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Abstract
We employed single-cell analysis techniques, specifically the inferCNV method, to 
dissect the complex progression of lung adenocarcinoma (LUAD) from adenocarci-
noma in situ (AIS) through minimally invasive adenocarcinoma (MIA) to invasive ad-
enocarcinoma (IAC). This approach enabled the identification of Cluster 6, which was 
significantly associated with LUAD progression. Our comprehensive analysis included 
intercellular interaction, transcription factor regulatory networks, trajectory analysis, 
and gene set variation analysis (GSVA), leading to the development of the lung pro-
gression associated signature (LPAS). Interestingly, we discovered that the LPAS not 
only accurately predicts the prognosis of LUAD patients but also forecasts genomic 
alterations, distinguishes between ‘cold’ and ‘hot’ tumours, and identifies potential 
candidates suitable for immunotherapy. PSMB1, identified within Cluster 6, was ex-
perimentally shown to significantly enhance cancer cell invasion and migration, high-
lighting the clinical relevance of LPAS in predicting LUAD progression and providing 
a potential target for therapeutic intervention. Our findings suggest that LPAS offers 
a novel biomarker for LUAD patient stratification, with significant implications for 
improving prognostic accuracy and guiding treatment decisions.
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1  |  INTRODUC TION

For decades, lung cancer (LC) has persistently ranked as the fore-
most cause of cancer-related mortality on a global scale, with both 
its incidence and mortality rates exhibiting a continual ascent.1 
Among LC cases, non-small-cell lung cancer (NSCLC) represents a 
substantial majority, with lung adenocarcinoma (LUAD) emerging 
as its predominant histological subtype.2 Despite notable strides 
in LUAD treatment strategies, the 5-year overall survival (OS) rate 
remains below 20% due to the belated diagnosis of a significant pro-
portion of LUAD patients.3 Immunotherapy has heralded a paradigm 
shift in the treatment landscape of LUAD, affording therapeutic 
prospects to patients at advanced stages or those eligible for early 
surgical resection. However, the intrinsic immunological diversity 
within LUAD leads to a subdued response rate, with only a minority 
of patients deriving therapeutic benefits.4 The primary challenge 
in the realm of tumour immunotherapy lies in the identification of 
prognostic biomarkers that can gauge treatment efficacy and prog-
nosticate patient outcomes. While certain biomarkers, such as pro-
grammed death-ligand 1 (PD-L1) expression and tumour mutation 
burden (TMB), have gained widespread clinical traction for predict-
ing immunotherapeutic responses,5 they fall short in encapsulating 
the complete spectrum of the tumour microenvironment's (TME) 
heterogeneity. Hence, the exigency of crafting predictive models 
and unearthing novel biomarkers to prognosticate both clinical out-
comes and therapeutic responses is palpable.

Within the gamut of LUAD subtypes, the most prevalent pro-
gression trajectory encompasses the sequential development of tu-
mours, commencing with atypical adenomatous hyperplasia (AAH), 
advancing to adenocarcinoma in situ (AIS), then to minimally inva-
sive adenocarcinoma (MIA), culminating in invasive adenocarcinoma 
(IAC) marked by conspicuous invasiveness. The clinical, pathologi-
cal, and molecular attributes of these tumours lend credence to this 
stepwise evolutionary narrative.6 Conventional sequencing modali-
ties, such as whole-exome sequencing, have provided insights into 
the genomic landscape and immune microenvironmental charac-
teristics during LUAD development, unmasking the pivotal roles of 
driver mutations in genes, such as EGFR, ERBB2, TP53 and BRAF.7–9 
Nevertheless, comprehensive insights into the distribution of tu-
mour cells and microenvironmental constituents throughout the 
process of LUAD progression remain a scarce commodity, neces-
sitating the application of sequencing technologies for delineating 
cell-type-specific profiles.

Single-cell RNA sequencing (scRNA-seq) has emerged as an in-
valuable tool in demystifying the complexities of tumour heteroge-
neity and its evolutionary trajectory in LUAD, thereby facilitating 
the advent of precision oncology. scRNA-seq has transformed our 
approach to dissecting the cellular landscape within resected NSCLC 
specimens, overcoming previous technical challenges that obscured 
our understanding of NSCLC heterogeneity.10 Recent strides in 
scRNA-seq have led to the development of comprehensive single-
cell multi-omics atlases for LUAD, unveiling the critical involvement 
of AT2 and basal cells in driving tumour progression.11,12 In this 

study, we integrated and analysed scRNA-seq data from two unique 
cohorts of LUAD patients. Our goal was to delineate the diversity 
within the TME across different invasion stages and identify key mo-
lecular changes throughout LUAD progression. We also developed a 
critical gene signature to predict disease trajectory and response to 
immunotherapy in LUAD. This model has been rigorously validated, 
demonstrating its potential to enhance personalized prognosis and 
guide clinical management in LUAD.

2  |  METHOD

2.1  |  Data set source

Utilizing The Cancer Genome Atlas (TCGA) database (https://​por-
tal.​gdc.​cancer.​gov), we successfully obtained a substantial volume 
of data related to LUAD patients. This data include RNA sequenc-
ing, methylation data, copy number variation (CNV) data, muta-
tion data and clinical characteristics. Additionally, we acquired two 
scRNA-seq data sets (GSE189357 and GSE150938) from the Gene 
Expression Omnibus (GEO) database (http://​www.​ncbi.​nlm.​nih.​gov/​
geo), comprising 4 AIS, 8 MIA, and 9 IAC samples. We also sourced 
five additional data sets from the GEO database, all containing clini-
cal survival information, for model validation. These data sets are 
as follows: GSE1321313 (n = 119), GSE2901614 (n = 39), GSE3021915 
(n = 86), GSE3121016 (n = 227) and GSE6846517 (n = 443). All tran-
script data used for building the model are stored in Table S1.

Furthermore, RNA sequencing data from patients receiving im-
munotherapy was obtained from the GEO website or the Tumor 
Immune Dysfunction and Exclusion (TIDE) database (http://​tide.​
dfci.​harva​rd.​edu). The details of these data sets are as follows:

GSE35640: 65 melanoma patients participated in an immuno-
logical adjuvant trial involving the recombined MAGE-A3 antigen.18

PRJEB25780: 57 patients with metastatic or recurrent gastric 
cancer receiving anti-PD-1 therapy.19

GSE94873: A large cohort of patients with advanced melanoma 
treated with tremelimumab.20

GSE78220: 28 cases of melanoma patients treated with anti-
PD-1 therapy.21

GSE91061: 25 advanced melanoma patients treated with 
Nivolumab.22

PRJEB23709: 51 melanoma patients receiving PD-1 and CTLA-4 
combination therapy.23

iMvigor210: 310 bladder cancer patients were treated with 
Atezolizumab.24

GSE135222: 27 advanced NSCLC patients were treated with 
anti-PD-1/PD-L1 therapy.25

GSE100797: 27 stage IV melanoma patients were treated with 
adoptive T-cell therapy.26

GSE126044: 16 NSCLC patients received PD-1 therapy.27

GSE165252: 77 oesophageal adenocarcinoma patients were 
treated with neoadjuvant chemoradiotherapy combined with 
Atezolizumab.28

https://portal.gdc.cancer.gov
https://portal.gdc.cancer.gov
http://www.ncbi.nlm.nih.gov/geo
http://www.ncbi.nlm.nih.gov/geo
http://tide.dfci.harvard.edu
http://tide.dfci.harvard.edu
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F I G U R E  1 Flowchart of the analysis.
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GSE173839: 105 breast cancer patients received Durvalumab in 
combination with olaparib and paclitaxel.29

Protein-level data for LUAD was downloaded from the Clinical 
Proteomic Tumor Analysis Consortium (CPTAC) website (https://​
prote​omics.​cancer.​gov/​progr​ams/​cptac​). The protein abundances 
were log2-transformed and median-centred for analysis.

These data resources were instrumental in our research, provid-
ing a comprehensive understanding of the molecular characteristics 
of LUAD patients and their responses to immunotherapy. To ensure 
data uniformity and comparability, we converted gene expression 
data into Transcripts Per Million (TPM) format and addressed po-
tential batch effects using the ‘combat’ function within the ‘sva’ R 
package. Additionally, all data from the TCGA database, including 
large-scale sequencing data from GEO, underwent log transforma-
tion to achieve a standardized data format before analysis initiation.

2.2  |  Cancer cell lines

Data pertaining to human cancer cell lines (CCLs) was procured from 
the Cancer Cell Line Encyclopedia (CCLE) project by the Broad Institute, 
accessible at https://​porta​ls.​broad​insti​tute.​org/​ccle/​. Additionally, 
genome-wide CRISPR knockout screening data encompassing 739 
cell lines, and 18,333 genes was collected from the Dependency Map 
(DepMap) portal, available at https://​depmap.​org/​portal/​. The depend-
ency of genes in specific CCLs was assessed using CERES scores, with 
lower scores signifying a greater impact of these genes on cell growth 
and survival within the respective CCL. Furthermore, drug sensitivity 
data for CCLs was obtained from the Cancer Therapeutics Response 
Portal (CTRP) and the PRISM Repurposing dataset. CTRP contains 
sensitivity data for 481 compounds tested on 835 CCLs, while PRISM 
provides sensitivity data for 1448 compounds across 482 CCLs. Both 
data sets use AUC values to gauge drug sensitivity, with lower AUC 
values indicating higher responsiveness to treatment. Compounds 
with more than 20% missing data were excluded before imputation. 
Molecular data from the CCLE project were used for subsequent anal-
yses of CTRP and PRISM data, as the CCLs in these data sets originated 
from the CCLE.

2.3  |  The detailed steps of the scRNA-seq analysis

The original gene expression matrix underwent preprocessing with 
the Seurat R package (version 4.2.0).30 Genes had to demonstrate ex-
pression in a minimum of 10 cells within each sample to be included. 
Subsequently, subpar cells were filtered out based on specific criteria: 
those with more than 5000 or fewer than 200 expressed genes or cells 

with over 10% of unique molecular identifiers (UMIs) originating from 
the mitochondrial genome. The remaining high-quality single-cell tran-
scriptome expression matrix was then integrated using the harmony R 
package. Subsequently, highly variable genes were selected for prin-
cipal component analysis (PCA), and the top 30 significant principal 
components (PCs) were chosen for t-distributed stochastic neighbour 
embedding (t-SNE) dimension reduction for gene expression visualiza-
tion. Differentially expressed genes (DEGs) within each cell subpopula-
tion were identified using the “FindAllMarker” function, and cell types 
and subtypes were annotated based on the expression of established 
canonical marker genes for each cell type.

2.4  |  InferCNV and trajectory analysis

InferCNV was employed to infer tumour cell populations, using en-
dothelial cells as the reference group. We set the parameter ‘k_obs_
groups = 8’, which enabled us to categorize epithelial cells into eight 
distinct clusters. This stratification facilitated the identification and 
differentiation of copy number variations (CNVs) across each clus-
ter, enhancing our understanding of the genomic landscape within 
the tumour. Subsequently, the Monocle2 algorithm was employed 
to perform developmental trajectory analysis using tumour cells in-
ferred. A gene-cell matrix extracted from UMI counts scaled within 
the Seurat subset was used as input. A new ‘cell data set’ function 
was used to create an object with an expression family parameter set 
to negative binomial size. Following dimension reduction and unit 
ordering, cell trajectories were inferred using default parameters.

2.5  |  Cell–cell interaction

CellChat31 was utilized to merge gene expression data and evaluate 
variations in proposed cell–cell communication modules. The default 
CellChatDB was used as the ligand–receptor database in accordance 
with the standard CellChat process. Cell type-specific interactions 
were deduced by detecting overexpressed ligands or receptors 
within a specific cell group, followed by the identification of inten-
sified ligand–receptor interactions when these ligands or receptors 
were overexpressed.

2.6  |  SCENIC analysis

The activity of gene regulatory networks is inferred using the R soft-
ware package Scenic. The activity of each regulator in single cells is 
scored using default settings and the following cisTarget databases: 

F I G U R E  2 Integrating multiple single-cell data sets for inference and re-clustering of tumour cells. (A) Percentage of each cell type in 
different samples in GSE150938. (B) tSNE plot showing the distribution of cells in GSE150938. (C) Percentage of each cell type in different 
samples in GSE189357. (D) tSNE plot showing the distribution of cells in GSE189357. (E) Heatmap showing the situation of the InferCNV 
analysis. (F) Distribution of CNVs for eight clusters. (G) Percentage of tumour subgroups in different samples. (H) tSNE plot showing the 
distribution of tumour subgroups. CNV, copy number variation; tSNE, t-distributed stochastic neighbour embedding.

https://proteomics.cancer.gov/programs/cptac
https://proteomics.cancer.gov/programs/cptac
https://portals.broadinstitute.org/ccle/
https://depmap.org/portal/
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hg38_refseq-r80_500bp_up_and_100bp_down_tss.mc9nr.feather 
and hg38_refseq-r80_10kb_up_and_down_tss.mc9nr.feather.

2.7  |  Determination of key genes in Cluster 
6 subgroup

Weighted gene co-expression network analysis (WGCNA) was uti-
lized to construct a co-expression network for TCGA-LUAD data 
set. An optimal soft threshold power β was meticulously deter-
mined to conform to the criteria of scale-free network topology. 
Subsequently, the weighted adjacency matrix was transformed into 
a topological overlap matrix (TOM), followed by the computation of 
the corresponding dissimilarity measure (1-TOM). Module identifi-
cation was performed employing the dynamic tree-cutting method. 
In order to pinpoint modules significantly associated with ssGSEA-
Cluster6, the module exhibiting the paramount correlation was se-
lected for in-depth analysis.

2.8  |  Building the lung progression associated 
signature (LPAS)

Univariate Cox regression analysis was employed to assess the 
impact of key genes within the cluster 6 subgroup on the survival 
status of LUAD. A significance threshold of 0.05 was set to mini-
mize the possibility of overlooking important factors. Subsequently, 
the LASSO Cox regression method was used to reduce the pool 
of candidate genes, ultimately creating the most effective survival 
signature. Predictive performance was evaluated using receiver 
operating characteristic (ROC) curves, and an area under the curve 
(AUC) value exceeding 0.65 was considered indicative of outstand-
ing performance.

2.9  |  Mutation landscape

Genomic alterations, such as recurrently amplified and deleted regions, 
were identified using GISTIC 2.0 analysis. The R package ‘maftools’32 
was employed to calculate the tumour mutational burden (TMB).

2.10  |  Differences in the TME and drug inference

Seven distinct immune infiltration algorithms were used to com-
prehensively evaluate the composition of immune cells in various 

LPAS groups. Heatmaps were then applied to visually illustrate the 
nuanced differences in immune cell infiltration across these LPAS 
groups. Furthermore, the specialized functionalities of the ‘estimate’ 
R package33 were carefully leveraged to quantify immune scores, 
stromal scores, and ESTIMATE scores for TCGA-LUAD patients, fa-
cilitating a comprehensive assessment of the TME and its potential 
implications. For the identification of potentially effective chemo-
therapeutic agents within different LPAS groups, the predictive 
capabilities of the ‘oncoPredict’ and ‘pRRophetic’ R packages34,35 
were extensively utilized. This tool enabled accurate predictions of 
suitable therapeutic interventions, contributing to a more informed 
treatment strategy.

2.11  |  Enrichment analysis

A gene set enrichment analysis was carried out using 50 hallmark 
pathways from the Molecular Signatures Database (MSigDB). To 
estimate pathway activity for each cell type, Gene Set Variation 
Analysis (GSVA) was conducted for individual cells. Subsequently, 
the average gene expression levels for each cell subtype were calcu-
lated using the default GSVA package settings. Differences in activ-
ity scores were then used to measure variations in pathway activity 
among different cell subtypes.

2.12  |  Clinical specimen collection and 
RNA sequencing

The collection of tissue samples has received ethical approval from 
the Medical Ethics Committee of the First Affiliated Hospital of 
Nanjing Medical University. These samples, categorized as AIS, MIA, 
or IAC by pathology experts, are obtained on the day of the sur-
gery and are then sent to Oncocare Inc. (Suzhou, China) for RNA 
sequencing.

2.13  |  SubMap validation

The assessment of shared characteristics between two groups is 
conducted using the unsupervised SubMap method. Significance 
is determined by an adjusted p-value below 0.05, indicating a 
substantial degree of similarity. Subtype consistency between 
the validation and discovery cohorts was evaluated through the 
SubMap approach, and the outcomes were then visualized using 
the ComplexHeatmap package.

F I G U R E  3 Cell subgroup analysis. (A) Changes in cell subgroup percentages from AIS to IAC, (B) KM survival curve in Cluster 6, (C) GSVA 
enrichment analysis, (D) MK signalling network, (E) cell subgroup trajectory analysis, (F) heatmap showing the expression of differential 
genes over pseudotime, (G) transcription factor regulatory networks specifically upregulated and downregulated in each tumour cluster, 
(H) heatmap presenting the distribution of gene regulatory networks in different clusters. GSVA, gene set variation analysis; IAC, invasive 
adenocarcinoma.
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2.14  |  Cell lines culture

A549 and H1299 cells (human lung adenocarcinoma cell lines) were 
sourced from the Cell Resource Center of Shanghai Life Sciences 
Institute. They were cultured in a medium consisting of F12K or 
RPMI-1640 (Gibco BRL, USA) supplemented with 10% fetal bo-
vine serum (FBS), 1% streptomycin and penicillin (Gibco, Invitrogen, 
Waltham, MA, USA). The cells were maintained at 37°C under condi-
tions of 5% CO2 and 95% humidity.

2.15  |  Cell transfection

The knockdown of PSMB1 was achieved through the use of 
small-interfering RNA (siRNA). Cells were seeded in a six-well 
plate at 50% confluence and were transfected with both a nega-
tive control (NC) and the knockdown siRNA (siPSMB1). All trans-
fection procedures were performed using Lipofectamine 3000 
(Invitrogen, USA).

2.16  |  Cell-counting kit-8 experiment (CCK-8)

In 96-well plates, a cell suspension containing 3 × 103 cells per well 
was dispensed. Subsequently, the plates were incubated for 2 h at 
37°C under dark conditions with the addition of 10 mL of CCK-8 la-
belling reagent (A311-01, Vazyme) in each well. The absorbance of 
the cells at 450 nm was quantified using an enzyme-linked reader 
(A33978, Thermo) at 0, 24, 48, 72 and 96 h in order to determine 
cell viability.

2.17  |  Colony formation

We transfected 1 × 103 cells into each well of a six-well plate and 
kept the cells alive for 14 days. Before Crystal violet (Solarbio, China) 
staining, the cells were washed twice with PBS and fixed for 15 min 
in 4% paraformaldehyde.

2.18  |  Wound-healing assay

In six-well plates, transfected cells were seeded and cultured in a cell 
incubator until they reached 95% confluence. In each well, a sterile 
20 μL plastic pipette tip was used to gently create a single straight 
line across the monolayer of cells, resulting in the formation of a 

“wound.” Subsequently, the wells were gently washed twice with 
phosphate-buffered saline (PBS) to remove any unattached cells and 
debris. Finally, photographs of the scratch wounds were taken using 
ImageJ software at two time points: 0 and 48 h after the scratch was 
made, and the width of the scratches was measured.

2.19  |  Transwell assay

In the transwell assay, studies on cell invasion and migration were 
conducted. The top chambers of 24-well plates were filled with 
A549 and H1299 cells (2 × 105) that had been treated, and they were 
incubated for 48 h. To assess the cells' invasive and migratory ca-
pabilities, the top section of the plate was either pre-coated with 
Matrigel solution (BD Biosciences, USA) or left untreated. Following 
the removal of cells from the top surface, the remaining cells in the 
bottom layer were fixed with 4% paraformaldehyde and stained with 
0.1% crystal violet (Solarbio, China).

2.20  |  Statistical analysis

Data processing, statistical analysis and visualization were per-
formed using R 4.2.0 software. Subtype-specific OS was estimated 
and compared using the Kaplan–Meier method and log-rank test. 
Differences in continuous variables between the two groups were 
evaluated using the Wilcoxon test or t-test. Categorical variables 
were analysed using the chi-squared test or Fisher's exact test. The 
false discovery rate (FDR) method was applied to correct p-values. 
Correlations between variables were examined using Pearson cor-
relation analysis. All p-values were calculated using a two-tailed ap-
proach, with statistical significance defined as p < 0.05.

3  |  RESULTS

3.1  |  The scRNA profiling of LUAD

In the experimental framework illustrated in Figure 1, we employed 
specific identification markers to classify all sampled cells from the 
data sets GSE150938 and GSE189357 into 12 distinct cell types, as 
demonstrated in the t-SNE plots (Figure 2A–D). Notably, the pro-
portion of cell types varied among different patients. Focusing on 
Epithelial and Endothelial cells, we conducted an exhaustive analy-
sis of CNVs in each chromosome across all cells using the InferCNV 
algorithm, as depicted in Figure 2E. Our analysis indicated that the 

F I G U R E  4 Model construction. (A) WGCNA was utilized to identify gene modules associated with Cluster 6. (B) The results of univariate 
Cox analysis of module genes. (C) LASSO regression was employed to select model genes. (D, E) Nine model genes were identified through 
multivariate Cox regression analysis, with each gene assigned distinct coefficients and hazard ratios (HRs). (F) Comparison of LPAS 
score differences in AIS, MIA and IAC. (G) KM survival curves in TCGA, GSE13213, GSE29016, GSE30219, GSE31210 and GSE68465. 
AIS, adenocarcinoma in situ; IAC, invasive adenocarcinoma; LPAS, lung progression associated signature; MIA, minimally invasive 
adenocarcinoma; WGCNA, weighted gene co-expression network analysis.
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majority of epithelial cells exhibited higher CNV levels than en-
dothelial cells. Figure 2F presents the variance in CNV scores among 
eight identified cell clusters, highlighting that Clusters 4 and 5 mani-
fested relatively lower CNVs. These clusters were designated nor-
mal cells, whereas the remaining clusters were classified as tumour 
cells. Subsequently, all tumour cells were re-clustered. This process 
resulted in the identification of eight distinct clusters, as illustrated 
in Figure 2G,H.

3.2  |  Biological characteristic analysis of 
tumour clusters

Figure 3A shows the changes in the proportion of the eight clus-
ters as LUAD progresses from AIS to IAC, revealing that Cluster 6 
generally shows an increasing trend. KM survival analysis of the 
eight clusters reveals that only the signature composed of spe-
cific genes within Cluster 6 has predictive significance for LUAD 
prognosis (Figure 3B). GSVA enrichment analysis found that genes 
in Cluster 6 are mainly enriched in pathways such as E2F targets 
and G2M checkpoints, which are largely associated with the cell 
cycle (Figure 3C). The MK signalling pathway network illustrated 
the internal relationships between Clusters, Target and Source, 
and the results showed that Cluster 6 has the strongest connec-
tions with various targets (Figure 3D). The MK signalling pathway 
typically represents a pivotal role in cell migration and tumour 
progression.36 Trajectory analysis indicated that the proportion 
of Cluster 6 gradually increases (Figure  3E). In pseudotime, we 
identified the top 50 highly variable genes (Figure  3F). Based 
on their expression in pseudotime, we grouped them into four 
gene clusters. Subsequently, the Scenic package was employed 
to evaluate differences in the expression levels of transcription 
factors (TFs) in epithelial cells. Interestingly, it was observed that 
transcription factors such as E2F1, E2F3, TP63 and EZH2 were 
significantly upregulated in cluster 6 (Figure 3G,H). Multiple stud-
ies have indicated that the abnormal expression or activity of 
these transcription factors may contribute to the promotion of 
tumour development and progression in LUAD.37–39 In summary, 
we believe that key genes affecting the progression of LUAD exist 
within cluster 6.

3.3  |  Building a highly robust LPAS

Through WCGNA co-expression analysis, all genes were divided 
into 28 modules (Figure 4A). Analysis revealed that the green gene 
module has the highest correlation (0.63) with Cluster 6. A univari-
ate analysis of genes in the green module yields 41 genes that have 
some predictive significance for the prognosis of TCGA-LUAD pa-
tients (Figure 4B). Using LASSO and COX regression, these 41 genes 
were analysed again, resulting in nine independent risk factors 
(PSMB1, ENY2, NPTN, RPS16, HYAL3, KLK8, CAMTA1, MAGEH1 

and AKR1A1; Figure 4C). Based on these nine genes, a prognostic 
model (LPAS) for LUAD was constructed (Figure 4D,E). After per-
forming transcript sequencing for 14 LUAD samples and calculating 
their LPAS scores, it was found that as the tumour progresses from 
AIS to MIA, and then to IAC, the LPAS scores gradually increase. 
This suggests that the more mature the tumour development is, the 
more malignant cells there are, and the higher the LPAS score be-
comes (Figure 4F).

3.4  |  Model evaluation and validation

Patients with high LPAS scores had noticeably worse prognoses 
for LUAD, a result that is consistent across six data sets: TCGA, 
GSE13213, GSE29016, GSE30219, GSE31210 and GSE68465 
(Figure 4G). The AUC values for 1-year, 2-year, 3-year, 4-year and 5-
year OS demonstrated the good predictive performance of the LPAS 
signature in the TCGA (0.713, 0.719, 0.695, 0.693, 0.675), GSE13213 
(0.752, 0.622, 0.661, 0.628, 0.608), GSE29016 (0.783, 0.779, 
0.763, 0.797, 0.703), GSE30219 (0.720, 0.642, 0.656, 0.641, 0.652), 
GSE31210 (NA, 0.906, 0.847, 0.842, 0.793) and GSE68465 (0.677, 
0.677, 0.669, 0.660, 0.629) data sets(Figure 5A–F). In order to fur-
ther test the prognostic performance of the LPAS signature score, 
we included 144 signatures and compared the C-index in the TCGA, 
GSE13213, GSE29016, GSE30219, GSE31210 and GSE68465 data 
sets. The results found that in the TCGA, GSE13213, GSE29016, 
GSE30219, GSE31210 and GSE68465 data sets, our LPAS fea-
ture performed better than most other previously published 
signatures(Figure 5A–F).

3.5  |  LPAS is closely related to immunity

In order to explore the immune status reflected by the LPAS score, 
we analyzed the association between the LPAS score and immune 
infiltrating cells and immune checkpoints. Using seven methods, 
the immune infiltration scores in the TCGA dataset were calcu-
lated. A heatmap shows that the degree of immune cell infiltration 
is higher in the group with low-LPAS scores (Figure 6A). Further 
analysis revealed that the LPAS score is negatively correlated 
with matrix scores, immune scores, and ESTIMATE scores, while 
it is positively correlated with tumor purity (Figure 6C). Analysis 
of the correlation of the LPAS score with immune modulators 
found that the level of immune regulatory factors was lower in 
the group with high-LPAS scores, suggesting that this group has a 
higher level of immune suppression (Figure 6B). We further stud-
ied the correlation between the LPAS and signaling pathways as 
well as the cancer-immune cycle. Results showed that the LPAS is 
positively correlated with many signaling pathways and the can-
cer-immune cycle. In the TCGA dataset, the level of immune in-
filtrating cells and immune modulators was high, suggesting that 
this group has an inflammatory but relatively immune-promoting 
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F I G U R E  5 Evaluation of the LPAS. (A–F) The ROC curves of LPAS in the TCGA, GSE13213, GSE29016, GSE30219, GSE31210 and 
GSE68465 data sets; compared to 144 previously published models on LUAD, LPAS demonstrates superior prognostic efficacy. LPAS, lung 
progression associated signature; LUAD, lung adenocarcinoma; ROC, receiver operating characteristic.
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F I G U R E  6 Immune infiltration status in high and low LPAS. (A) Heatmap reflects the difference in immune infiltration scores between 
high and low LPAS groups. (B) Correlation analysis of LPAS and immune modulators. (C) Scatter plots elucidate the correlation between LPAS 
score and stromal score, immune score, ESTIMATE score and tumour purity. LPAS, lung progression associated signature.
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F I G U R E  7 Biological characteristics of LPAS in the TCGA data set. (A) Heatmap showing the correlation between LPAS and hallmark 
signalling pathways as well as the cancer immune cycle. (B-C) Differences in pathway enrichment between high and low LPAS groups. LPAS, 
lung progression associated signature.



14 of 21  |     ZHANG et al.

microenvironment, and this was precisely the potential benefi-
ciary of immunotherapy (Figure 7A).

3.6  |  Enrichment analysis

To elucidate the immune-related characteristics distinguishing the 
high- and low-LPAS groups, we explored their underlying biologi-
cal mechanisms in depth. Notably, the LPAS signature score ex-
hibited a strong positive correlation with several key processes: 
porin activity, the G2/M DNA replication checkpoint, the folding 
of actin mediated by the CCT/TRIC complex, and the positive reg-
ulation of telomerase RNA localization to the Cajal body. These 
findings underscore the pronounced disparities between the two 
LPAS signature score groups in terms of oncogenic pathways and 
immune pathways (Figure 7B,C). Concurrently, the DEGs between 
the high-  and low-LPAS groups were predominantly enriched in 
the cell cycle pathway.

3.7  |  Immune checkpoints and potential 
drug targets

In analysing the correlation between the LPAS score and model 
genes and common immune checkpoints, it was found that the 
LPAS score was negatively correlated with the majority of im-
mune checkpoints, with the exception of CD276. MAGEH1, 
NPTN and AKR1A1 showed positive correlation with many im-
mune checkpoints (Figure 8A). In search of potential target candi-
dates, we analysed target information for numerous compounds, 
identifying three genes: TUBB6, GST01 and PPCDC. The protein 
abundance of TUBB6, GST01 and PPCDC positively correlated 
with LPAS, whereas their CERES scores negatively correlated 
with LPAS, suggesting that inhibiting the function of these three 
genes in patients with high-LPAS scores may yield positive treat-
ment results (Figure  8B,C). Based on drug response data from 
CTRP and PRISM, we sought potential therapeutic drugs for the 
high-LPAS score group. We firstly performed a drug response 
difference analysis to identify compounds with lower estimated 
AUC values in the high-LPAS score group. Then, using Spearman 
correlation analysis between the AUC values and the LPAS 
scores, we filtered out compounds with negative correlation co-
efficients. Following this analysis, we identified 11 compounds 
derived from CTRP (BI-2536, ispinesib, cabazitaxel, gemcitabine, 
BMS-265246, AMG900, mitomycin-c, MPI-0479605, LGX818, 
dolastatin-10 and SAR131675) and three compounds from PRISM 

(SE-743921, paclitaxel and BI-2536). All these compounds have 
lower estimated AUC values in the high-LPAS score group and are 
negatively correlated with LPAS (Figure 8D–G).

3.8  |  LPAS predicts genomic alterations

Different frequently altered chromosomes existed in the two LPAS 
signature score groups, with specific altered regions shown in 
Figure 9A. The TMB was higher in the group with high-LPAS scores, 
and the LPAS score was positively correlated with the TMB score 
(Figure 9B,C). Survival analysis indicated that the prognosis is worse 
for the group with low TMB and high LPAS scores (Figure 9D).

3.9  |  Immune therapy cohort validation

For the purpose of identifying the predictive ability of the LPAS signa-
ture score for the efficacy of immunotherapy, we conducted validations 
in multiple immunotherapy data sets. The SubMap analysis results sug-
gested that in all 10 immunotherapy cohorts, patients with low LPAS 
scores showed better immune responses (Figure 10A–J). The TIDE al-
gorithm indicated that in the TCGA cohort, a low LPAS score is asso-
ciated with a better immune response (Figure 10K). SubMap analysis 
suggested that in the TCGA cohort, a low LPAS score is associated with 
better anti-CTLA-4 and anti-PD-1 immune responses (Figure 10L).

3.10  |  PSMB1 may serve as a therapeutic target 
for LUAD

Among all model genes, PSMB1 has the highest HR value, indicat-
ing its stronger impact on LUAD prognosis. To validate the car-
cinogenic role of PSMB1 in LUAD, we used siRNA to inhibit the 
expression of PSMB1 in A549 and H1299 cells. The CCK-8 and 
colony formation experiments indicated that inhibiting PSMB1 can 
significantly suppress the proliferation and DNA replication ca-
pability of LUAD cells (Figure 11A,B). A wound-healing assay was 
used to measure cell migration capability. The results showed that, 
compared with the control group, the wound-healing rate of A549 
and H1299 cells with PSMB1 knockdown was significantly reduced 
(Figure  11C). Transwell experiments showed that the number of 
cells invading the lower chamber decreased after PSMB1 knock-
down (Figure  11D). These results suggested that PSMB1 plays a 
tumour-promoting role in LUAD cells, and its hazardous role in 
LPAS has been validated.

F I G U R E  8 Immune checkpoint and drug target analysis. (A) Bubble plot showing the correlation between LPAS score and its model genes 
with common immune checkpoints. (B) Volcano plot and scatter plots demonstrating the correlation between LPAS score and the expression 
of drug target proteins. (C) Volcano plot and scatter plot of Spearman's correlations and significance between LPAS and CERES score of drug 
targets. (D) Spearman correlations for 11 CTRP-derived compounds. (E) Results of differential drug response analysis for 11 CTRP-derived 
compounds. (F) Spearman correlations for three PRISM-derived compounds. (G) Results of differential drug response analysis for three 
PRISM-derived compounds. CTRP, Cancer Therapeutics Response Portal; LPAS, lung progression associated signature.
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F I G U R E  9 LPAS can predict genomic alterations. (A) Heatmap showing gene mutation status in high and low LPAS groups. (B) Differences 
in standardized TMB between high and low LPAS groups. (C) Correlation analysis between LPAS score and TMB. (D) Survival curves show 
the difference in survival among four subgroups (high LPAS and high TMB, high LPAS and low TMB, low LPAS and high TMB, low LPAS and 
low TMB). LPAS, lung progression associated signature; TMB, tumour mutation burden.
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F I G U R E  1 0 LPAS can predict immunotherapy response. (A–J) Immunotherapy response in high and low LPAS groups in 10 immune 
therapy cohorts. (K) TIDE algorithm predicting the relationship between LPAS and immune therapy response. (L) Submap predicting the 
relationship between LPAS and immune therapy response. LPAS, lung progression associated signature; TMB, tumour mutation burden.
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4  |  DISCUSSION

LUAD, a primary pathological subtype of lung cancer (LC), can be 
stratified into distinct stages: AIS, MIA and IAC, reflecting a se-
quence of tumour progression.40–42 Each stage significantly impacts 
patient prognosis, yet the mechanisms driving the progression from 
AIS to MIA to IAC remain elusive. Recent advancements in single-
cell-sequencing technology have greatly enhanced our understand-
ing of tumour heterogeneity at both cellular and molecular levels, 
improving insights into tumour initiation, progression, metastasis 
and prognosis.43 This technological evolution has also been instru-
mental in identifying potential therapeutic targets and prognostic 
markers across various cancer types, playing a crucial role in the ad-
vancement of precision and personalized oncology treatment.

In this study, we have delineated a subpopulation of tumour cells 
associated with the progression of LUAD and developed a predic-
tive model for LUAD based on the key identification genes of this 
subpopulation. Initially, through a multi-faceted analysis of scRNA-
seq data, we established the linkage between Cluster6 and LUAD 
progression. This was corroborated through various modalities, 
including the MK signalling pathway, trajectory analysis and dif-
ferential gene expression studies. Subsequently, from the array of 
marker genes identified in Cluster6, we selected nine pivotal genes 
(PSMB1, ENY2, NPTN, RPS16, HYAL3, KLK8, CAMTA1, MAGEH1 
and AKR1A1) to construct a prognostic model for LUAD.

The high-LPAS group exhibited generally poorer prognoses, 
which could be attributed to the activation of specific signalling 
pathways, including porin activity, G2/M DNA replication check-
point, the folding of actin by CCT/TRiC and the positive regula-
tion of telomerase RNA localization to the Cajal body. Moreover, 
to validate the predictive efficacy of our model, we conducted a 
comparative analysis against 144 previously published models. Our 
findings revealed that in the data sets TCGA, GSE13213, GSE29016, 
GSE30219, GSE31210 and GSE68465, the c-index of the LPAS sur-
passed those of models presented in other published articles. This 
indicates that our model holds substantial promise as a diagnostic 
tool for prognostication in LUAD. Additionally, we assessed the per-
formance of the LPAS in terms of immune infiltration, enrichment 
analysis, and response to immunotherapy. All these evaluations fur-
ther validated the robust predictive capability of the LPAS model. 
Parallel conclusions were drawn from in  vitro experimental val-
idations. Consequently, it is plausible to posit that our model can 
accurately predict the prognosis of LUAD patients and their respon-
siveness to immunotherapies.

Many previous studies have discovered the role of PSMB1 in tu-
mour development. Research by Teng and others found that high 
expression of PSMB1 is associated with poorer prognosis in breast 
cancer patients.44 Similar results have also been found in diseases 

such as osteosarcoma, thyroid cancer and ovarian cancer.45–47 In this 
study, PSMB1 demonstrated high expression in LUAD, indicating a 
shorter OS period. After knocking down the PSMB1 gene, the pro-
liferation and DNA replication capabilities of LUAD cells were sig-
nificantly inhibited. Therefore, we believe that PSMB1 plays a very 
important role in the progression of LUAD.

This study has several limitations. First, the mechanisms by 
which these model genes influence LUAD progression require fur-
ther in-depth research. Second, no further analysis was performed 
on the compounds obtained from CTRP and PRISM to clarify poten-
tial therapeutic drugs. Third, the model requires more in vitro testing 
and clinical validation.

We identified a specific tumour cluster associated with the pro-
gression of LUAD and successfully developed a high-performing 
LPAS. We also observed differences in CNVs and biological func-
tions between high- and low-LPAS groups. In addition, we studied 
potential mechanisms leading to poor prognosis in the high-LPAS 
group and identified potential therapeutic targets, providing new 
insights for precision treatment.
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(C) Wound-healing assay to evaluate the impact of si-PSMB1 transfection on the migratory ability of A549 and H1299 cells. (D) Transwell 
assay to examine the migration capacities of transfected A549 and H1299 cells. LUAD, lung adenocarcinoma.

http://cancergenome.nih.gov/
https://www
https://www
http://ncbi.nlm.nih.gov/geo


20 of 21  |     ZHANG et al.

DECL AR ATIONS
The human experiments conducted in this study received ethical 
approval from the Ethics Committee of the First Affiliated Hospital 
of Nanjing Medical University. Informed consent was obtained from 
all participants prior to their involvement. The study adhered to the 
principles outlined in the Declaration of Helsinki and followed ethi-
cal guidelines.

ORCID
Pengpeng Zhang   https://orcid.org/0000-0003-1488-265X 
Zhenfa Zhang   https://orcid.org/0000-0002-9627-2590 
Jun Fan   https://orcid.org/0009-0009-0713-5411 

R E FE R E N C E S
	 1.	 Sung H, Ferlay J, Siegel RL, et  al. Global cancer statistics 2020: 

GLOBOCAN estimates of incidence and mortality worldwide for 
36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209-249.

	 2.	 Gridelli C, Rossi A, Carbone DP, et al. Non-small-cell lung cancer. 
Nat Rev Dis Primers. 2015;1:15009.

	 3.	 Imielinski M, Berger AH, Hammerman PS, et al. Mapping the hall-
marks of lung adenocarcinoma with massively parallel sequencing. 
Cell. 2012;150(6):1107-1120.

	 4.	 Havel JJ, Chowell D, Chan TA. The evolving landscape of bio-
markers for checkpoint inhibitor immunotherapy. Nat Rev Cancer. 
2019;19(3):133-150.

	 5.	 Gibney GT, Weiner LM, Atkins MB. Predictive biomarkers for check-
point inhibitor-based immunotherapy. Lancet Oncol. 2016;17(12):e5
42-e551.

	 6.	 Inamura K. Clinicopathological characteristics and mutations driv-
ing development of early lung adenocarcinoma: tumor initiation 
and progression. Int J Mol Sci. 2018;19(4):1259.

	 7.	 Hu C, Zhao L, Liu W, et al. Genomic profiles and their associations 
with TMB, PD-L1 expression, and immune cell infiltration land-
scapes in synchronous multiple primary lung cancers. J Immunother 
Cancer. 2021;9(12):e003773.

	 8.	 Zhu J, Wang W, Xiong Y, et al. Evolution of lung adenocarcinoma 
from preneoplasia to invasive adenocarcinoma. Cancer Med. 
2023;12(5):5545-5557.

	 9.	 Cancer Genome Atlas Research Network. Comprehensive molecular 
profiling of lung adenocarcinoma. Nature. 2014;511(7511):543-550.

	10.	 Guo X, Zhang Y, Zheng L, et al. Global characterization of T cells 
in non-small-cell lung cancer by single-cell sequencing. Nat Med. 
2018;24(7):978-985.

	11.	 Wang Z, Li Z, Zhou K, et al. Deciphering cell lineage specification of 
human lung adenocarcinoma with single-cell RNA sequencing. Nat 
Commun. 2021;12(1):6500.

	12.	 Zhang L, Zhang Y, Wang C, et  al. Integrated single-cell RNA se-
quencing analysis reveals distinct cellular and transcriptional mod-
ules associated with survival in lung cancer. Signal Transduct Target 
Ther. 2022;7(1):9.

	13.	 Tomida S, Takeuchi T, Shimada Y, et al. Relapse-related molecular 
signature in lung adenocarcinomas identifies patients with dismal 
prognosis. J Clin Oncol. 2009;27(17):2793-2799.

	14.	 Staaf J, Jönsson G, Jönsson M, et al. Relation between smoking his-
tory and gene expression profiles in lung adenocarcinomas. BMC 
Med Genomics. 2012;5:22.

	15.	 Rousseaux S, Debernardi A, Jacquiau B, et  al. Ectopic activation 
of germline and placental genes identifies aggressive metastasis-
prone lung cancers. Sci Transl Med. 2013;5(186):186ra66.

	16.	 Okayama H, Kohno T, Ishii Y, et al. Identification of genes upregu-
lated in ALK-positive and EGFR/KRAS/ALK-negative lung adeno-
carcinomas. Cancer Res. 2012;72(1):100-111.

	17.	 Shedden K, Taylor JM, Enkemann SA, et al. Gene expression-based 
survival prediction in lung adenocarcinoma: a multi-site, blinded 
validation study. Nat Med. 2008;14(8):822-827.

	18.	 Ulloa-Montoya F, Louahed J, Dizier B, et al. Predictive gene signa-
ture in MAGE-A3 antigen-specific cancer immunotherapy. J Clin 
Oncol. 2013;31(19):2388-2395.

	19.	 Kim ST, Cristescu R, Bass AJ, et al. Comprehensive molecular char-
acterization of clinical responses to PD-1 inhibition in metastatic 
gastric cancer. Nat Med. 2018;24(9):1449-1458.

	20.	 Friedlander P, Wassmann K, Christenfeld AM, et al. Whole-blood 
RNA transcript-based models can predict clinical response in two 
large independent clinical studies of patients with advanced mel-
anoma treated with the checkpoint inhibitor, tremelimumab. J 
Immunother Cancer. 2017;5(1):67.

	21.	 Hugo W, Zaretsky JM, Sun L, et  al. Genomic and transcriptomic 
features of response to anti-PD-1 therapy in metastatic melanoma. 
Cell. 2016;165(1):35-44.

	22.	 Riaz N, Havel JJ, Makarov V, et  al. Tumor and microenviron-
ment evolution during immunotherapy with Nivolumab. Cell. 
2017;171(4):934-949.e16.

	23.	 Gide TN, Quek C, Menzies AM, et al. Distinct immune cell popula-
tions define response to anti-PD-1 monotherapy and anti-PD-1/anti-
CTLA-4 combined therapy. Cancer Cell. 2019;35(2):238-255.e6.

	24.	 Balar AV, Galsky MD, Rosenberg JE, et al. Atezolizumab as first-line 
treatment in cisplatin-ineligible patients with locally advanced and 
metastatic urothelial carcinoma: a single-arm, multicentre, phase 2 
trial. Lancet (London, England). 2017;389(10064):67-76.

	25.	 Jung H, Kim HS, Kim JY, et  al. DNA methylation loss promotes 
immune evasion of tumours with high mutation and copy number 
load. Nat Commun. 2019;10(1):4278.

	26.	 Lauss M, Donia M, Harbst K, et al. Mutational and putative neo-
antigen load predict clinical benefit of adoptive T cell therapy in 
melanoma. Nat Commun. 2017;8(1):1738.

	27.	 Cho JW, Hong MH, Ha SJ, et al. Genome-wide identification of dif-
ferentially methylated promoters and enhancers associated with 
response to anti-PD-1 therapy in non-small cell lung cancer. Exp Mol 
Med. 2020;52(9):1550-1563.

	28.	 van den Ende T, de Clercq NC, van Berge Henegouwen MI, et al. 
Neoadjuvant Chemoradiotherapy combined with Atezolizumab for 
Resectable esophageal adenocarcinoma: a single-arm phase II fea-
sibility trial (PERFECT). Clin Cancer Res. 2021;27(12):3351-3359.

	29.	 Pusztai L, Yau C, Wolf DM, et  al. Durvalumab with olaparib and 
paclitaxel for high-risk HER2-negative stage II/III breast cancer: 
results from the adaptively randomized I-SPY2 trial. Cancer Cell. 
2021;39(7):989-998.e5.

	30.	 Cao Y, Fu L, Wu J, et al. Integrated analysis of multimodal single-cell 
data with structural similarity. Nucleic Acids Res. 2022;50(21):e121.

	31.	 Jin S, Guerrero-Juarez CF, Zhang L, et  al. Inference and anal-
ysis of cell-cell communication using CellChat. Nat Commun. 
2021;12(1):1088.

	32.	 Mayakonda A, Lin DC, Assenov Y, Plass C, Koeffler HP. Maftools: 
efficient and comprehensive analysis of somatic variants in cancer. 
Genome Res. 2018;28(11):1747-1756.

	33.	 Yoshihara K, Shahmoradgoli M, Martínez E, et al. Inferring tumour 
purity and stromal and immune cell admixture from expression 
data. Nat Commun. 2013;4:2612.

	34.	 Maeser D, Gruener RF, Huang RS. oncoPredict: an R package for 
predicting in vivo or cancer patient drug response and biomarkers 
from cell line screening data. Brief Bioinform. 2021;22(6):bbab260.

	35.	 Geeleher P, Cox N, Huang RS. pRRophetic: an R package for pre-
diction of clinical chemotherapeutic response from tumor gene ex-
pression levels. PLoS One. 2014;9(9):e107468.

	36.	 Yu X, Xie L, Ge J, Li H, Zhong S, Liu X. Integrating single-cell RNA-
seq and spatial transcriptomics reveals MDK-NCL dependent im-
munosuppressive environment in endometrial carcinoma. Front 
Immunol. 2023;14:1145300.

https://orcid.org/0000-0003-1488-265X
https://orcid.org/0000-0003-1488-265X
https://orcid.org/0000-0002-9627-2590
https://orcid.org/0000-0002-9627-2590
https://orcid.org/0009-0009-0713-5411
https://orcid.org/0009-0009-0713-5411


    |  21 of 21ZHANG et al.

	37.	 Kuhn H, Liebers U, Gessner C, et  al. Adenovirus-mediated E2F-1 
gene transfer in nonsmall-cell lung cancer induces cell growth ar-
rest and apoptosis. Eur Respir J. 2002;20(3):703-709.

	38.	 Miki D, Kubo M, Takahashi A, et al. Variation in TP63 is associated 
with lung adenocarcinoma susceptibility in Japanese and Korean 
populations. Nat Genet. 2010;42(10):893-896.

	39.	 Murai F, Koinuma D, Shinozaki-Ushiku A, Fukayama M, Miyaozono 
K, Ehata S. EZH2 promotes progression of small cell lung can-
cer by suppressing the TGF-β-Smad-ASCL1 pathway. Cell Discov. 
2015;1:15026.

	40.	 Travis WD, Brambilla E, Noguchi M, et al. Diagnosis of lung ade-
nocarcinoma in resected specimens: implications of the 2011 
International Association for the Study of Lung Cancer/American 
Thoracic Society/European Respiratory Society classification. Arch 
Pathol Lab Med. 2013;137(5):685-705.

	41.	 Zhang Y, Deng C, Fu F, et al. Excellent prognosis of patients with inva-
sive lung adenocarcinomas during surgery misdiagnosed as atypical ad-
enomatous hyperplasia, adenocarcinoma in situ, or minimally invasive 
adenocarcinoma by frozen section. Chest. 2021;159(3):1265-1272.

	42.	 Nakao M, Yoshida J, Goto K, et al. Long-term outcomes of 50 cases 
of limited-resection trial for pulmonary ground-glass opacity nod-
ules. J Thorac Oncol. 2012;7(10):1563-1566.

	43.	 Ran X, Tong L, Chenghao W, et al. Single-cell data analysis of malig-
nant epithelial cell heterogeneity in lung adenocarcinoma for patient 
classification and prognosis prediction. Heliyon. 2023;9(9):e20164.

	44.	 Teng X, Yang T, Yuan B, et al. Prognostic analysis of patients with 
breast cancer based on tumor mutational burden and DNA damage 
repair genes. Front Oncol. 2023;13:1177133.

	45.	 Zhang J, Huang C, Zhu G, et al. Selection of lncRNAs that influence 
the prognosis of osteosarcoma based on copy number variation 
data. J Oncol. 2022;2022:8024979.

	46.	 Trudel D, Avarvarei L-M, Orain M, et al. Proteases and their inhib-
itors as prognostic factors for high-grade serous ovarian cancer. 
Pathol Res Pract. 2019;215(6):152369.

	47.	 Wan D, Yang X, Li G, et al. A set of markers related to viral infection 
has a sex-sensitive prognostic value in papillary thyroid carcinoma. 
J Clin Endocrinol Metab. 2021;106(5):e2334-e2346.

SUPPORTING INFORMATION
Additional supporting information can be found online in the 
Supporting Information section at the end of this article.

How to cite this article: Zhang P, Yang Z, Liu Z, et al. 
Deciphering lung adenocarcinoma evolution: Integrative 
single-cell genomics identifies the prognostic lung 
progression associated signature. J Cell Mol Med. 
2024;28:e18408. doi:10.1111/jcmm.18408

https://doi.org/10.1111/jcmm.18408

	Deciphering lung adenocarcinoma evolution: Integrative single-­cell genomics identifies the prognostic lung progression associated signature
	Abstract
	1|INTRODUCTION
	2|METHOD
	2.1|Data set source
	2.2|Cancer cell lines
	2.3|The detailed steps of the scRNA-­seq analysis
	2.4|InferCNV and trajectory analysis
	2.5|Cell–cell interaction
	2.6|SCENIC analysis
	2.7|Determination of key genes in Cluster 6 subgroup
	2.8|Building the lung progression associated signature (LPAS)
	2.9|Mutation landscape
	2.10|Differences in the TME and drug inference
	2.11|Enrichment analysis
	2.12|Clinical specimen collection and RNA sequencing
	2.13|SubMap validation
	2.14|Cell lines culture
	2.15|Cell transfection
	2.16|Cell-­counting kit-­8 experiment (CCK-­8)
	2.17|Colony formation
	2.18|Wound-­healing assay
	2.19|Transwell assay
	2.20|Statistical analysis

	3|RESULTS
	3.1|The scRNA profiling of LUAD
	3.2|Biological characteristic analysis of tumour clusters
	3.3|Building a highly robust LPAS
	3.4|Model evaluation and validation
	3.5|LPAS is closely related to immunity
	3.6|Enrichment analysis
	3.7|Immune checkpoints and potential drug targets
	3.8|LPAS predicts genomic alterations
	3.9|Immune therapy cohort validation
	3.10|PSMB1 may serve as a therapeutic target for LUAD

	4|DISCUSSION
	AUTHOR CONTRIBUTIONS
	ACKNOWLEDGEMENTS
	FUNDING INFORMATION
	CONFLICT OF INTEREST STATEMENT
	DATA AVAILABILITY STATEMENT

	DECLARATIONS
	REFERENCES


