, adding the computed hitting numbers iteratively. This 

approach allows the reduction of matrix F , since in each iteration we are storing only two 

arrays, Fcurr and F prev, instead of the original F  matrix consisting of l + 1 arrays. Therefore, 

we are able to reduce memory usage by close to half, with no change in runtime.

To further reduce memory usage, we use float variable type (of size 4 bytes) instead of 

double variable type (of size 8 bytes). The number of paths kept in F  and D increase 

exponentially with i, the length of the paths. To be able to use the 8 bit exponent field, 

we initialize F  and D to float minimum positive value. This does not disturb algorithm 

correctness, as path counting is only scaled to some arbitrary unit value, which may be 

2−149, the smallest positive value that can be represented by float. This is done in order 

to account for the high numbers that path counts can reach. The remaining main memory 

bottleneck is matrix D, whose size is 4 ⋅ 4k ⋅ (l + 1) bytes.

Lastly, we utilized the property of a complete de Bruijn graph of order k being the line graph 

of a de Bruijn graph of order k − 1. While all k-mers are represented as the set of vertices in 

the graph of order k, they are represented as edges in the graph of order k − 1. If we remove 

edges of a de Bruijn graph of order k − 1, instead of vertices in a graph of order k, we can 

reduce memory usage by another factor of |Σ|. In our implementation we compute D and F
for all vertices of a graph of order k − 1, and calculate hitting numbers for edges. Thus, the 

bottleneck of the memory usage is reduced to 4 ⋅ 4k − 1 ⋅ (l + 1) bytes.

Runtime Reduction by Parallelization.—We parallelize the calculation of the hitting 

numbers to achieve a constant factor reduction in runtime. The calculation of i-long paths 

through vertex v only depends on the previously calculated matrices for the (i − 1)-long paths 

through all vertices adjacent to v (Eq. 2). Therefore, for some i, we can compute D(v, i) and 

F(v, i) for all vertices in V ′ in parallel, where V ′ is the set of vertices left after the removal 

of the decycling set. In addition, we can calculate the hitting number T(v, l) for all vertices 

V ′ in parallel (similar to computing D and F), since the calculation does not depend on the 

hitting number of any other vertex (we call this parallel variant PDOCKS for the purpose of 
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comparison with PASHA). We note that for DOCKSany and DOCKSanyX, the calculations 

of hitting numbers for each vertex cannot be computed in parallel, since the number of paths 

starting and ending at each vertex both depend on those of the previous vertex in topological 

order.

Algorithm 1.

Improved hitting number calculation. Input: G = (V , E)

1: D [|V | ][l + 1], with [ |V | ][0] initialized to 1

2: Fcurr [ |V | ]
3: F prev [ |V | ] initialized to 1

4: T [ |V | ] initialized to 0

5: for1 ≤ i ≤ ldo:

6:  forv ∈ V do:

7:   for(v, u) ∈ Edo:

8:    D[v][i] + = D[u][i − 1]
9: for1 ≤ i ≤ l + 1do:

10:  forv ∈ V do:

11:   Fcurr[v] = 0
12:   for(u, v) ∈ Edo:

13:    Fcurr[v] + = F prev[u]
14:   T[v] + = F prev[v] ⋅ D[v][l − i + 1]
15:  F prev = Fcurr

16: returnT

Parallel Randomized k-mer Selection

Our goal is to find a minimum-size set of vertices that covers all l-long paths. We can 

represent the remaining graph as an instance of the Set Cover problem. While the greedy 

algorithm for the second phase of DOCKS is serial, we will show that we can devise 

a parallel algorithm, which is close to the greedy algorithm in terms of performance 

guarantees, by picking a large set of vertices that cover nearly as many paths as the vertices 

that the greedy algorithm picks one by one.

In PASHA, instead of removing the vertex with the maximum hitting number in each 

iteration, we consider a set of vertices for removal with hitting numbers within an 

interval, and pick vertices in this set independently with constant probability. Considering 

vertices within an interval allows us to efficiently introduce randomization while still 

emulating the deterministic algorithm. Picking vertices independently in each iteration 

enables parallelization of the procedure. Our randomized parallel algorithm for the second 

phase of the UHS problem adapts that of Berger et al. [2] for the original Set Cover problem.
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The UHS Selection Procedure.—The input includes graph G = (V , E) and 

randomization variables 0 < ε ≤ 1
4 , 0 < δ ≤ 1

l  (Algorithm 2). Let function calcHit() calculate 

the hitting numbers for all vertices, and return the maximum hitting number (line 2). We set 

t = log1 + εTmax (line 3), and run a series of steps from t, iteratively decreasing t by 1. In step t, 
we first calculate the hitting numbers of all vertices (line 5); then, we define vertex set S to 

contain vertices with a hitting number between (1 + ε)t − 1 and (1 + ε)t for potential removal 

(lines 8–9).

Let PS be the sum of all hitting numbers of the vertices in S, i.e. PS = ∑v ∈ S T(v, l) (line 

10). In each step, if the hitting number for vertex v is more than a δ3 fraction of PS, i.e. 

T(v, l) ≥ δ3PS, we add v to the picked vertex set V t (lines 11–13). For vertices with a hitting 

number smaller than δ3PS, we pairwise independently pick them with probability δ
l . We test 

the vertices in pairs to impose pairwise independence: If an unpicked vertex u satisfies the 

probability δ
l , we choose another unpicked vertex v and test the same probability δ

l . If both 

are satisfied, we add both vertices to the picked vertex set V t; if not, neither of them are 

added to the set (lines 14–16). This serves as a bound on the probability of picking a vertex. 

If the sum of hitting numbers of the vertices in set V t is at least V t (1 + ε)t(1 − 4δ − 2ε), 
we add the vertices to the output set, remove them from the graph, and decrease t by 1 

(lines 17–20). The next iteration runs with decreased t. Otherwise, we rerun the selection 

procedure without decreasing t.

Algorithm 2.

The selection procedure. Input: G = (V , E), 0 < ε ≤ 1
4 , 0 < δ ≤ 1

l

1: R
2: Tmax calcHit()
3: t log1 + εTmax

4: whilet > 0do

5:  ifcalcHit() = = 0then break

6:  S
7:  V t

8:  forv ∈ V do:

9:   if(1 + ε)t − 1 ≤ T(v, l) ≤ (1 + ε)tthenS S ∪ v
10:  PS ∑v ∈ S T(v, l)
11:  forv ∈ Sdo:

12:   ifT(v, l) ≥ δ3PSthen

13:    V t V t ∪ v
14:  foru, v ∈ Sdo:
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15:
  ifu ∉ V tandunirand(0, 1) ≤ δ

l  and v ∉ V tandunirand(0, 1) ≤ δ
l then

16:    V t V t ∪ u, v
17:  if∑v ∈ V t T(v, l) ≥ V t ⋅ (1 + ε)t(1 − 4δ − 2ε)then

18:   R R ∪ V t

19:   G = G V ∖ V t, E
20: t t − 1
21:   returnR

Performance Guarantees.—At step t, we add the selected vertex set V t to the 

output set if ∑v ∈ V t T(v, l) ≥ V t (1 + ε)t(1 − 4δ − 2ε). Otherwise, we rerun the selection 

procedure with the same value of t. We show in Appendix A that with high probability, 

∑v ∈ V t T(v, l) ≥ V t (1 + ε)t(1 − 4δ − 2ε). We also show that PASHA produces a cover 

α 1 + log Tmax  times the optimal size, where α = 1/(1 − 4δ − 2ε). In Appendix B, we give 

the asymptotic number of the selection steps and prove the average runtime complexity of 

the algorithm. Performance summaries in terms of theoretical runtime and approximation 

ratio are in Table 1.

4 Results

PASHA Outperforms Extant Algorithms for k ≤ 13
We compared PASHA and PDOCKS to extant methods on several combinations of k and 

L. We ran DOCKS, DOCKSany, PDOCKS, and PASHA over 5 ≤ k ≤ 10, DOCKSanyX, 

PDOCKS, and PASHA for k = 11 and X = 10, and PASHA and DOCKSanyX for X = 100, 

1000 for k = 12, 13 respectively, for 20 ≤ L ≤ 200. We say that an algorithm is limited by 
runtime if for some value of k ≤ 13 and for L = 100, its runtime exceeds 1 day (86400 s), 

in which case we stopped the operation and excluded the method from the results for the 

corresponding value of k. While running PASHA, we set δ = 1/l, and 1 − 4δ − 2ε = 1/2 to 

set an emulation ratio α = 2 (see Sect. 3 and Appendix A). The methods were benchmarked 

on a 24-CPU Intel Xeon Gold (2.10 GHz) with 754 GB of RAM. We ran all tests using all 

available cores (m = 24 in Table 1).

Comparing Runtimes and UHS Sizes.—We ran DOCKS, PDOCKS, DOCKSany, and 

PASHA for k = 10 and 20 ≤ L ≤ 200. As seen in Fig. 1A, DOCKS has a significantly higher 

runtime than the parallel variant PDOCKS, while producing identical sets (Fig. 1B). For 

small values of L, DOCKSany produces the largest UHSs compared to other methods, and 

as L increases, the differences in both runtime and UHS size for all methods decrease, since 

there are fewer k-mers to add to the removed decycling set to produce a UHS.

We ran PDOCKS, DOCKSany10, and PASHA for k = 11 and 20 ≤ L ≤ 200. As seen in 

Fig. 1C, for small values of L, both PDOCKS and DOCKSany10 have significantly higher 

runtimes than PASHA; while for larger L, DOCKSany10 and PASHA are comparable in 
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their runtimes (with PASHA being negligibly slower). In Fig. 1D, we observe that PDOCKS 

computes the smallest sets for all values of L. Indeed, its guaranteed approximation ratio 

is the smallest among all three benchmarked methods. While the set sizes for all methods 

converge to the same value for larger L, DOCKSany10 produces the largest UHSs for small 

values of L, in which case PASHA and PDOCKS are preferable.

PASHA’s runtime behaves differently than that of other methods. For all methods but 

PASHA, runtime decreases as L increases. Instead of gradually decreasing with L, PASHA’s 

runtime gradually decreases up to L = 70, at which it starts to increase at a much slower 

rate. This is explained by the asymptotic complexity of PASHA (Table 1). Since computing 

a UHS for small L requires a larger number of vertices to be removed, the decrease in 

runtime with increasing L up to L = 70 is significant; however, due to PASHA’s asymptotic 

complexity being quadratic with respect to L, we see a small increase from L = 70 to 

L = 200. All other methods depend linearly on the number of removed vertices, which 

decreases as L increases.

Despite the significant decrease in runtime in PDOCKS compared to DOCKS, PDOCKS 

was still limited by runtime to k ≤ 12. Therefore, we ran DOCKSany100 and PASHA for 

k = 12 and 20 ≤ L ≤ 200. As seen in Figs. 1E and F, both methods follow a similar trend as 

in k = 11, with DOCKSany100 being significantly slower and generating significantly larger 

UHSs for small values of L. For larger values of L, DOCKSany100 is slightly faster, while 

PASHA produces sets that are slightly smaller.

At k = 13 we observed the superior performance of PASHA over DOCKSany1000 in both 

runtime and set size for all values of L. We ran DOCKSany1000 and PASHA for k = 13
and 20 ≤ L ≤ 200. As seen in Figs. 1G and H, DOCKSany1000 produces larger sets and is 

significantly slower compared to PASHA for all values of L. This result demonstrates that 

the slow increase in runtime for PASHA compared to other algorithms for k < 13 does not 

have a significant effect on runtime for larger values of k.

PASHA Enables UHS for k = 14, 15, 16

Since all existing algorithms and PDOCKS are limited by runtime to k ≤ 13, we report the 

first UHSs for 14 ≤ k ≤ 16 and L = 100 computed using PASHA, run on a 24-CPU Intel 

Xeon Gold (2.10 GHz) with 754 GB of RAM using all 24 cores. Figure 2 shows runtimes 

and sizes of the sets computed by PASHA.

Density Comparisons for the Different Methods

In addition to runtimes and UHS sizes, we report values of another measure of UHS 

performance known as density. The density of the minimizers scheme d(M, S, k) is the 

fraction of selected k-mers’ positions over the number of k-mers in the sequence. Formally, 

the density of scheme M over sequence S is defined

as
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d(M, S, k) = M(S, k)
S − k + 1

(3)

where M(S, k) is the set of positions of the k-mers selected over sequence S.

We calculate densities for a UHS by selecting the lexicographically smallest k-mer that is 

in the UHS within each window of L − k + 1 consecutive k-mers, since at least one k-mer is 

guaranteed to be in each such window. Marçais et al. [11] showed that using UHSs for k-mer 

selection in this manner yields smaller densities than lexicographic or random minimizer 

selection schemes. Therefore, we do not report comparisons between UHSs and minimizer 

schemes, but rather comparisons among UHSs constructed by different methods.

Marçais et al. [11] also showed that the expected density of a minimizers scheme for any 

k and window size L − k + 1 is equal to the density of the minimizers scheme on a de 

Bruijn sequence of order L. This allows for exact calculation of expected density for any 

k-mer selection procedure. However, for 14 ≤ k ≤ 16 we calculated UHSs only for L = 100, 

and iterating over a de Bruijn sequence of order 100 is infeasible. Therefore, we computed 

the approximate expected density on long random sequences, since the computed expected 

density on these sequences converges to the expected density [11]. In addition, we computed 

the density of different methods on the entire human reference genome (GRCh38).

We computed the density values of UHSs generated by PDOCKS, DOCKSany, and PASHA 

over 10 random sequences of length 106, and the entire human reference genome (GRCh38), 

for 5 ≤ k ≤ 16 and L = 100, when a UHS was available for such (k, L) combination.

As seen in Fig. 3, the differences in both approximate expected density and density 

computed on the human reference genome are negligible when comparing UHSs generated 

by the different methods. For most values of k, DOCKS yields the smallest approximate 

expected density and human genome density values, while DOCKSany generally yields 

lower human genome density values, but higher expected density values than PASHA. For 

k ≤ 6, the UHS is only the decycling set; therefore, density values for these values of k are 

identical for the different methods.

Since there is no significant difference in the density of the UHSs generated by the different 

methods, other criteria, such as runtime and set size, are relevant when evaluating the 

performance of the methods: As k increases, PASHA produces sets that are only slightly 

smaller or larger in density, but significantly smaller in size and significantly faster than 

extant methods.

5 Discussion

We presented an efficient randomized parallel algorithm for generating a small set of 

k-mers that hits every possible sequence of length L and produces a set that is a small 

guaranteed factor away from the optimal set size. Since the runtime of DOCKS variants 
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and PASHA depend exponentially on k, these greedy heuristics are eventually limited by 

runtime. However, using these heuristics in conjunction with parallelization, we are newly 

able to compute UHSs for values of k and L large enough for most biological applications.

The improvements in runtime for the hitting number calculation are due to parallelization of 

the dynamic programming phase, which is the bottleneck in sequential DOCKS variants. A 

minimum-size set that hits all infinite-length sequences is optimally and rapidly removed; 

however, the remaining sequences of length L are calculated and removed in time 

polynomial in the output size. We show that a constant factor reduction is beneficial in 

mitigating this bottleneck for practical use. In addition, we reduce the memory usage of 

this phase by theoretical and technical advancements. Last, we build on a randomized 

parallel algorithm for Set Cover to significantly speed up vertex selection. The randomized 

algorithm can be derandomized, while preserving the same approximation ratio, since it 

requires only pairwise independence of the random variables [2].

One main open problem still remains from this work. Although the randomized 

approximation algorithm enables us to generate a UHS more efficiently, the hitting numbers 

still need to be calculated at each iteration. The task of computing hitting numbers remains 

as the bottleneck in computing a UHS. Is there a more efficient way of calculating hitting 

numbers than the dynamic programming calculation done in DOCKS and PASHA? A more 

efficient calculation of hitting numbers will enable PASHA to run over k > 6 in a reasonable 

time.

As for long reads, which are becoming more popular for genome assembly tasks, a k-mer 

set that hits all infinite long sequences, as computed optimally by Mykkelveit’s algorithm 

[13], is enough due to the length of these long read sequences. Still, due to the inaccuracies 

and high cost of long read sequencing compared to short read sequencing, the latter is still 

the prevailing method to produce sequencing data, and is expected to remain so for the near 

future.

We expect the efficient calculation of UHSs to lead to improvements in sequence analysis 

and construction of space-efficient data structures. Unfortunately, previous methods were 

limited to small values of k, thus allowing application to only a small subset of sequence 

analysis tasks. As there is an inherent exponential dependency on k in terms of both runtime 

and memory, efficiency in calculating these sets is crucial. We expect that the UHSs newly-

enabled by PASHA for k > 13 will be useful in improving various applications in genomics.

6 Conclusion

We developed a novel randomized parallel algorithm PASHA to compute a small set of 

k-mers which together hit every sequence of length L. It is based on two algorithmic 

innovations: (i) improved calculation of hitting numbers through paralleization and memory 

reduction; and (ii) randomized parallel selection of additional k-mers to remove. We 

demonstrated the scalability of PASHA to larger values of k up to 16. Notably, the universal 

hitting sets need to be computed only once, and can then be used in many sequence analysis 
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applications. We expect our algorithms to be an essential part of the sequence analysis 

toolkit.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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A: Emulating the Greedy Algorithm

The greedy Set Cover algorithm was developed independently by Johnson and Lovász for 

unweighted vertices [5, 9]. Lovász [9] proved:

Theorem 1.

The greedy algorithm for Set Cover outputs cover R with |R | ≤ 1 + log Tmax |OPT |, where 

Tmax is the maximum cardinality of a set.

We adapt a definition for an algorithm emulating the greedy algorithm for the Set Cover 

problem to the second phase of DOCKS [2]. We say that an algorithm for the second phase 

of DOCKS α-emulates the greedy algorithm if it outputs a set of vertices serially, during 

which it selects a vertex set A such that

A
PA

≤ α
Tmax

,

where PA is the set of l-long paths covered by A. Using this definition, we come up with a 

near-optimal approximation by the following theorem:

Theorem 2.

An algorithm for the second phase of DOCKS that α-emulates the greedy algorithm 
produces cover R ⊆ V  with |R | ≤ α 1 + log Tmax |OPT |, where OPT is the optimal cover.

Proof. We define the cost of covering path p as C(p) = |S|
PS

, where S is the set of vertices 

selected in the selection step in which p was covered, and PS the set of l-long paths covered 

by S. Then, ∑p ∈ PS C(p) = |S|.

Let Pl be the set of all l-long paths in G. A fractional cover of graph G = (V , E) is function 

F:V 0, 1  s.t. for all p ∈ Pl, ∑v ∈ p F(v) ≥ 1. The optimal cover FOPT has minimum 

∑v ∈ V FOPT(v).

Let F be such an optimal fractional cover. The size of the cover produced is
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R = ∑
p ∈ Pl

C(p) ≤ ∑
v ∈ V

F(v) ∑
p ∈ Pv

C(p)

where Pv is the set of all l-long paths through vertex v.

Lemma 1.

There are at most α
k  paths p ∈ Pv such that C(p) ≥ k for any v, k.

Proof. Assume the contrary: Before such a path p is covered, T(v, l) > α
k . Thus,

S
PS

≥ k > α/T(v, l) ≥ α/Tmax,

contradicting the definition.

Suppose we rank the T(v, l) paths p ∈ Pv by decreasing order of C(p). From the above 

remark, if the itℎ path has cost k, then i ≤ α/k. Then, we can write

∑
p ∈ Pv

C(p) ≤ ∑
i = 1

T(v, l)
α/i ≤ α ∑

i = 1

T(v, l)
1/i ≤ α(1 + logT(v, l)) ≤ α 1 + log Tmax

Then,

∑
p ∈ Pl

C(p) ≤ ∑
v ∈ V

F(v)α 1 + log Tmax

and finally

R ≤ α 1 + log Tmax OPT .

In PASHA, we ensure that in step t, the sum of vertex hitting numbers of selected vertex set 

V t is at least V t (1 + ε)t(1 − 4δ − 2ε). We now show that this is satisfied with high probability 

in each step.

Theorem 3.

With probability at least 1/2, the sum of vertex hitting numbers of selected vertex set V t at 

step t is at least V t (1 + ε)t(1 − 4δ − 2ε).

Proof. For any vertex v in selected vertex set V t at step t, let Xv be an indicator variable for 

the random event that vertex v is picked, and f(X) = ∑v ∈ V t Xv.
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Note that V ar[f(X)] ≤ V t ⋅ δ/l, and V t ≥ l/δ3, since we are given that no vertex covers a δ3

fraction of the l-long paths covered by the vertices in V t. By Chebyshev’s inequality, for any 

k ≥ 0,

Pr f(X) − E[f(X)] ≥ k V t ⋅ δ/l ≤ 1
k2

and with probability 3/4,

(f(X) − E[f(X)])2 ≤ 4 V t
2 ⋅ δ4

l2

and

f(X) − E[f(X)] ≤ 2 V t ⋅ δ2
l .

Let PV t denote the set of l-long paths covered by vertex set V t. Then,

PV t ≥ ∑
u ∈ V t

T(u, l)Xu − ∑
p ∈ PV t

∑
u, v ∈ p

XuXv

We know that ∑u ∈ V t T(u, l)Xu ≥ V t (1 + ε)t − 1, which is bounded below by 

δ − 2δ2 ⋅ V t (1 + ε)t − 1 /l. Let g(X) = ∑p ∈ PV t ∑u, v ∈ p XuXv. Then,

E[g(X)] = ∑
p ∈ PV t

E ∑
u, v ∈ p

XuXv = ∑
p ∈ PV t

l
2 (δ/l)2 = ∑

p ∈ PV t

(l − 1) ⋅ δ2
2l ≤ ∑

p ∈ PV t

δ2
2 .

Hence, with probability at least 3/4,

g(X) ≤ 4E[g(X)] ≤ 2δ2 ⋅ V t (1 + ε)t

Both events hold with probability at least 1/2, and the sum of vertex hitting numbers is at 

least

δ − 2δ2 ⋅ V t (1 + ε)t − 1 ⋅ l − 2δ2 ⋅ V t (1 + ε)t ≥ V t (1 + ε)t − 1 δl − 2δ2l − 2δ2 − 2δ2ε

≥ V t (1 + ε)t δl − 2δ2l − 2δ2 − 2δ2ε /(1 + ε)

≥ V t (1 + ε)t(1 − 4δ − 2ε) .
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B: Runtime Analysis

Here, we show the number of the selection steps and the average-time asymptotic 

complexity of PASHA.

Lemma 2.

The number of selection steps is O log|V | log Pl / εδ3m .

Proof. The number of steps is O(log |V | /ε), and within each step, there are O log PS / δ3m

selection steps (where PS is the sum of vertex hitting numbers of the vertex set S for that 

step and m the number of threads used), since we are guaranteed to remove at least δ3

fraction of the paths during that step. Overall, there are O log|V | log Pl / εδ3m  selection 

steps.

Theorem 4.

For φ < 1, there is an approximation algorithm for the second phase of DOCKS that runs 

in O L2 ⋅ |Σ |k + 1 ⋅ log2 |Σ|k / εδ3m  average time, where m is the number of threads used, 

and produces a cover of size at most (1 + φ) 1 + logTmax  times the optimal size, where 

1 + φ = 1/(1 − 4δ − 2ϵ).

Proof. Follows immediately from Theorem 2 and Lemma 2.
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Fig. 1. 
Runtimes (left) and UHS sizes (divided by 104, right) for values of k = 10 (A, B), 11 (C, D), 

12 (E, F), and 13 (G, H) and 20 ≤ L ≤ 200 for the different methods. Note that the y-axes for 

runtimes are in logarithmic scale.
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Fig. 2. 
Runtimes (A) and UHS sizes (divided by 106) (B) for 14 ≤ k ≤ 16 and L = 100 for PASHA. 

Note that the y-axis for runtime is in logarithmic scale.
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Fig. 3. 
Mean approximate expected density (A), and density on the human reference genome 

(B) for different methods, for 5 ≤ k ≤ 16 and L = 100. Error bars represent one standard 

deviation from the mean across 10 random sequences of length 106. Density is the fraction 

of selected k-mer positions over the number of k-mers in the sequence.
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Table 1.

Summary of theoretical results for the second phase of different algorithms for generating a set of k-mers 

hitting all L-long sequences. PDOCKS is DOCKS with the improved hitting number calculation, i.e. greedy 

removal of one vertex at each iteration. pD, pDA denote the total number of picked vertices for DOCKS/

PDOCKS and DOCKSany, respectively. m denotes the number of parallel threads used, Tmax the maximum 

vertex hitting number, and ϵ and δ PASHA’s randomization parameters.

Algorithm DOCKS PDOCKS DOCKSany PASHA

Theoretical 
runtime O 1 + pD |Σ |k + 1 ⋅ L O 1 + pD |Σ |k + 1 ⋅ L/m O 1 + pDA |Σ|k + 1 O L2 ⋅ |Σ |k + 1 ⋅ log2 |Σ|k / εδ3m

Approximation 
ratio

1 + log Tmax 1 + log Tmax N/A 1 + log Tmax /(1 − 4δ − 2ε)
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