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Abstract

We employed single-cell analysis techniques, specifically the inferCNV method, to
dissect the complex progression of lung adenocarcinoma (LUAD) from adenocarci-
noma in situ (AIS) through minimally invasive adenocarcinoma (MIA) to invasive ad-
enocarcinoma (IAC). This approach enabled the identification of Cluster 6, which was
significantly associated with LUAD progression. Our comprehensive analysis included
intercellular interaction, transcription factor regulatory networks, trajectory analysis,
and gene set variation analysis (GSVA), leading to the development of the lung pro-
gression associated signature (LPAS). Interestingly, we discovered that the LPAS not
only accurately predicts the prognosis of LUAD patients but also forecasts genomic
alterations, distinguishes between ‘cold’ and ‘hot’ tumours, and identifies potential
candidates suitable for immunotherapy. PSMB1, identified within Cluster 6, was ex-
perimentally shown to significantly enhance cancer cell invasion and migration, high-
lighting the clinical relevance of LPAS in predicting LUAD progression and providing
a potential target for therapeutic intervention. Our findings suggest that LPAS offers
a novel biomarker for LUAD patient stratification, with significant implications for

improving prognostic accuracy and guiding treatment decisions.
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1 | INTRODUCTION

For decades, lung cancer (LC) has persistently ranked as the fore-
most cause of cancer-related mortality on a global scale, with both
its incidence and mortality rates exhibiting a continual ascent.!
Among LC cases, non-small-cell lung cancer (NSCLC) represents a
substantial majority, with lung adenocarcinoma (LUAD) emerging
as its predominant histological subtype.? Despite notable strides
in LUAD treatment strategies, the 5-year overall survival (OS) rate
remains below 20% due to the belated diagnosis of a significant pro-
portion of LUAD patients.® Immunotherapy has heralded a paradigm
shift in the treatment landscape of LUAD, affording therapeutic
prospects to patients at advanced stages or those eligible for early
surgical resection. However, the intrinsic immunological diversity
within LUAD leads to a subdued response rate, with only a minority
of patients deriving therapeutic benefits.* The primary challenge
in the realm of tumour immunotherapy lies in the identification of
prognostic biomarkers that can gauge treatment efficacy and prog-
nosticate patient outcomes. While certain biomarkers, such as pro-
grammed death-ligand 1 (PD-L1) expression and tumour mutation
burden (TMB), have gained widespread clinical traction for predict-
ing immunotherapeutic responses,” they fall short in encapsulating
the complete spectrum of the tumour microenvironment's (TME)
heterogeneity. Hence, the exigency of crafting predictive models
and unearthing novel biomarkers to prognosticate both clinical out-
comes and therapeutic responses is palpable.

Within the gamut of LUAD subtypes, the most prevalent pro-
gression trajectory encompasses the sequential development of tu-
mours, commencing with atypical adenomatous hyperplasia (AAH),
advancing to adenocarcinoma in situ (AlS), then to minimally inva-
sive adenocarcinoma (MIA), culminating in invasive adenocarcinoma
(IAC) marked by conspicuous invasiveness. The clinical, pathologi-
cal, and molecular attributes of these tumours lend credence to this
stepwise evolutionary narrative.® Conventional sequencing modali-
ties, such as whole-exome sequencing, have provided insights into
the genomic landscape and immune microenvironmental charac-
teristics during LUAD development, unmasking the pivotal roles of
driver mutations in genes, such as EGFR, ERBB2, TP53 and BRAF.”?
Nevertheless, comprehensive insights into the distribution of tu-
mour cells and microenvironmental constituents throughout the
process of LUAD progression remain a scarce commodity, neces-
sitating the application of sequencing technologies for delineating
cell-type-specific profiles.

Single-cell RNA sequencing (scRNA-seq) has emerged as an in-
valuable tool in demystifying the complexities of tumour heteroge-
neity and its evolutionary trajectory in LUAD, thereby facilitating
the advent of precision oncology. scRNA-seq has transformed our
approach to dissecting the cellular landscape within resected NSCLC
specimens, overcoming previous technical challenges that obscured
our understanding of NSCLC heterogeneity.’® Recent strides in
scRNA-seq have led to the development of comprehensive single-
cell multi-omics atlases for LUAD, unveiling the critical involvement
of AT2 and basal cells in driving tumour progression.**? In this

study, we integrated and analysed scRNA-seq data from two unique
cohorts of LUAD patients. Our goal was to delineate the diversity
within the TME across different invasion stages and identify key mo-
lecular changes throughout LUAD progression. We also developed a
critical gene signature to predict disease trajectory and response to
immunotherapy in LUAD. This model has been rigorously validated,
demonstrating its potential to enhance personalized prognosis and

guide clinical management in LUAD.

2 | METHOD

2.1 | Data setsource
Utilizing The Cancer Genome Atlas (TCGA) database (https://por-
tal.gdc.cancer.gov), we successfully obtained a substantial volume
of data related to LUAD patients. This data include RNA sequenc-
ing, methylation data, copy number variation (CNV) data, muta-
tion data and clinical characteristics. Additionally, we acquired two
scRNA-seq data sets (GSE189357 and GSE150938) from the Gene
Expression Omnibus (GEO) database (http://www.ncbi.nlm.nih.gov/
geo), comprising 4 AlS, 8 MIA, and 9 IAC samples. We also sourced
five additional data sets from the GEO database, all containing clini-
cal survival information, for model validation. These data sets are
as follows: GSE13213% (n=119), GSE29016'* (n=39), GSE30219%°
(n=86), GSE31210% (n=227) and GSE68465Y (n=443). All tran-
script data used for building the model are stored in Table S1.

Furthermore, RNA sequencing data from patients receiving im-
munotherapy was obtained from the GEO website or the Tumor
Immune Dysfunction and Exclusion (TIDE) database (http://tide.
dfci.harvard.edu). The details of these data sets are as follows:

GSE35640: 65 melanoma patients participated in an immuno-
logical adjuvant trial involving the recombined MAGE-A3 antigen.18

PRJEB25780: 57 patients with metastatic or recurrent gastric
cancer receiving anti-PD-1 therapy.'’

GSE94873: A large cohort of patients with advanced melanoma
treated with tremelimumab.°

GSE78220: 28 cases of melanoma patients treated with anti-
PD-1 therapy.21

GSE91061: 25 advanced melanoma patients treated with
Nivolumab.??

PRJEB23709: 51 melanoma patients receiving PD-1 and CTLA-4
combination therapy.?®

iMvigor210: 310 bladder cancer patients were treated with
Atezolizumab.?*

GSE135222: 27 advanced NSCLC patients were treated with
anti-PD-1/PD-L1 therapy.?®

GSE100797: 27 stage IV melanoma patients were treated with
adoptive T-cell therapy.?

GSE126044: 16 NSCLC patients received PD-1 therapy.?’

GSE165252: 77 oesophageal adenocarcinoma patients were
treated with neoadjuvant chemoradiotherapy combined with
Atezolizumab.?®


https://portal.gdc.cancer.gov
https://portal.gdc.cancer.gov
http://www.ncbi.nlm.nih.gov/geo
http://www.ncbi.nlm.nih.gov/geo
http://tide.dfci.harvard.edu
http://tide.dfci.harvard.edu
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FIGURE 1 Flowchart of the analysis.
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FIGURE 2 Integrating multiple single-cell data sets for inference and re-clustering of tumour cells. (A) Percentage of each cell type in
different samples in GSE150938. (B) tSNE plot showing the distribution of cells in GSE150938. (C) Percentage of each cell type in different
samples in GSE189357. (D) tSNE plot showing the distribution of cells in GSE189357. (E) Heatmap showing the situation of the InferCNV
analysis. (F) Distribution of CNVs for eight clusters. (G) Percentage of tumour subgroups in different samples. (H) tSNE plot showing the
distribution of tumour subgroups. CNV, copy number variation; tSNE, t-distributed stochastic neighbour embedding.

GSE173839: 105 breast cancer patients received Durvalumab in
combination with olaparib and paclitaxel.?’

Protein-level data for LUAD was downloaded from the Clinical
Proteomic Tumor Analysis Consortium (CPTAC) website (https://
proteomics.cancer.gov/programs/cptac). The protein abundances
were log2-transformed and median-centred for analysis.

These data resources were instrumental in our research, provid-
ing a comprehensive understanding of the molecular characteristics
of LUAD patients and their responses to immunotherapy. To ensure
data uniformity and comparability, we converted gene expression
data into Transcripts Per Million (TPM) format and addressed po-
tential batch effects using the ‘combat’ function within the ‘sva’ R
package. Additionally, all data from the TCGA database, including
large-scale sequencing data from GEO, underwent log transforma-

tion to achieve a standardized data format before analysis initiation.

2.2 | Cancer cell lines

Data pertaining to human cancer cell lines (CCLs) was procured from
the Cancer Cell Line Encyclopedia (CCLE) project by the Broad Institute,
accessible at https://portals.broadinstitute.org/ccle/. Additionally,
genome-wide CRISPR knockout screening data encompassing 739
cell lines, and 18,333 genes was collected from the Dependency Map
(DepMap) portal, available at https://depmap.org/portal/. The depend-
ency of genes in specific CCLs was assessed using CERES scores, with
lower scores signifying a greater impact of these genes on cell growth
and survival within the respective CCL. Furthermore, drug sensitivity
data for CCLs was obtained from the Cancer Therapeutics Response
Portal (CTRP) and the PRISM Repurposing dataset. CTRP contains
sensitivity data for 481 compounds tested on 835 CCLs, while PRISM
provides sensitivity data for 1448 compounds across 482 CCLs. Both
data sets use AUC values to gauge drug sensitivity, with lower AUC
values indicating higher responsiveness to treatment. Compounds
with more than 20% missing data were excluded before imputation.
Molecular data from the CCLE project were used for subsequent anal-
yses of CTRP and PRISM data, as the CCLs in these data sets originated
from the CCLE.

2.3 | The detailed steps of the scRNA-seq analysis

The original gene expression matrix underwent preprocessing with
the Seurat R package (version 4.2.0).%° Genes had to demonstrate ex-
pression in a minimum of 10 cells within each sample to be included.
Subsequently, subpar cells were filtered out based on specific criteria:
those with more than 5000 or fewer than 200 expressed genes or cells

with over 10% of unique molecular identifiers (UMls) originating from
the mitochondrial genome. The remaining high-quality single-cell tran-
scriptome expression matrix was then integrated using the harmony R
package. Subsequently, highly variable genes were selected for prin-
cipal component analysis (PCA), and the top 30 significant principal
components (PCs) were chosen for t-distributed stochastic neighbour
embedding (t-SNE) dimension reduction for gene expression visualiza-
tion. Differentially expressed genes (DEGs) within each cell subpopula-
tion were identified using the “FindAllMarker” function, and cell types
and subtypes were annotated based on the expression of established
canonical marker genes for each cell type.

2.4 | InferCNV and trajectory analysis

InferCNV was employed to infer tumour cell populations, using en-
dothelial cells as the reference group. We set the parameter ‘k_obs_
groups=_8’, which enabled us to categorize epithelial cells into eight
distinct clusters. This stratification facilitated the identification and
differentiation of copy number variations (CNVs) across each clus-
ter, enhancing our understanding of the genomic landscape within
the tumour. Subsequently, the Monocle2 algorithm was employed
to perform developmental trajectory analysis using tumour cells in-
ferred. A gene-cell matrix extracted from UMI counts scaled within
the Seurat subset was used as input. A new ‘cell data set’ function
was used to create an object with an expression family parameter set
to negative binomial size. Following dimension reduction and unit

ordering, cell trajectories were inferred using default parameters.

2.5 | Cell-cell interaction

CellChat® was utilized to merge gene expression data and evaluate
variations in proposed cell-cell communication modules. The default
CellChatDB was used as the ligand-receptor database in accordance
with the standard CellChat process. Cell type-specific interactions
were deduced by detecting overexpressed ligands or receptors
within a specific cell group, followed by the identification of inten-
sified ligand-receptor interactions when these ligands or receptors

were overexpressed.

2.6 | SCENIC analysis

The activity of gene regulatory networks is inferred using the R soft-
ware package Scenic. The activity of each regulator in single cells is
scored using default settings and the following cisTarget databases:


https://proteomics.cancer.gov/programs/cptac
https://proteomics.cancer.gov/programs/cptac
https://portals.broadinstitute.org/ccle/
https://depmap.org/portal/
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FIGURE 3 Cell subgroup analysis. (A) Changes in cell subgroup percentages from AlS to IAC, (B) KM survival curve in Cluster 6, (C) GSVA
enrichment analysis, (D) MK signalling network, (E) cell subgroup trajectory analysis, (F) heatmap showing the expression of differential
genes over pseudotime, (G) transcription factor regulatory networks specifically upregulated and downregulated in each tumour cluster,

(H) heatmap presenting the distribution of gene regulatory networks in different clusters. GSVA, gene set variation analysis; IAC, invasive

adenocarcinoma.

hg38_refseq-r80_500bp_up_and_100bp_down_tss.mc9nr.feather
and hg38_refseq-r80_10kb_up_and_down_tss.mc9nr.feather.

2.7 | Determination of key genes in Cluster
6 subgroup

Weighted gene co-expression network analysis (WGCNA) was uti-
lized to construct a co-expression network for TCGA-LUAD data
set. An optimal soft threshold power p was meticulously deter-
mined to conform to the criteria of scale-free network topology.
Subsequently, the weighted adjacency matrix was transformed into
a topological overlap matrix (TOM), followed by the computation of
the corresponding dissimilarity measure (1-TOM). Module identifi-
cation was performed employing the dynamic tree-cutting method.
In order to pinpoint modules significantly associated with ssGSEA-
Clusteré, the module exhibiting the paramount correlation was se-
lected for in-depth analysis.

2.8 | Building the lung progression associated
signature (LPAS)

Univariate Cox regression analysis was employed to assess the
impact of key genes within the cluster 6 subgroup on the survival
status of LUAD. A significance threshold of 0.05 was set to mini-
mize the possibility of overlooking important factors. Subsequently,
the LASSO Cox regression method was used to reduce the pool
of candidate genes, ultimately creating the most effective survival
signature. Predictive performance was evaluated using receiver
operating characteristic (ROC) curves, and an area under the curve
(AUC) value exceeding 0.65 was considered indicative of outstand-

ing performance.

2.9 | Mutation landscape

Genomic alterations, such as recurrently amplified and deleted regions,
were identified using GISTIC 2.0 analysis. The R package ‘maftools’?

was employed to calculate the tumour mutational burden (TMB).

2.10 | Differences in the TME and drug inference

Seven distinct immune infiltration algorithms were used to com-

prehensively evaluate the composition of immune cells in various

LPAS groups. Heatmaps were then applied to visually illustrate the
nuanced differences in immune cell infiltration across these LPAS
groups. Furthermore, the specialized functionalities of the ‘estimate’
R package33 were carefully leveraged to quantify immune scores,
stromal scores, and ESTIMATE scores for TCGA-LUAD patients, fa-
cilitating a comprehensive assessment of the TME and its potential
implications. For the identification of potentially effective chemo-
therapeutic agents within different LPAS groups, the predictive
capabilities of the ‘oncoPredict’ and ‘pRRophetic’ R packages®*%°
were extensively utilized. This tool enabled accurate predictions of
suitable therapeutic interventions, contributing to a more informed
treatment strategy.

2.11 | Enrichment analysis

A gene set enrichment analysis was carried out using 50 hallmark
pathways from the Molecular Signatures Database (MSigDB). To
estimate pathway activity for each cell type, Gene Set Variation
Analysis (GSVA) was conducted for individual cells. Subsequently,
the average gene expression levels for each cell subtype were calcu-
lated using the default GSVA package settings. Differences in activ-
ity scores were then used to measure variations in pathway activity
among different cell subtypes.

2.12 | Clinical specimen collection and
RNA sequencing

The collection of tissue samples has received ethical approval from
the Medical Ethics Committee of the First Affiliated Hospital of
Nanjing Medical University. These samples, categorized as AlS, MIA,
or IAC by pathology experts, are obtained on the day of the sur-
gery and are then sent to Oncocare Inc. (Suzhou, China) for RNA
sequencing.

2.13 | SubMap validation

The assessment of shared characteristics between two groups is
conducted using the unsupervised SubMap method. Significance
is determined by an adjusted p-value below 0.05, indicating a
substantial degree of similarity. Subtype consistency between
the validation and discovery cohorts was evaluated through the
SubMap approach, and the outcomes were then visualized using

the ComplexHeatmap package.
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FIGURE 4 Model construction. (A) WGCNA was utilized to identify gene modules associated with Cluster 6. (B) The results of univariate
Cox analysis of module genes. (C) LASSO regression was employed to select model genes. (D, E) Nine model genes were identified through
multivariate Cox regression analysis, with each gene assigned distinct coefficients and hazard ratios (HRs). (F) Comparison of LPAS

score differences in AlS, MIA and IAC. (G) KM survival curves in TCGA, GSE13213, GSE29016, GSE30219, GSE31210 and GSE68465.

AIS, adenocarcinoma in situ; IAC, invasive adenocarcinoma; LPAS, lung progression associated signature; MIA, minimally invasive
adenocarcinoma; WGCNA, weighted gene co-expression network analysis.

2.14 | Celllines culture

A549 and H1299 cells (human lung adenocarcinoma cell lines) were
sourced from the Cell Resource Center of Shanghai Life Sciences
Institute. They were cultured in a medium consisting of F12K or
RPMI-1640 (Gibco BRL, USA) supplemented with 10% fetal bo-
vine serum (FBS), 1% streptomycin and penicillin (Gibco, Invitrogen,
Waltham, MA, USA). The cells were maintained at 37°C under condi-
tions of 5% CO2 and 95% humidity.

2.15 | Cell transfection

The knockdown of PSMB1 was achieved through the use of
small-interfering RNA (siRNA). Cells were seeded in a six-well
plate at 50% confluence and were transfected with both a nega-
tive control (NC) and the knockdown siRNA (siPSMB1). All trans-
fection procedures were performed using Lipofectamine 3000
(Invitrogen, USA).

2.16 | Cell-counting kit-8 experiment (CCK-8)

In 96-well plates, a cell suspension containing 3x 10° cells per well
was dispensed. Subsequently, the plates were incubated for 2h at
37°C under dark conditions with the addition of 10 mL of CCK-8 la-
belling reagent (A311-01, Vazyme) in each well. The absorbance of
the cells at 450nm was quantified using an enzyme-linked reader
(A33978, Thermo) at 0, 24, 48, 72 and 96h in order to determine
cell viability.

2.17 | Colony formation

We transfected 1x10° cells into each well of a six-well plate and
kept the cells alive for 14 days. Before Crystal violet (Solarbio, China)
staining, the cells were washed twice with PBS and fixed for 15min

in 4% paraformaldehyde.

2.18 | Wound-healing assay

In six-well plates, transfected cells were seeded and cultured in a cell
incubator until they reached 95% confluence. In each well, a sterile
20pL plastic pipette tip was used to gently create a single straight
line across the monolayer of cells, resulting in the formation of a

“wound.” Subsequently, the wells were gently washed twice with
phosphate-buffered saline (PBS) to remove any unattached cells and
debris. Finally, photographs of the scratch wounds were taken using
ImagelJ software at two time points: O and 48 h after the scratch was
made, and the width of the scratches was measured.

2.19 | Transwell assay

In the transwell assay, studies on cell invasion and migration were
conducted. The top chambers of 24-well plates were filled with
A549 and H1299 cells (2 x 10°) that had been treated, and they were
incubated for 48h. To assess the cells' invasive and migratory ca-
pabilities, the top section of the plate was either pre-coated with
Matrigel solution (BD Biosciences, USA) or left untreated. Following
the removal of cells from the top surface, the remaining cells in the
bottom layer were fixed with 4% paraformaldehyde and stained with
0.1% crystal violet (Solarbio, China).

2.20 | Statistical analysis

Data processing, statistical analysis and visualization were per-
formed using R 4.2.0 software. Subtype-specific OS was estimated
and compared using the Kaplan-Meier method and log-rank test.
Differences in continuous variables between the two groups were
evaluated using the Wilcoxon test or t-test. Categorical variables
were analysed using the chi-squared test or Fisher's exact test. The
false discovery rate (FDR) method was applied to correct p-values.
Correlations between variables were examined using Pearson cor-
relation analysis. All p-values were calculated using a two-tailed ap-

proach, with statistical significance defined as p <0.05.

3 | RESULTS

3.1 | The scRNA profiling of LUAD

In the experimental framework illustrated in Figure 1, we employed
specific identification markers to classify all sampled cells from the
data sets GSE150938 and GSE189357 into 12 distinct cell types, as
demonstrated in the t-SNE plots (Figure 2A-D). Notably, the pro-
portion of cell types varied among different patients. Focusing on
Epithelial and Endothelial cells, we conducted an exhaustive analy-
sis of CNVs in each chromosome across all cells using the InferCNV
algorithm, as depicted in Figure 2E. Our analysis indicated that the
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majority of epithelial cells exhibited higher CNV levels than en-
dothelial cells. Figure 2F presents the variance in CNV scores among
eight identified cell clusters, highlighting that Clusters 4 and 5 mani-
fested relatively lower CNVs. These clusters were designated nor-
mal cells, whereas the remaining clusters were classified as tumour
cells. Subsequently, all tumour cells were re-clustered. This process
resulted in the identification of eight distinct clusters, as illustrated
in Figure 2G,H.

3.2 | Biological characteristic analysis of
tumour clusters

Figure 3A shows the changes in the proportion of the eight clus-
ters as LUAD progresses from AlS to IAC, revealing that Cluster 6
generally shows an increasing trend. KM survival analysis of the
eight clusters reveals that only the signature composed of spe-
cific genes within Cluster 6 has predictive significance for LUAD
prognosis (Figure 3B). GSVA enrichment analysis found that genes
in Cluster 6 are mainly enriched in pathways such as E2F targets
and G2M checkpoints, which are largely associated with the cell
cycle (Figure 3C). The MK signalling pathway network illustrated
the internal relationships between Clusters, Target and Source,
and the results showed that Cluster 6 has the strongest connec-
tions with various targets (Figure 3D). The MK signalling pathway
typically represents a pivotal role in cell migration and tumour
progression.36 Trajectory analysis indicated that the proportion
of Cluster 6 gradually increases (Figure 3E). In pseudotime, we
identified the top 50 highly variable genes (Figure 3F). Based
on their expression in pseudotime, we grouped them into four
gene clusters. Subsequently, the Scenic package was employed
to evaluate differences in the expression levels of transcription
factors (TFs) in epithelial cells. Interestingly, it was observed that
transcription factors such as E2F1, E2F3, TP63 and EZH2 were
significantly upregulated in cluster 6 (Figure 3G,H). Multiple stud-
ies have indicated that the abnormal expression or activity of
these transcription factors may contribute to the promotion of
tumour development and progression in LUAD.3"%? In summary,
we believe that key genes affecting the progression of LUAD exist

within cluster 6.

3.3 | Building a highly robust LPAS

Through WCGNA co-expression analysis, all genes were divided
into 28 modules (Figure 4A). Analysis revealed that the green gene
module has the highest correlation (0.63) with Cluster 6. A univari-
ate analysis of genes in the green module yields 41 genes that have
some predictive significance for the prognosis of TCGA-LUAD pa-
tients (Figure 4B). Using LASSO and COX regression, these 41 genes
were analysed again, resulting in nine independent risk factors
(PSMB1, ENY2, NPTN, RPS16, HYAL3, KLK8, CAMTA1, MAGEH1

and AKR1A1; Figure 4C). Based on these nine genes, a prognostic
model (LPAS) for LUAD was constructed (Figure 4D,E). After per-
forming transcript sequencing for 14 LUAD samples and calculating
their LPAS scores, it was found that as the tumour progresses from
AIS to MIA, and then to IAC, the LPAS scores gradually increase.
This suggests that the more mature the tumour development is, the
more malignant cells there are, and the higher the LPAS score be-

comes (Figure 4F).

3.4 | Model evaluation and validation

Patients with high LPAS scores had noticeably worse prognoses
for LUAD, a result that is consistent across six data sets: TCGA,
GSE13213, GSE29016, GSE30219, GSE31210 and GSE68465
(Figure 4G). The AUC values for 1-year, 2-year, 3-year, 4-year and 5-
year OS demonstrated the good predictive performance of the LPAS
signature in the TCGA (0.713, 0.719, 0.695, 0.693, 0.675), GSE13213
(0.752, 0.622, 0.661, 0.628, 0.608), GSE29016 (0.783, 0.779,
0.763, 0.797, 0.703), GSE30219 (0.720, 0.642, 0.656, 0.641, 0.652),
GSE31210 (NA, 0.906, 0.847, 0.842, 0.793) and GSE68465 (0.677,
0.677, 0.669, 0.660, 0.629) data sets(Figure 5A-F). In order to fur-
ther test the prognostic performance of the LPAS signature score,
we included 144 signatures and compared the C-index in the TCGA,
GSE13213, GSE29016, GSE30219, GSE31210 and GSE68465 data
sets. The results found that in the TCGA, GSE13213, GSE29016,
GSE30219, GSE31210 and GSE68465 data sets, our LPAS fea-
ture performed better than most other previously published
signatures(Figure 5A-F).

3.5 | LPAS s closely related to immunity

In order to explore the immune status reflected by the LPAS score,
we analyzed the association between the LPAS score and immune
infiltrating cells and immune checkpoints. Using seven methods,
the immune infiltration scores in the TCGA dataset were calcu-
lated. A heatmap shows that the degree of immune cell infiltration
is higher in the group with low-LPAS scores (Figure 6A). Further
analysis revealed that the LPAS score is negatively correlated
with matrix scores, immune scores, and ESTIMATE scores, while
it is positively correlated with tumor purity (Figure 6C). Analysis
of the correlation of the LPAS score with immune modulators
found that the level of immune regulatory factors was lower in
the group with high-LPAS scores, suggesting that this group has a
higher level of immune suppression (Figure 6B). We further stud-
ied the correlation between the LPAS and signaling pathways as
well as the cancer-immune cycle. Results showed that the LPAS is
positively correlated with many signaling pathways and the can-
cer-immune cycle. In the TCGA dataset, the level of immune in-
filtrating cells and immune modulators was high, suggesting that

this group has an inflammatory but relatively immune-promoting
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FIGURE 7 Biological characteristics of LPAS in the TCGA data set. (A) Heatmap showing the correlation between LPAS and hallmark
signalling pathways as well as the cancer immune cycle. (B-C) Differences in pathway enrichment between high and low LPAS groups. LPAS,
lung progression associated signature.
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microenvironment, and this was precisely the potential benefi-

ciary of immunotherapy (Figure 7A).

3.6 | Enrichment analysis

To elucidate the immune-related characteristics distinguishing the
high- and low-LPAS groups, we explored their underlying biologi-
cal mechanisms in depth. Notably, the LPAS signature score ex-
hibited a strong positive correlation with several key processes:
porin activity, the G2/M DNA replication checkpoint, the folding
of actin mediated by the CCT/TRIC complex, and the positive reg-
ulation of telomerase RNA localization to the Cajal body. These
findings underscore the pronounced disparities between the two
LPAS signature score groups in terms of oncogenic pathways and
immune pathways (Figure 7B,C). Concurrently, the DEGs between
the high- and low-LPAS groups were predominantly enriched in
the cell cycle pathway.

3.7 | Immune checkpoints and potential
drug targets

In analysing the correlation between the LPAS score and model
genes and common immune checkpoints, it was found that the
LPAS score was negatively correlated with the majority of im-
mune checkpoints, with the exception of CD276. MAGEH1,
NPTN and AKR1A1 showed positive correlation with many im-
mune checkpoints (Figure 8A). In search of potential target candi-
dates, we analysed target information for numerous compounds,
identifying three genes: TUBB6, GSTO1 and PPCDC. The protein
abundance of TUBB6, GSTO1 and PPCDC positively correlated
with LPAS, whereas their CERES scores negatively correlated
with LPAS, suggesting that inhibiting the function of these three
genes in patients with high-LPAS scores may yield positive treat-
ment results (Figure 8B,C). Based on drug response data from
CTRP and PRISM, we sought potential therapeutic drugs for the
high-LPAS score group. We firstly performed a drug response
difference analysis to identify compounds with lower estimated
AUC values in the high-LPAS score group. Then, using Spearman
correlation analysis between the AUC values and the LPAS
scores, we filtered out compounds with negative correlation co-
efficients. Following this analysis, we identified 11 compounds
derived from CTRP (BI-2536, ispinesib, cabazitaxel, gemcitabine,
BMS-265246, AMG900, mitomycin-c, MPI-0479605, LGX818,
dolastatin-10 and SAR131675) and three compounds from PRISM

(SE-743921, paclitaxel and BI-2536). All these compounds have
lower estimated AUC values in the high-LPAS score group and are
negatively correlated with LPAS (Figure 8D-G).

3.8 | LPAS predicts genomic alterations

Different frequently altered chromosomes existed in the two LPAS
signature score groups, with specific altered regions shown in
Figure 9A. The TMB was higher in the group with high-LPAS scores,
and the LPAS score was positively correlated with the TMB score
(Figure 9B,C). Survival analysis indicated that the prognosis is worse
for the group with low TMB and high LPAS scores (Figure 9D).

3.9 | Immune therapy cohort validation

For the purpose of identifying the predictive ability of the LPAS signa-
ture score for the efficacy of immunotherapy, we conducted validations
in multiple immunotherapy data sets. The SubMap analysis results sug-
gested that in all 10 immunotherapy cohorts, patients with low LPAS
scores showed better immune responses (Figure 10A-J). The TIDE al-
gorithm indicated that in the TCGA cohort, a low LPAS score is asso-
ciated with a better immune response (Figure 10K). SubMap analysis
suggested that in the TCGA cohort, a low LPAS score is associated with
better anti-CTLA-4 and anti-PD-1 immune responses (Figure 10L).

3.10 | PSMB1 may serve as a therapeutic target
for LUAD

Among all model genes, PSMB1 has the highest HR value, indicat-
ing its stronger impact on LUAD prognosis. To validate the car-
cinogenic role of PSMB1 in LUAD, we used siRNA to inhibit the
expression of PSMB1 in A549 and H1299 cells. The CCK-8 and
colony formation experiments indicated that inhibiting PSMB1 can
significantly suppress the proliferation and DNA replication ca-
pability of LUAD cells (Figure 11A,B). A wound-healing assay was
used to measure cell migration capability. The results showed that,
compared with the control group, the wound-healing rate of A549
and H1299 cells with PSMB1 knockdown was significantly reduced
(Figure 11C). Transwell experiments showed that the number of
cells invading the lower chamber decreased after PSMB1 knock-
down (Figure 11D). These results suggested that PSMB1 plays a
tumour-promoting role in LUAD cells, and its hazardous role in
LPAS has been validated.

FIGURE 8 Immune checkpoint and drug target analysis. (A) Bubble plot showing the correlation between LPAS score and its model genes
with common immune checkpoints. (B) Volcano plot and scatter plots demonstrating the correlation between LPAS score and the expression
of drug target proteins. (C) Volcano plot and scatter plot of Spearman's correlations and significance between LPAS and CERES score of drug
targets. (D) Spearman correlations for 11 CTRP-derived compounds. (E) Results of differential drug response analysis for 11 CTRP-derived
compounds. (F) Spearman correlations for three PRISM-derived compounds. (G) Results of differential drug response analysis for three
PRISM-derived compounds. CTRP, Cancer Therapeutics Response Portal; LPAS, lung progression associated signature.
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FIGURE 9 LPAS can predict genomic alterations. (A) Heatmap showing gene mutation status in high and low LPAS groups. (B) Differences
in standardized TMB between high and low LPAS groups. (C) Correlation analysis between LPAS score and TMB. (D) Survival curves show

the difference in survival among four subgroups (high LPAS and high TMB, high LPAS and low TMB, low LPAS and high TMB, low LPAS and

low TMB). LPAS, lung progression associated signature; TMB, tumour mutation burden.
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FIGURE 11 Experimental validation demonstrates that PSMB1 has a tumour-promoting effect. (A, B) CCK-8 detection and colony
formation assays show that knockdown of PSMB1 expression significantly suppressed the proliferation and DNA replication of LUAD cells.
(C) Wound-healing assay to evaluate the impact of si-PSMB1 transfection on the migratory ability of A549 and H1299 cells. (D) Transwell
assay to examine the migration capacities of transfected A549 and H1299 cells. LUAD, lung adenocarcinoma.

4 | DISCUSSION

LUAD, a primary pathological subtype of lung cancer (LC), can be
stratified into distinct stages: AIS, MIA and IAC, reflecting a se-
quence of tumour progression.“o’42 Each stage significantly impacts
patient prognosis, yet the mechanisms driving the progression from
AIS to MIA to IAC remain elusive. Recent advancements in single-
cell-sequencing technology have greatly enhanced our understand-
ing of tumour heterogeneity at both cellular and molecular levels,
improving insights into tumour initiation, progression, metastasis
and prognosis.*® This technological evolution has also been instru-
mental in identifying potential therapeutic targets and prognostic
markers across various cancer types, playing a crucial role in the ad-
vancement of precision and personalized oncology treatment.

In this study, we have delineated a subpopulation of tumour cells
associated with the progression of LUAD and developed a predic-
tive model for LUAD based on the key identification genes of this
subpopulation. Initially, through a multi-faceted analysis of scRNA-
seq data, we established the linkage between Clusteré and LUAD
progression. This was corroborated through various modalities,
including the MK signalling pathway, trajectory analysis and dif-
ferential gene expression studies. Subsequently, from the array of
marker genes identified in Clusteré, we selected nine pivotal genes
(PSMB1, ENY2, NPTN, RPS16, HYAL3, KLK8, CAMTA1, MAGEH1
and AKR1A1) to construct a prognostic model for LUAD.

The high-LPAS group exhibited generally poorer prognoses,
which could be attributed to the activation of specific signalling
pathways, including porin activity, G2/M DNA replication check-
point, the folding of actin by CCT/TRiC and the positive regula-
tion of telomerase RNA localization to the Cajal body. Moreover,
to validate the predictive efficacy of our model, we conducted a
comparative analysis against 144 previously published models. Our
findings revealed that in the data sets TCGA, GSE13213, GSE29016,
GSE30219, GSE31210 and GSE68465, the c-index of the LPAS sur-
passed those of models presented in other published articles. This
indicates that our model holds substantial promise as a diagnostic
tool for prognostication in LUAD. Additionally, we assessed the per-
formance of the LPAS in terms of immune infiltration, enrichment
analysis, and response to immunotherapy. All these evaluations fur-
ther validated the robust predictive capability of the LPAS model.
Parallel conclusions were drawn from in vitro experimental val-
idations. Consequently, it is plausible to posit that our model can
accurately predict the prognosis of LUAD patients and their respon-
siveness to immunotherapies.

Many previous studies have discovered the role of PSMB1 in tu-
mour development. Research by Teng and others found that high
expression of PSMB1 is associated with poorer prognosis in breast
cancer patients.** Similar results have also been found in diseases

such as osteosarcoma, thyroid cancer and ovarian cancer.**~#’ In this
study, PSMB1 demonstrated high expression in LUAD, indicating a
shorter OS period. After knocking down the PSMB1 gene, the pro-
liferation and DNA replication capabilities of LUAD cells were sig-
nificantly inhibited. Therefore, we believe that PSMB1 plays a very
important role in the progression of LUAD.

This study has several limitations. First, the mechanisms by
which these model genes influence LUAD progression require fur-
ther in-depth research. Second, no further analysis was performed
on the compounds obtained from CTRP and PRISM to clarify poten-
tial therapeutic drugs. Third, the model requires more in vitro testing
and clinical validation.

We identified a specific tumour cluster associated with the pro-
gression of LUAD and successfully developed a high-performing
LPAS. We also observed differences in CNVs and biological func-
tions between high- and low-LPAS groups. In addition, we studied
potential mechanisms leading to poor prognosis in the high-LPAS
group and identified potential therapeutic targets, providing new
insights for precision treatment.
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