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Abstract

Introduction—Leber Congenital Amaurosis (LCA) is an inherited retinal disease that presents in 

infancy with severely decreased vision, nystagmus, and extinguished electroretinography findings. 

LCA8 is linked to variants in the Crumbs homolog 1 (CRB1) gene.

Case Description—We report a novel CRB1 variant in a 14-year-old male presenting with 

nystagmus, worsening vision, and inability to fixate on toys in his infancy. Color fundus 

photography revealed nummular pigments in the macula and periphery. Imaging studies revealed 

thickened retina on standard domain optical coherence tomography and widespread atrophy 

of the retinal pigment epithelium on autofluorescence. Full-field electroretinography revealed 

extinguished scotopic and significantly reduced photopic responses. Genetic testing demonstrated 

a novel homozygous variant, c.3057 T > A; p.(Tyr1019Ter), in the CRB1 gene. This variant is 

not currently amenable to base editing, however, in silico analysis revealed several potential prime 

editing strategies for correction.

Conclusion—This case presentation is consistent with LCA8, suggesting pathogenicity of this 

novel variant and expanding our knowledge of disease-causing CRB1 variants.

Keywords

Leber Congenital Amaurosis; Novel CRB1 variant; Gene therapy; Prime editing; Full-field 
electroretinography; Genotype–phenotype correlation

Introduction

Leber congenital amaurosis (LCA) refers to a family of inherited retinal diseases (IRDs) 

affecting between 1 in 33,000 to 1 in 81,000 individuals worldwide [1, 2]. LCA 

presents in the first months of life with nystagmus, severely diminished or extinguished 

electroretinogram (ERG) readings, diminished pupillary responses, and characteristic eye 

rubbing or oculodigital reflex [1, 3, 4]. Autosomal recessive LCA is associated with variants 

in more than twenty genes including GUCY2D, CEP290, RPE65, and Crumbs homolog 
1 (CRB1) genes, with the latter accounting for 10% of cases [1, 5]. LCA8 is specifically 

associated with CRB1 variants [5]. The CRB1 gene is the human homolog of the Drosophila 
melanogaster Crumbs protein 1 [3]. In the human retina, three main CRB1 isoforms are 

expressed, CRB1-A (canonical), CRB1-B, and CRB1-C. CRB1 proteins regulate epithelial 

cell polarity, retinal development, and rod and cone photoreceptor morphogenesis [3, 6, 7].

CRB1 variants have been shown to cause a wide variety of phenotypes, including autosomal 

recessive retinitis pigmentosa type 12 (RP12), maculopathy, Coats-like vasculopathy, 

and LCA8 [1, 5, 8]. Furthermore, variation has been described within each phenotype, 
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suggesting CRB1-related dystrophies exist on a spectrum with significant overlap between 

RP and LCA [4, 9]. This report correlates a case of LCA demonstrating nummular pigment 

deposits and para-arteriolar RPE sparing with a novel CRB1 variant.

Results

Clinical presentation

A 14-year-old male was referred to the Department of Ophthalmology at Columbia 

University Irving Medical Center for further evaluation. The patient was diagnosed with 

Retinitis pigmentosa/Leber congenital amaurosis in infancy after an inability to fixate 

on toys, severe vision loss and sensitivity to light. He describes his vision as severely 

blurred but unchanged since age of onset. Reading and face recognition are severely 

impaired without magnification glasses or accommodation tools such as zoom functionality. 

Navigation is challenging but the patient has never relied on walking canes or service dogs. 

The family history was significant for remote consanguinity and similar eye problems in an 

undiagnosed maternal cousin in Ecuador.

At presentation, visual acuity was best corrected to Snellen 20/400 in both eyes. Horizontal 

nystagmus was noted bilaterally, and pupillary dilation response was poor. Axial length 

measured 19.75 and 19.86 mm in the right and left eyes, respectively. Fundus color 

photography revealed widespread mottling of the retinal pigment epithelium (RPE) and 

nummular intraretinal pigment migration in the macula and peripheral retina (Fig. 1). Para-

arteriolar RPE sparing was observed on funduscopic examination (Fig. 2A, red arrows). 

Spectral-domain optical coherence tomography (SD-OCT) revealed severe outer retinal 

layer atrophy with near complete loss of the photoreceptor layer, symmetrical on both eyes 

compared to control (Fig. 2B and C). Despite the loss of lamination, macular thickness 

measurements using Heidelberg software showed a globally thickened retina. Full-field 

ERG testing revealed extinguished scotopic rod-specific (Dark adapted 0.01) and maximal 

responses (Dark adapted 3.0) (Fig. 3). Isolated cone responses were nearly extinguished and 

Photopic 30-Hz flicker ERG had amplitudes and implicit times of 6.395 microvolts and 46 

ms and 6.396 microvolts and 42 ms in the right and left eyes, respectively (Fig. 3). Genetic 

testing via whole exome sequencing revealed a homozygous CRB1 variant, c.3057 T > A;p. 

(Tyr1019Ter). Based on the American College of Medical Genetics and Genomics (ACMG) 

and the Association for Molecular Pathology (AMP) variant criteria and guidance from the 

ClinGen Sequence Variant Interpretation (SVI) working group we classify the c.3057 T > 

A;p.(Tyr1019Ter) mutation as likely pathogenic (PVS1 plus PM2 supporting) [10].

The patient returned for a 3-year follow-up complaining of severe photophobia at which 

time he was best corrected to 20/400 on the right and 20/800 on the left eye. Color 

fundus photography revealed further progression of RPE mottling and nummular pigment 

migration (Fig. 1B). Short-wave autofluorescence (SW-AF) imaging was obtained which 

showed a wide central area of hypoautofluorescence, consistent with RPE atrophy, with 

surrounding hyperautofluorescence in the periphery (Fig. 2A). OCT imaging showed further 

degeneration of the Ellipsoid zone (Fig. 2D).
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Similar findings were observed on color fundus photography and SW-AF and SD-OCT at 

a seven-year follow-up (Figs. 1C; 2E), but visual acuity had worsened to count fingers at 

3 feet on both eyes although the patient reported no changes in vision. Follow-up photopic 

ERG showed stable cone responses, evidenced by comparable 30-Hz flicker responses of 

7.213 microvolts and 22 ms in the right eye, 5.424 microvolts and 21 ms in left eye (Fig. 3).

Gene editing analysis

In silico analysis of the c.3057 T > A; p.(Tyr1019Ter) loci for prime editing showed two 

nearby protospacers leading to edits at positions + 19 (Fig. 4A) and + 15 (Fig. 4B) from 

corresponding nick sites that could be utilized for the correction of this variant.

Discussion

Variants in the CRB1 gene are reported to cause a range of clinical phenotypes with 

significant overlap between RP12 and LCA8, making definitive diagnosis ambiguous [8, 

11]. Preserved para-arteriolar retinal pigment epithelium (PPRPE), characterized by sparing 

of RPE surrounding retinal arterioles, is a characteristic feature of RP12 but can also be 

present in LCA8 [12]. Similarly, intraretinal pigment migration is a shared feature between 

RP12 and LCA8 [13]. The proband presented with both nummular pigment deposits and 

para-arteriolar sparing. Nonetheless, distinctive clinical features in the patient make the 

diagnosis of LCA much more likely.

LCA8 is considered more severe than RP12 [4]. LCA8 presents at birth with blindness, 

nystagmus, occulodigital reflex, and microphthalmos [1, 3]. Similarly, these features of 

LCA8 are evidenced in the proband by the clinical findings of horizontal nystagmus, 

decreased axial length bilaterally, and reports of difficulty tracking toys in infancy [3]. 

ERG is another distinguishing tool. Functional testing in LCA8 typically demonstrates 

severely diminished rod and cone function in infancy, while RP12 patients exhibit a slower, 

attenuated progression of their rod-cone dystrophy [3]. ERG in the latter case demonstrates 

early, but not congenital decrease, in ERG signal amplitude and implicit time delay [13]. 

Rod function is typically affected first, followed by cone dysfunction and central vision 

deterioration.

Management of LCA8 has been challenging, as no therapeutic option is available for 

patients with CRB1-mediated IRDs. Studies aiming to evaluate the optimal therapeutic 

window have demonstrated a window appropriate for early interventional therapies of 

CRB1-linked IRDs [14, 15]. In fact, successful proof-of-concept data have been made using 

CRB family member CRB2 in Crb1Crb2 conditional knockout mice and CRB1 patient 

induced pluripotent stem cell (iPSC)-derived retinal organoids [16–19]. However, the CRB1 

isoform diversity, characterized by different isoforms predominately expressed in different 

retinal cell types, makes the choice of gene augmentation unclear, especially in variants 

affecting multiple CRB1 isoforms. In this context, double-strand break (DSB)-independent 

gene editing approaches become viable alternative strategies, especially for variants like 

c.3057 T > A;p.(Tyr1019Ter) that affect both CRB1 isoform A and B [7, 20].
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Transversions, as in the proband, are not amenable to base editing [7]. However, prime 

editing using a NGG protospacer-adjacent motif (PAM) was feasible with the edit at the 

+ 19 position. Further evaluation revealed the variant is also amenable to a prime editing 

strategy using a NGA PAM with a closer edit at the + 15 position, which offers higher 

editing efficiency relative to the + 19 position (NGG PAM strategy). Nonetheless, this NGA 

prime editing design reveals a series of four T nucleotides (T4) within the 3’ extension of the 

prime-editing guide RNA (pegRNA). T4 is interpreted by DNA polymerase III as a minimal 

termination sequence, while T6 indicates full termination [21]. T4 stretches may truncate the 

pegRNA sequence, reducing editing efficiency. This limitation can be overcome through the 

delivery of mRNA prime editing machinery in place of plasmid DNA [22–24]. Alternatively, 

delivery of type 7 polymerase-mediated mRNA, with more restricted termination sequences 

than the type 3 polymerases, seems to overcome the complication of repeat T sequences, 

thus being preferential for prime editing in vivo [24]. Further, incorporating silent mutations 

close to the edit would disrupt the T4 stretch enabling pegRNA delivery as plasmid DNA 

and may also enhance prime-editing efficiency (Fig. 4) [25].

The present case expands on the phenotypic presentations of CRB1 variants by correlating 

the proband’s novel CRB1 variant, c.3057 T > A;p. (Tyr1019Ter), with his clinical 

presentation consistent with LCA8. No current treatment for LCA8 has been developed, 

however, we propose prime editing as a promising correction method of this variant. Future 

studies are necessary to evaluate the feasibility of prime editing in vitro and in vivo.

Materials and Methods

Clinical evaluation

Patient evaluation included measurement of Snellen visual acuity (in feet). Comprehensive 

retinal examination was completed following pupillary dilation with 1.0% mydriacyl 

and 2.5% phenylephrine. Imaging studies included SD-OCT, SW-AF, and color fundus 

photography (Optos 200Tx unit). Full-field ERG was performed using Dawson-Trick-

Litzkow (DTL) recording electrodes and Ganzfeld stimulation according to the International 

Society for Clinical Electrophysiology of Vision standards [26].

Prime editing analysis

Prime editing designs were evaluated as previously described [8]. In brief, the variant 

was analyzed by two different individuals in SnapGene (Version 4.3.11) using both the 

canonical NGG PAM and the NGA PAM prime editors. Designs were made only for a 

PE2 strategy with the 3’-extensions of the pegRNAs having a fixed primer binding site of 

thirteen nucleotides in length and reverse transcription template of 29 (NGG design) and 25 

nucleotides (NGA design) in length.
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Fig. 1. 
Fundus photography of a patient with homozygous c.3057 T > A;p.(Tyr1019Ter) variants 

in the CRB1 gene. Color fundus photography of the right and left eyes at presentation A 
revealed rare nummular pigments at the macula (red arrows). Follow-up widefield fundus 

imaging at three B and seven C years after presentation show further pigmentary deposits at 

the macula and periphery (red arrows)
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Fig. 2. 
Short-wave autofluorescence (SW-AF) and standard domain optical coherence tomography 

(SD-OCT) imaging studies in a patient with homozygous c.3057 T > A;p. (Tyr1019Ter) 

variants in the CRB1 gene. Short-wave autofluorescence (SW-AF) shows a wide central area 

of retinal pigment epithelium (RPE) atrophy bilaterally A. Red arrowheads indicate para-

arteriolar sparing at the inferior arcades on both eyes. SD-OCT at presentation, compared 

to control B, revealed abnormal lamination with widespread outer nuclear layer atrophy and 
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extensive loss of the ellipsoid zone bilaterally C. Follow-up OCT at three D and seven (E) 

years after presentation show further atrophy of the remaining ellipsoid zone over time
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Fig. 3. 
Full-field electroretinogram (ffERG) recordings of a patient with homozygous c. 3057 T > 

A; p. Tyr1019Ter variants in the CRB1 gene. Baseline ffERG revealed a pattern of rod-cone 

dysfunction. Scotopic rod-specific and maximal responses were extinguished bilaterally (left 

and right eye responses were superimposed). Photopic 30-Hz flicker ERG had amplitudes 

and implicit times of 6.395 microvolts and 46 ms and 6.396 microvolts and 42 ms in the 

right and left eyes, respectively. Follow-up photopic ERG shows comparable 30-Hz flicker 

ERG amplitudes and implicit times of 7.213 microvolts and 22 ms and 5.424 microvolts and 

21 ms in the right and left eyes, respectively
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Fig. 4. 
Analysis of prime editing approaches for the correction of the c.3057 T > A;p.(Tyr1019Ter) 

CRB1 variant. Prime editing designs are shown utilizing the NGG prime editor with the edit 

at + 19 position A and the NGA prime editor with the edit at + 15 position B. 3’ extension 1 

with the T4 stretch and 3’ extension 2 with the silent mutation that would disrupt the TTTT 

and enable delivery as plasmid DNA (B)
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