
A Randomized Parallel Algorithm for Efficiently Finding Near-
Optimal Universal Hitting Sets

Barış Ekim1,2, Bonnie Berger1,2, Yaron Orenstein3

1Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology,
Cambridge, MA 02139, USA

2Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139,
USA

3School of Electrical and Computer Engineering, Ben-Gurion University of the Negev, 8410501
Beer-Sheva, Israel

Abstract

As the volume of next generation sequencing data increases, an urgent need for algorithms to

efficiently process the data arises. Universal hitting sets (UHS) were recently introduced as an

alternative to the central idea of minimizers in sequence analysis with the hopes that they could

more efficiently address common tasks such as computing hash functions for read overlap, sparse

suffix arrays, and Bloom filters. A UHS is a set of k-mers that hit every sequence of length L,

and can thus serve as indices to L-long sequences. Unfortunately, methods for computing small

UHSs are not yet practical for real-world sequencing instances due to their serial and deterministic

nature, which leads to long runtimes and high memory demands when handling typical values of

k (e.g. k > 13). To address this bottleneck, we present two algorithmic innovations to significantly

decrease runtime while keeping memory usage low: (i) we leverage advanced theoretical and

architectural techniques to parallelize and decrease memory usage in calculating k-mer hitting

numbers; and (ii) we build upon techniques from randomized Set Cover to select universal k-mers

much faster. We implemented these innovations in PASHA, the first randomized parallel algorithm

for generating nearoptimal UHSs, which newly handles k > 13. We demonstrate empirically that

PASHA produces sets only slightly larger than those of serial deterministic algorithms; moreover,

the set size is provably guaranteed to be within a small constant factor of the optimal size.

PASHA’s runtime and memory-usage improvements are orders of magnitude faster than the

current best algorithms. We expect our newly-practical construction of UHSs to be adopted in

many high-throughput sequence analysis pipelines.

Keywords

Universal hitting sets; Parallelization; Randomization

yaronore@bgu.ac.il, bab@mit.edu.

HHS Public Access
Author manuscript
Res Comput Mol Biol. Author manuscript; available in PMC 2024 June 04.

Published in final edited form as:
Res Comput Mol Biol. 2020 May ; 12074: 37–53. doi:10.1007/978-3-030-45257-5_3.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

1 Introduction

The NIH Sequence Read Archive [8] currently contains over 26 petabases of sequence

data. Increased use of sequence-based assays in research and clinical settings creates high

computational processing burden; metagenomics studies generate even larger sequencing

datasets [17, 19]. New computational ideas are essential to manage and analyze these data.

To this end, researchers have turned to k-mer-based approaches to more efficiently index

datasets [7].

Minimizer techniques were introduced to select k-mers from a sequence to allow efficient

binning of sequences such that some information about the sequence’s identity is preserved

[18]. Formally, given a sequence of length L and an integer k, its minimizer is the

lexicographically smallest k-mer in it. The method has two key advantages: selected k-mers

are close; and similar k-mers are selected from similar sequences. Minimizers were adopted

for biological sequence analysis to design more efficient algorithms, both in terms of

memory usage and runtime, by reducing the amount of information processed, while not

losing much or any information [12]. The minimizer method has been applied in a large

number of settings [4, 6, 20].

Orenstein and Pellow et al. [14, 15] generalized and improved upon the minimizer idea by

introducing the notion of a universal hitting set (UHS). For integers k and L, set Uk, L is called

a universal hitting set of k-mers if every possible sequence of length L contains at least one

k-mer from Uk, L. Note that a UHS for any given k and L only needs to be computed once.

Their heuristic DOCKS finds a small UHS in two steps: (i) remove a minimum-size set of

vertices from a complete de Bruijn graph of order k to make it acyclic; and (ii) remove

additional vertices to eliminate all (L − k)-long paths. The removed vertices comprise the

UHS. The first step was solved optimally, while the second required a heuristic. The method

is limited by runtime to k ≤ 13, and thus applicable to only a small subset of minimizer

scenarios. Recently, Marçais et al. [10] showed that there exists an algorithm to compute

a set of k-mers that covers every path of length L in a de Bruijn graph of order k. This

algorithm gives an asymptotically optimal solution for a value of k approaching L. Yet this

condition is rarely the case for real applications where 10 ≤ k ≤ 30 and 100 ≤ L ≤ 300. The

results of Marçais et al. show that for k ≤ 30, the results are far from optimal for fixed

L. A more recent method by DeBlasio et al. [3] can handle larger values of k, but with

L ≤ 21, which is impractical for real applications. Thus, it is still desirable to devise faster

algorithms to generate small UHSs.

Here, we present PASHA (Parallel Algorithm for Small Hitting set Approximation), the

first randomized parallel algorithm to efficiently generate nearoptimal UHSs. Our novel

algorithmic contributions are twofold. First, we improve upon the process of calculating

vertex hitting numbers, i.e. the number of (L − k)-long paths they go through. Second, we

build upon a randomized parallel algorithm for Set Cover to substantially speedup removal

of k-mers for the UHS—the major time-limiting step—with a guaranteed approximation

ratio on the k-mer set size. PASHA performs substantially better than current algorithms at

finding a UHS in terms of runtime, with only a small increase in set size; it is consequently

Ekim et al. Page 2

Res Comput Mol Biol. Author manuscript; available in PMC 2024 June 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

applicable to much larger values of k. Software and computed sets are available at:

pasha.csail.mit.edu and github.com/ekimb/pasha.

2 Background and Preliminaries

Preliminary Definitions

For k ≥ 1 and finite alphabet ∑, directed graph Bk = (V , E) is a de Bruijn graph of order

k if V and E represent k- and (k + 1)-long strings over ∑, respectively. An edge may exist

from vertex u to vertex v if the (k − 1)-suffix of u is the (k − 1)-prefix of v. For any edge

(u, v) ∈ E with label L, labels of vertices u and v are the prefix and suffix of length k of L,

respectively. If a de Bruijn graph contains all possible edges, it is complete, and the set of

edges represents all possible (k + 1)-mers. An l = (L − k))-long path in the graph, i.e. a path

of l edges, represents an L-long sequence over ∑ (for further details, see [1]).

For any L-long string s over ∑, k-mer set M hits s if there exists a k-mer in M that is a

contiguous substring in s. Consequently, universal hitting set (UHS) Uk, L is a set of k-mers

that hits any L-long string over Σ. A trivial UHS is the set of all k-mers, but due to its size

|Σ|k , it does not reduce the computational expense for practical use. Note that a UHS for

any given k and L does not depend on a dataset, but rather needs to be computed only once.

Although the problem of computing a universal hitting set has no known hardness results,

there are several NP-hard problems related to it. In particular, the problem of computing a

universal hitting set is highly similar, although not identical, to the (k, L)-hitting set problem,

which is the problem of finding a minimum-size k-mer set that hits an input set of L-long

sequences. Orenstein and Pellow et al. [14, 15] proved that the (k, L)-hitting set problem

is NP-hard, and consequently developed the near-optimal DOCKS heuristic. DOCKS relies

on the Set Cover problem, which is the problem of finding a minimum-size collection of

subsets S1, …, Sk of finite set U whose union is U.

The DOCKS Heuristic

DOCKS first removes from a complete de Bruijn graph of order k a decycling set, turning

the graph into a directed acyclic graph (DAG). This set of vertices represent a set of k-mers

that hits all sequences of infinite length. A minimum-size decycling set can be found by

Mykkelveit’s algorithm [13] in O |Σ|k time. Even after all cycles, which represent sequences

of infinite length, are removed from the graph, there may still be paths representing

sequences of length L, which also need to be hit by the UHS. DOCKS removes an additional

set of k-mers that hits all remaining sequences of length L, so that no path representing an

L-long sequence, i.e. a path of length l = L − k, remains in the graph.

However, finding a minimum-size set of vertices to cover all paths of length l in a directed

acyclic graph (DAG) is NP-hard [16]. In order to find a small, but not necessarily minimum-

size, set of vertices to cover all l-long paths, Orenstein and Pellow et al. [14, 15] introduced

the notion of a hitting number, the number of l-long paths containing vertex v, denoted

by T(v, l). DOCKS uses the hitting number to prioritize removal of vertices that are likely

Ekim et al. Page 3

Res Comput Mol Biol. Author manuscript; available in PMC 2024 June 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://pasha.csail.mit.edu/
https://github.com/ekimb/pasha

to cover a large number of paths in the graph. This, in fact, is an application of the

greedy method for the Set Cover problem, thus guaranteeing an approximation ratio of

O 1 + log maxvT(v, l) on the removal of additional k-mers.

The hitting numbers for all vertices can be computed efficiently by dynamic programming:

For any vertex v and 0 ≤ i ≤ l, DOCKS calculates the number of i-long paths starting at

v, D(v, i), and the number of i-long paths ending at v, F(v, i). Then, the hitting number is

directly computable by

T(v, l) = ∑
i = 0

l
F(v, i) ⋅ D(v, l − i)

(1)

and the dynamic programming calculation in graph G = V ′, E′ is given by

∀v ∈ V ′, D(v, 0) = F(v, 0) = 1
D(v, i) = ∑(v, u) ∈ E′ D(u, i − 1)
F(v, i) = ∑(u, v) ∈ E′ F(u, i − 1)

(2)

Overall, DOCKS performs two main steps: First, it finds and removes a minimum-size

decycling set, turning the graph into a DAG. Then, it iteratively removes vertex v with

the largest hitting number T(v, l) until there are no l-long paths in the graph. DOCKS is

sequential: In each iteration, one vertex with the largest hitting number is removed and

added to the UHS output, and the hitting numbers are recalculated. Since the first phase of

DOCKS is solved optimally in polynomial time, the bottleneck of the heuristic lies in the

removal of the remaining set of k-mers to cover all paths of length l = L − k in the graph,

which represent all remaining sequences of length L.

As an additional heuristic, Orenstein and Pellow et al. [14, 15] developed DOCKSany

with a similar structure as DOCKS, but instead of removing the vertex that hits the most

(L − k)-long paths, it removes a vertex that hits the most paths in each iteration. This reduces

the runtime by a factor of L, as calculating the hitting number T(v) for each vertex can be

done in linear time with respect to the size of the graph. DOCKSanyX extends DOCKSany

by removing X vertices with the largest hitting numbers in each iteration. DOCKSany and

DOCKSanyX run faster compared to DOCKS, but the resulting hitting sets are larger.

3 Methods

Overview of the Algorithm.

Similar to DOCKS, PASHA is run in two phases: First, a minimum-size decycling set is

found and removed; then, an additional set of k-mers that hits remaining L-long sequences

is removed. The removal of the decycling set is identical to that of DOCKS; however, in

PASHA we introduce randomization and parallelization to efficiently remove the additional

set of k-mers. We present two novel contributions to efficiently parallelize and randomize

Ekim et al. Page 4

Res Comput Mol Biol. Author manuscript; available in PMC 2024 June 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

the second phase of DOCKS. The first contribution leads to a faster calculation of hitting

numbers, thus reducing the runtime of each iteration. The second contribution leads to

selecting multiple vertices for removal at each iteration, thus reducing the number of

iterations to obtain a graph with no (L − k)-long paths. Together, the two contributions

provide orthogonal improvements in runtime.

Improved Hitting Number Calculation

Memory Usage Improvements.—We reduce memory usage through algorithmic and

technical advances. Instead of storing the number of i-long paths for 0 ≤ i ≤ l in both F
and D, we apply the following approach (Algorithm 1): We compute D for all v ∈ V and

0 ≤ i ≤ l. Then, while computing the hitting number, we calculate F for iteration i. For this

aim, we define two arrays: Fcurr and F prev, to store only two instances of i-long path counts for

each vertex: The current and previous iterations. Then, for some j, we compute Fcurr based

on F prev, set F prev = Fcurr, and add Fcurr(v) ⋅ D(v, l − j) to the hitting number sum. Lastly, we

increase j, and repeat the procedure, adding the computed hitting numbers iteratively. This

approach allows the reduction of matrix F , since in each iteration we are storing only two

arrays, Fcurr and F prev, instead of the original F matrix consisting of l + 1 arrays. Therefore,

we are able to reduce memory usage by close to half, with no change in runtime.

To further reduce memory usage, we use float variable type (of size 4 bytes) instead of

double variable type (of size 8 bytes). The number of paths kept in F and D increase

exponentially with i, the length of the paths. To be able to use the 8 bit exponent field,

we initialize F and D to float minimum positive value. This does not disturb algorithm

correctness, as path counting is only scaled to some arbitrary unit value, which may be

2−149, the smallest positive value that can be represented by float. This is done in order

to account for the high numbers that path counts can reach. The remaining main memory

bottleneck is matrix D, whose size is 4 ⋅ 4k ⋅ (l + 1) bytes.

Lastly, we utilized the property of a complete de Bruijn graph of order k being the line graph

of a de Bruijn graph of order k − 1. While all k-mers are represented as the set of vertices in

the graph of order k, they are represented as edges in the graph of order k − 1. If we remove

edges of a de Bruijn graph of order k − 1, instead of vertices in a graph of order k, we can

reduce memory usage by another factor of |Σ|. In our implementation we compute D and F
for all vertices of a graph of order k − 1, and calculate hitting numbers for edges. Thus, the

bottleneck of the memory usage is reduced to 4 ⋅ 4k − 1 ⋅ (l + 1) bytes.

Runtime Reduction by Parallelization.—We parallelize the calculation of the hitting

numbers to achieve a constant factor reduction in runtime. The calculation of i-long paths

through vertex v only depends on the previously calculated matrices for the (i − 1)-long paths

through all vertices adjacent to v (Eq. 2). Therefore, for some i, we can compute D(v, i) and

F(v, i) for all vertices in V ′ in parallel, where V ′ is the set of vertices left after the removal

of the decycling set. In addition, we can calculate the hitting number T(v, l) for all vertices

V ′ in parallel (similar to computing D and F), since the calculation does not depend on the

hitting number of any other vertex (we call this parallel variant PDOCKS for the purpose of

Ekim et al. Page 5

Res Comput Mol Biol. Author manuscript; available in PMC 2024 June 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

comparison with PASHA). We note that for DOCKSany and DOCKSanyX, the calculations

of hitting numbers for each vertex cannot be computed in parallel, since the number of paths

starting and ending at each vertex both depend on those of the previous vertex in topological

order.

Algorithm 1.

Improved hitting number calculation. Input: G = (V , E)

1: D [|V |][l + 1], with [|V |][0] initialized to 1

2: Fcurr [|V |]
3: F prev [|V |] initialized to 1

4: T [|V |] initialized to 0

5: for1 ≤ i ≤ ldo:

6: forv ∈ V do:

7: for(v, u) ∈ Edo:

8: D[v][i] + = D[u][i − 1]
9: for1 ≤ i ≤ l + 1do:

10: forv ∈ V do:

11: Fcurr[v] = 0
12: for(u, v) ∈ Edo:

13: Fcurr[v] + = F prev[u]
14: T[v] + = F prev[v] ⋅ D[v][l − i + 1]
15: F prev = Fcurr

16: returnT

Parallel Randomized k-mer Selection

Our goal is to find a minimum-size set of vertices that covers all l-long paths. We can

represent the remaining graph as an instance of the Set Cover problem. While the greedy

algorithm for the second phase of DOCKS is serial, we will show that we can devise

a parallel algorithm, which is close to the greedy algorithm in terms of performance

guarantees, by picking a large set of vertices that cover nearly as many paths as the vertices

that the greedy algorithm picks one by one.

In PASHA, instead of removing the vertex with the maximum hitting number in each

iteration, we consider a set of vertices for removal with hitting numbers within an

interval, and pick vertices in this set independently with constant probability. Considering

vertices within an interval allows us to efficiently introduce randomization while still

emulating the deterministic algorithm. Picking vertices independently in each iteration

enables parallelization of the procedure. Our randomized parallel algorithm for the second

phase of the UHS problem adapts that of Berger et al. [2] for the original Set Cover problem.

Ekim et al. Page 6

Res Comput Mol Biol. Author manuscript; available in PMC 2024 June 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

The UHS Selection Procedure.—The input includes graph G = (V , E) and

randomization variables 0 < ε ≤ 1
4 , 0 < δ ≤ 1

l (Algorithm 2). Let function calcHit() calculate

the hitting numbers for all vertices, and return the maximum hitting number (line 2). We set

t = log1 + εTmax (line 3), and run a series of steps from t, iteratively decreasing t by 1. In step t,
we first calculate the hitting numbers of all vertices (line 5); then, we define vertex set S to

contain vertices with a hitting number between (1 + ε)t − 1 and (1 + ε)t for potential removal

(lines 8–9).

Let PS be the sum of all hitting numbers of the vertices in S, i.e. PS = ∑v ∈ S T(v, l) (line

10). In each step, if the hitting number for vertex v is more than a δ3 fraction of PS, i.e.

T(v, l) ≥ δ3PS, we add v to the picked vertex set V t (lines 11–13). For vertices with a hitting

number smaller than δ3PS, we pairwise independently pick them with probability δ
l . We test

the vertices in pairs to impose pairwise independence: If an unpicked vertex u satisfies the

probability δ
l , we choose another unpicked vertex v and test the same probability δ

l . If both

are satisfied, we add both vertices to the picked vertex set V t; if not, neither of them are

added to the set (lines 14–16). This serves as a bound on the probability of picking a vertex.

If the sum of hitting numbers of the vertices in set V t is at least V t (1 + ε)t(1 − 4δ − 2ε),
we add the vertices to the output set, remove them from the graph, and decrease t by 1

(lines 17–20). The next iteration runs with decreased t. Otherwise, we rerun the selection

procedure without decreasing t.

Algorithm 2.

The selection procedure. Input: G = (V , E), 0 < ε ≤ 1
4 , 0 < δ ≤ 1

l

1: R
2: Tmax calcHit()
3: t log1 + εTmax

4: whilet > 0do

5: ifcalcHit() = = 0then break

6: S
7: V t

8: forv ∈ V do:

9: if(1 + ε)t − 1 ≤ T(v, l) ≤ (1 + ε)tthenS S ∪ v
10: PS ∑v ∈ S T(v, l)
11: forv ∈ Sdo:

12: ifT(v, l) ≥ δ3PSthen

13: V t V t ∪ v
14: foru, v ∈ Sdo:

Ekim et al. Page 7

Res Comput Mol Biol. Author manuscript; available in PMC 2024 June 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

15:
 ifu ∉ V tandunirand(0, 1) ≤ δ

l and v ∉ V tandunirand(0, 1) ≤ δ
l then

16: V t V t ∪ u, v
17: if∑v ∈ V t T(v, l) ≥ V t ⋅ (1 + ε)t(1 − 4δ − 2ε)then

18: R R ∪ V t

19: G = G V ∖ V t, E
20: t t − 1
21: returnR

Performance Guarantees.—At step t, we add the selected vertex set V t to the

output set if ∑v ∈ V t T(v, l) ≥ V t (1 + ε)t(1 − 4δ − 2ε). Otherwise, we rerun the selection

procedure with the same value of t. We show in Appendix A that with high probability,

∑v ∈ V t T(v, l) ≥ V t (1 + ε)t(1 − 4δ − 2ε). We also show that PASHA produces a cover

α 1 + log Tmax times the optimal size, where α = 1/(1 − 4δ − 2ε). In Appendix B, we give

the asymptotic number of the selection steps and prove the average runtime complexity of

the algorithm. Performance summaries in terms of theoretical runtime and approximation

ratio are in Table 1.

4 Results

PASHA Outperforms Extant Algorithms for k ≤ 13
We compared PASHA and PDOCKS to extant methods on several combinations of k and

L. We ran DOCKS, DOCKSany, PDOCKS, and PASHA over 5 ≤ k ≤ 10, DOCKSanyX,

PDOCKS, and PASHA for k = 11 and X = 10, and PASHA and DOCKSanyX for X = 100,

1000 for k = 12, 13 respectively, for 20 ≤ L ≤ 200. We say that an algorithm is limited by
runtime if for some value of k ≤ 13 and for L = 100, its runtime exceeds 1 day (86400 s),

in which case we stopped the operation and excluded the method from the results for the

corresponding value of k. While running PASHA, we set δ = 1/l, and 1 − 4δ − 2ε = 1/2 to

set an emulation ratio α = 2 (see Sect. 3 and Appendix A). The methods were benchmarked

on a 24-CPU Intel Xeon Gold (2.10 GHz) with 754 GB of RAM. We ran all tests using all

available cores (m = 24 in Table 1).

Comparing Runtimes and UHS Sizes.—We ran DOCKS, PDOCKS, DOCKSany, and

PASHA for k = 10 and 20 ≤ L ≤ 200. As seen in Fig. 1A, DOCKS has a significantly higher

runtime than the parallel variant PDOCKS, while producing identical sets (Fig. 1B). For

small values of L, DOCKSany produces the largest UHSs compared to other methods, and

as L increases, the differences in both runtime and UHS size for all methods decrease, since

there are fewer k-mers to add to the removed decycling set to produce a UHS.

We ran PDOCKS, DOCKSany10, and PASHA for k = 11 and 20 ≤ L ≤ 200. As seen in

Fig. 1C, for small values of L, both PDOCKS and DOCKSany10 have significantly higher

runtimes than PASHA; while for larger L, DOCKSany10 and PASHA are comparable in

Ekim et al. Page 8

Res Comput Mol Biol. Author manuscript; available in PMC 2024 June 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

their runtimes (with PASHA being negligibly slower). In Fig. 1D, we observe that PDOCKS

computes the smallest sets for all values of L. Indeed, its guaranteed approximation ratio

is the smallest among all three benchmarked methods. While the set sizes for all methods

converge to the same value for larger L, DOCKSany10 produces the largest UHSs for small

values of L, in which case PASHA and PDOCKS are preferable.

PASHA’s runtime behaves differently than that of other methods. For all methods but

PASHA, runtime decreases as L increases. Instead of gradually decreasing with L, PASHA’s

runtime gradually decreases up to L = 70, at which it starts to increase at a much slower

rate. This is explained by the asymptotic complexity of PASHA (Table 1). Since computing

a UHS for small L requires a larger number of vertices to be removed, the decrease in

runtime with increasing L up to L = 70 is significant; however, due to PASHA’s asymptotic

complexity being quadratic with respect to L, we see a small increase from L = 70 to

L = 200. All other methods depend linearly on the number of removed vertices, which

decreases as L increases.

Despite the significant decrease in runtime in PDOCKS compared to DOCKS, PDOCKS

was still limited by runtime to k ≤ 12. Therefore, we ran DOCKSany100 and PASHA for

k = 12 and 20 ≤ L ≤ 200. As seen in Figs. 1E and F, both methods follow a similar trend as

in k = 11, with DOCKSany100 being significantly slower and generating significantly larger

UHSs for small values of L. For larger values of L, DOCKSany100 is slightly faster, while

PASHA produces sets that are slightly smaller.

At k = 13 we observed the superior performance of PASHA over DOCKSany1000 in both

runtime and set size for all values of L. We ran DOCKSany1000 and PASHA for k = 13
and 20 ≤ L ≤ 200. As seen in Figs. 1G and H, DOCKSany1000 produces larger sets and is

significantly slower compared to PASHA for all values of L. This result demonstrates that

the slow increase in runtime for PASHA compared to other algorithms for k < 13 does not

have a significant effect on runtime for larger values of k.

PASHA Enables UHS for k = 14, 15, 16

Since all existing algorithms and PDOCKS are limited by runtime to k ≤ 13, we report the

first UHSs for 14 ≤ k ≤ 16 and L = 100 computed using PASHA, run on a 24-CPU Intel

Xeon Gold (2.10 GHz) with 754 GB of RAM using all 24 cores. Figure 2 shows runtimes

and sizes of the sets computed by PASHA.

Density Comparisons for the Different Methods

In addition to runtimes and UHS sizes, we report values of another measure of UHS

performance known as density. The density of the minimizers scheme d(M, S, k) is the

fraction of selected k-mers’ positions over the number of k-mers in the sequence. Formally,

the density of scheme M over sequence S is defined

as

Ekim et al. Page 9

Res Comput Mol Biol. Author manuscript; available in PMC 2024 June 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

d(M, S, k) = M(S, k)
S − k + 1

(3)

where M(S, k) is the set of positions of the k-mers selected over sequence S.

We calculate densities for a UHS by selecting the lexicographically smallest k-mer that is

in the UHS within each window of L − k + 1 consecutive k-mers, since at least one k-mer is

guaranteed to be in each such window. Marçais et al. [11] showed that using UHSs for k-mer

selection in this manner yields smaller densities than lexicographic or random minimizer

selection schemes. Therefore, we do not report comparisons between UHSs and minimizer

schemes, but rather comparisons among UHSs constructed by different methods.

Marçais et al. [11] also showed that the expected density of a minimizers scheme for any

k and window size L − k + 1 is equal to the density of the minimizers scheme on a de

Bruijn sequence of order L. This allows for exact calculation of expected density for any

k-mer selection procedure. However, for 14 ≤ k ≤ 16 we calculated UHSs only for L = 100,

and iterating over a de Bruijn sequence of order 100 is infeasible. Therefore, we computed

the approximate expected density on long random sequences, since the computed expected

density on these sequences converges to the expected density [11]. In addition, we computed

the density of different methods on the entire human reference genome (GRCh38).

We computed the density values of UHSs generated by PDOCKS, DOCKSany, and PASHA

over 10 random sequences of length 106, and the entire human reference genome (GRCh38),

for 5 ≤ k ≤ 16 and L = 100, when a UHS was available for such (k, L) combination.

As seen in Fig. 3, the differences in both approximate expected density and density

computed on the human reference genome are negligible when comparing UHSs generated

by the different methods. For most values of k, DOCKS yields the smallest approximate

expected density and human genome density values, while DOCKSany generally yields

lower human genome density values, but higher expected density values than PASHA. For

k ≤ 6, the UHS is only the decycling set; therefore, density values for these values of k are

identical for the different methods.

Since there is no significant difference in the density of the UHSs generated by the different

methods, other criteria, such as runtime and set size, are relevant when evaluating the

performance of the methods: As k increases, PASHA produces sets that are only slightly

smaller or larger in density, but significantly smaller in size and significantly faster than

extant methods.

5 Discussion

We presented an efficient randomized parallel algorithm for generating a small set of

k-mers that hits every possible sequence of length L and produces a set that is a small

guaranteed factor away from the optimal set size. Since the runtime of DOCKS variants

Ekim et al. Page 10

Res Comput Mol Biol. Author manuscript; available in PMC 2024 June 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

and PASHA depend exponentially on k, these greedy heuristics are eventually limited by

runtime. However, using these heuristics in conjunction with parallelization, we are newly

able to compute UHSs for values of k and L large enough for most biological applications.

The improvements in runtime for the hitting number calculation are due to parallelization of

the dynamic programming phase, which is the bottleneck in sequential DOCKS variants. A

minimum-size set that hits all infinite-length sequences is optimally and rapidly removed;

however, the remaining sequences of length L are calculated and removed in time

polynomial in the output size. We show that a constant factor reduction is beneficial in

mitigating this bottleneck for practical use. In addition, we reduce the memory usage of

this phase by theoretical and technical advancements. Last, we build on a randomized

parallel algorithm for Set Cover to significantly speed up vertex selection. The randomized

algorithm can be derandomized, while preserving the same approximation ratio, since it

requires only pairwise independence of the random variables [2].

One main open problem still remains from this work. Although the randomized

approximation algorithm enables us to generate a UHS more efficiently, the hitting numbers

still need to be calculated at each iteration. The task of computing hitting numbers remains

as the bottleneck in computing a UHS. Is there a more efficient way of calculating hitting

numbers than the dynamic programming calculation done in DOCKS and PASHA? A more

efficient calculation of hitting numbers will enable PASHA to run over k > 6 in a reasonable

time.

As for long reads, which are becoming more popular for genome assembly tasks, a k-mer

set that hits all infinite long sequences, as computed optimally by Mykkelveit’s algorithm

[13], is enough due to the length of these long read sequences. Still, due to the inaccuracies

and high cost of long read sequencing compared to short read sequencing, the latter is still

the prevailing method to produce sequencing data, and is expected to remain so for the near

future.

We expect the efficient calculation of UHSs to lead to improvements in sequence analysis

and construction of space-efficient data structures. Unfortunately, previous methods were

limited to small values of k, thus allowing application to only a small subset of sequence

analysis tasks. As there is an inherent exponential dependency on k in terms of both runtime

and memory, efficiency in calculating these sets is crucial. We expect that the UHSs newly-

enabled by PASHA for k > 13 will be useful in improving various applications in genomics.

6 Conclusion

We developed a novel randomized parallel algorithm PASHA to compute a small set of

k-mers which together hit every sequence of length L. It is based on two algorithmic

innovations: (i) improved calculation of hitting numbers through paralleization and memory

reduction; and (ii) randomized parallel selection of additional k-mers to remove. We

demonstrated the scalability of PASHA to larger values of k up to 16. Notably, the universal

hitting sets need to be computed only once, and can then be used in many sequence analysis

Ekim et al. Page 11

Res Comput Mol Biol. Author manuscript; available in PMC 2024 June 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

applications. We expect our algorithms to be an essential part of the sequence analysis

toolkit.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments.

This work was supported by NIH grant R01GM081871 to B.B. B.E. was supported by the MISTI MIT-Israel
program at MIT and Ben-Gurion University of the Negev. We gratefully acknowledge the support of Intel
Corporation for giving access to the Intel®AI DevCloud platform used for part of this work.

A: Emulating the Greedy Algorithm

The greedy Set Cover algorithm was developed independently by Johnson and Lovász for

unweighted vertices [5, 9]. Lovász [9] proved:

Theorem 1.

The greedy algorithm for Set Cover outputs cover R with |R | ≤ 1 + log Tmax |OPT |, where

Tmax is the maximum cardinality of a set.

We adapt a definition for an algorithm emulating the greedy algorithm for the Set Cover

problem to the second phase of DOCKS [2]. We say that an algorithm for the second phase

of DOCKS α-emulates the greedy algorithm if it outputs a set of vertices serially, during

which it selects a vertex set A such that

A
PA

≤ α
Tmax

,

where PA is the set of l-long paths covered by A. Using this definition, we come up with a

near-optimal approximation by the following theorem:

Theorem 2.

An algorithm for the second phase of DOCKS that α-emulates the greedy algorithm
produces cover R ⊆ V with |R | ≤ α 1 + log Tmax |OPT |, where OPT is the optimal cover.

Proof. We define the cost of covering path p as C(p) = |S|
PS

, where S is the set of vertices

selected in the selection step in which p was covered, and PS the set of l-long paths covered

by S. Then, ∑p ∈ PS C(p) = |S|.

Let Pl be the set of all l-long paths in G. A fractional cover of graph G = (V , E) is function

F:V 0, 1 s.t. for all p ∈ Pl, ∑v ∈ p F(v) ≥ 1. The optimal cover FOPT has minimum

∑v ∈ V FOPT(v).

Let F be such an optimal fractional cover. The size of the cover produced is

Ekim et al. Page 12

Res Comput Mol Biol. Author manuscript; available in PMC 2024 June 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

R = ∑
p ∈ Pl

C(p) ≤ ∑
v ∈ V

F(v) ∑
p ∈ Pv

C(p)

where Pv is the set of all l-long paths through vertex v.

Lemma 1.

There are at most α
k paths p ∈ Pv such that C(p) ≥ k for any v, k.

Proof. Assume the contrary: Before such a path p is covered, T(v, l) > α
k . Thus,

S
PS

≥ k > α/T(v, l) ≥ α/Tmax,

contradicting the definition.

Suppose we rank the T(v, l) paths p ∈ Pv by decreasing order of C(p). From the above

remark, if the itℎ path has cost k, then i ≤ α/k. Then, we can write

∑
p ∈ Pv

C(p) ≤ ∑
i = 1

T(v, l)
α/i ≤ α ∑

i = 1

T(v, l)
1/i ≤ α(1 + logT(v, l)) ≤ α 1 + log Tmax

Then,

∑
p ∈ Pl

C(p) ≤ ∑
v ∈ V

F(v)α 1 + log Tmax

and finally

R ≤ α 1 + log Tmax OPT .

In PASHA, we ensure that in step t, the sum of vertex hitting numbers of selected vertex set

V t is at least V t (1 + ε)t(1 − 4δ − 2ε). We now show that this is satisfied with high probability

in each step.

Theorem 3.

With probability at least 1/2, the sum of vertex hitting numbers of selected vertex set V t at

step t is at least V t (1 + ε)t(1 − 4δ − 2ε).

Proof. For any vertex v in selected vertex set V t at step t, let Xv be an indicator variable for

the random event that vertex v is picked, and f(X) = ∑v ∈ V t Xv.

Ekim et al. Page 13

Res Comput Mol Biol. Author manuscript; available in PMC 2024 June 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Note that V ar[f(X)] ≤ V t ⋅ δ/l, and V t ≥ l/δ3, since we are given that no vertex covers a δ3

fraction of the l-long paths covered by the vertices in V t. By Chebyshev’s inequality, for any

k ≥ 0,

Pr f(X) − E[f(X)] ≥ k V t ⋅ δ/l ≤ 1
k2

and with probability 3/4,

(f(X) − E[f(X)])2 ≤ 4 V t
2 ⋅ δ4

l2

and

f(X) − E[f(X)] ≤ 2 V t ⋅ δ2
l .

Let PV t denote the set of l-long paths covered by vertex set V t. Then,

PV t ≥ ∑
u ∈ V t

T(u, l)Xu − ∑
p ∈ PV t

∑
u, v ∈ p

XuXv

We know that ∑u ∈ V t T(u, l)Xu ≥ V t (1 + ε)t − 1, which is bounded below by

δ − 2δ2 ⋅ V t (1 + ε)t − 1 /l. Let g(X) = ∑p ∈ PV t ∑u, v ∈ p XuXv. Then,

E[g(X)] = ∑
p ∈ PV t

E ∑
u, v ∈ p

XuXv = ∑
p ∈ PV t

l
2 (δ/l)2 = ∑

p ∈ PV t

(l − 1) ⋅ δ2
2l ≤ ∑

p ∈ PV t

δ2
2 .

Hence, with probability at least 3/4,

g(X) ≤ 4E[g(X)] ≤ 2δ2 ⋅ V t (1 + ε)t

Both events hold with probability at least 1/2, and the sum of vertex hitting numbers is at

least

δ − 2δ2 ⋅ V t (1 + ε)t − 1 ⋅ l − 2δ2 ⋅ V t (1 + ε)t ≥ V t (1 + ε)t − 1 δl − 2δ2l − 2δ2 − 2δ2ε

≥ V t (1 + ε)t δl − 2δ2l − 2δ2 − 2δ2ε /(1 + ε)

≥ V t (1 + ε)t(1 − 4δ − 2ε) .

Ekim et al. Page 14

Res Comput Mol Biol. Author manuscript; available in PMC 2024 June 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

B: Runtime Analysis

Here, we show the number of the selection steps and the average-time asymptotic

complexity of PASHA.

Lemma 2.

The number of selection steps is O log|V | log Pl / εδ3m .

Proof. The number of steps is O(log |V | /ε), and within each step, there are O log PS / δ3m

selection steps (where PS is the sum of vertex hitting numbers of the vertex set S for that

step and m the number of threads used), since we are guaranteed to remove at least δ3

fraction of the paths during that step. Overall, there are O log|V | log Pl / εδ3m selection

steps.

Theorem 4.

For φ < 1, there is an approximation algorithm for the second phase of DOCKS that runs

in O L2 ⋅ |Σ |k + 1 ⋅ log2 |Σ|k / εδ3m average time, where m is the number of threads used,

and produces a cover of size at most (1 + φ) 1 + logTmax times the optimal size, where

1 + φ = 1/(1 − 4δ − 2ϵ).

Proof. Follows immediately from Theorem 2 and Lemma 2.

References

1. Berger B, Peng J, Singh M: Computational solutions for omics data. Nat. Rev. Genet 14(5), 333
(2013) [PubMed: 23594911]

2. Berger B, Rompel J, Shor PW: Efficient NC algorithms for set cover with applications to learning
and geometry. J. Comput. Syst. Sci 49(3), 454–477 (1994)

3. DeBlasio D, Gbosibo F, Kingsford C, Marçais G.: Practical universal k-mer sets for minimizer
schemes. In: Proceedings of the 10th ACM International Conference on Bioinformatics,
Computational Biology and Health Informatics, pp. 167–176. ACM (2019)

4. Deorowicz S, Kokot M, Grabowski S, Debudaj-Grabysz A: KMC 2: fast and resource-frugal k-mer
counting. Bioinformatics 31(10), 1569–1576 (2015) [PubMed: 25609798]

5. Johnson DS: Approximation algorithms for combinatorial problems. J. Comput. Syst. Sci 9(3),
256–278 (1974)

6. Kawulok J, Deorowicz S: CoMeta: classification of metagenomes using k-mers. PLoS ONE 10(4),
e0121453 (2015)

7. Kucherov G: Evolution of biosequence search algorithms: a brief survey. Bioinformatics 35(19),
3547–3552 (2019) [PubMed: 30994912]

8. Leinonen R, Sugawara H, Shumway M, Collaboration INSD: The sequence read archive. Nucleic
Acids Res. 39, D19–D21 (2010) [PubMed: 21062823]

9. Lovász L: On the ratio of optimal integral and fractional covers. Discret. Math 13(4), 383–390
(1975)

10. Marçais G, DeBlasio D, Kingsford C: Asymptotically optimal minimizers schemes. Bioinformatics
34(13), i13–i22 (2018) [PubMed: 29949995]

Ekim et al. Page 15

Res Comput Mol Biol. Author manuscript; available in PMC 2024 June 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

11. Marçais G, Pellow D, Bork D, Orenstein Y, Shamir R, Kingsford C: Improving the performance
of minimizers and winnowing schemes. Bioinformatics 33(14), i110–i117 (2017) [PubMed:
28881970]

12. Marçais G, Solomon B, Patro R, Kingsford C: Sketching and sublinear data structures in genomics.
Ann. Rev. Biomed. Data Sci 2, 93–118 (2019)

13. Mykkeltveit J: A proof of Golomb’s conjecture for the de Bruijn graph. J. Comb. Theory 13(1),
40–45 (1972)

14. Orenstein Y, Pellow D, Marçais G, Shamir R, Kingsford C: Compact universal k-mer hitting sets.
In: Frith M, Storm Pedersen CN (eds.) WABI 2016. LNCS, vol. 9838, pp. 257–268. Springer,
Cham (2016). 10.1007/978-3-319-43681-4_21

15. Orenstein Y, Pellow D, Marçais G, Shamir R, Kingsford C: Designing small universal k-mer
hitting sets for improved analysis of high-throughput sequencing. PLoS Comput. Biol 13(10),
e1005777 (2017)

16. Paindavoine M, Vialla B: Minimizing the number of bootstrappings in fully homomorphic
encryption. In: Dunkelman O,Keliher L (eds.) SAC 2015. LNCS, vol. 9566, pp. 25–43. Springer,
Cham (2016). 10.1007/978-3-319-31301-6_2

17. Qin J, et al. : A human gut microbial gene catalogue established by metagenomic sequencing.
Nature 464(7285), 59 (2010) [PubMed: 20203603]

18. Roberts M, Hayes W, Hunt BR, Mount SM, Yorke JA: Reducing storage requirements for
biological sequence comparison. Bioinformatics 20(18), 3363–3369 (2004) [PubMed: 15256412]

19. Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, Gordon JI: The human
microbiome project. Nature 449(7164), 804 (2007) [PubMed: 17943116]

20. Ye C, Ma ZS, Cannon CH, Pop M, Douglas WY: Exploiting sparseness in de novo genome
assembly. BMC Bioinform. 13(6), S1 (2012)

Ekim et al. Page 16

Res Comput Mol Biol. Author manuscript; available in PMC 2024 June 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 1.
Runtimes (left) and UHS sizes (divided by 104, right) for values of k = 10 (A, B), 11 (C, D),

12 (E, F), and 13 (G, H) and 20 ≤ L ≤ 200 for the different methods. Note that the y-axes for

runtimes are in logarithmic scale.

Ekim et al. Page 17

Res Comput Mol Biol. Author manuscript; available in PMC 2024 June 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 2.
Runtimes (A) and UHS sizes (divided by 106) (B) for 14 ≤ k ≤ 16 and L = 100 for PASHA.

Note that the y-axis for runtime is in logarithmic scale.

Ekim et al. Page 18

Res Comput Mol Biol. Author manuscript; available in PMC 2024 June 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 3.
Mean approximate expected density (A), and density on the human reference genome

(B) for different methods, for 5 ≤ k ≤ 16 and L = 100. Error bars represent one standard

deviation from the mean across 10 random sequences of length 106. Density is the fraction

of selected k-mer positions over the number of k-mers in the sequence.

Ekim et al. Page 19

Res Comput Mol Biol. Author manuscript; available in PMC 2024 June 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Ekim et al. Page 20

Table 1.

Summary of theoretical results for the second phase of different algorithms for generating a set of k-mers

hitting all L-long sequences. PDOCKS is DOCKS with the improved hitting number calculation, i.e. greedy

removal of one vertex at each iteration. pD, pDA denote the total number of picked vertices for DOCKS/

PDOCKS and DOCKSany, respectively. m denotes the number of parallel threads used, Tmax the maximum

vertex hitting number, and ϵ and δ PASHA’s randomization parameters.

Algorithm DOCKS PDOCKS DOCKSany PASHA

Theoretical
runtime O 1 + pD |Σ |k + 1 ⋅ L O 1 + pD |Σ |k + 1 ⋅ L/m O 1 + pDA |Σ|k + 1 O L2 ⋅ |Σ |k + 1 ⋅ log2 |Σ|k / εδ3m

Approximation
ratio

1 + log Tmax 1 + log Tmax N/A 1 + log Tmax /(1 − 4δ − 2ε)

Res Comput Mol Biol. Author manuscript; available in PMC 2024 June 04.

	Abstract
	Introduction
	Background and Preliminaries
	Preliminary Definitions
	The DOCKS Heuristic

	Methods
	Overview of the Algorithm.
	Improved Hitting Number Calculation
	Memory Usage Improvements.
	Runtime Reduction by Parallelization.

	Algorithm 1.
	Parallel Randomized k-mer Selection
	The UHS Selection Procedure.

	Algorithm 2.
	Results
	PASHA Outperforms Extant Algorithms for k≤13
	Comparing Runtimes and UHS Sizes.

	PASHA Enables UHS for k=14, 15, 16
	Density Comparisons for the Different Methods

	Discussion
	Conclusion
	Emulating the Greedy Algorithm
	Runtime Analysis
	References
	Fig. 1.
	Fig. 2.
	Fig. 3.
	Table 1.

