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Abstract

Machine learning may aid the choice of optimal combinations of anticancer drugs by explaining 

the molecular basis of their synergy. By combining accurate models with interpretable insights, 

explainable machine learning promises to accelerate data-driven cancer pharmacology. However, 

owing to the highly correlated and high-dimensional nature of transcriptomic data, naively 

applying current explainable machine-learning strategies to large transcriptomic datasets leads 

to suboptimal outcomes. Here by using feature attribution methods, we show that the quality 

of the explanations can be increased by leveraging ensembles of explainable machine-learning 
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models. We applied the approach to a dataset of 133 combinations of 46 anticancer drugs tested 

in ex vivo tumour samples from 285 patients with acute myeloid leukaemia and uncovered a 

haematopoietic-differentiation signature underlying drug combinations with therapeutic synergy. 

Ensembles of machine-learning models trained to predict drug combination synergies on the basis 

of gene-expression data may improve the feature attribution quality of complex machine-learning 

models.

Acute myeloid leukaemia (AML) is the most commonly diagnosed form of leukaemia 

in adults and carries a poor prognosis1. Although survival has improved over the past 

several decades for younger patients, older patients have not seen a similar improvement. 

This gap in survival has motivated the development of molecularly targeted combination 

therapies for patients who do not qualify for intensive induction chemotherapy2. Discovering 

optimal combinations of anticancer drugs is a difficult problem, however, as the space of all 

possible combinations of drugs and patients is large. Although potentially synergistic drug 

combinations have traditionally been tested on the basis of either biological or clinical expert 

knowledge3, more systematic approaches are necessary to effectively explore this space. 

Even systematic experimental approaches such as high-throughput screening are potentially 

insufficient, as there are hundreds of thousands of possible combinations of all anticancer 

drugs currently in development, each of which may have a different response in different 

patients3,4. Therefore, predictive approaches are necessary to make the immense space of 

possible anticancer drug combinations manageable.

State-of-the-art predictive approaches fall short along another axis, however, by failing 

to provide biological insight into the molecular mechanisms underlying drug response, 

which is essential to facilitate the discovery of new and effective anticancer therapies5–7. 

Although a wide variety of computational methods have historically been employed for drug 

combination prediction8–12, recent work has demonstrated increased predictive performance 

using complex, nonlinear machine-learning (ML) models. For example, all of the winning 

teams in the AstraZeneca-Sanger Drug Combination Prediction DREAM Challenge utilized 

complex models in some part of their approach, including ensembles of random forest 

classifiers and gradient boosted machines (GBMs)13. Additionally, it has been shown that 

deep neural networks outperform less sophisticated models such as linear models, achieving 

state-of-the-art performance at predicting the synergy of anticancer drug combinations in 39 

cell lines14. A major weakness of these complex ML models is their ‘black box’ nature; 

despite their high predictive accuracy, these models’ inner workings are opaque, making it 

challenging to gain mechanistic insights into the molecular basis of drug synergies. In cases 

where model interpretability is important, researchers resort to simpler, less accurate models 

such as linear regression. For example, to identify genomic and transcriptomic markers 

associated with drug sensitivity, both the Cancer Genome Project15 and the Cancer Cell Line 

Encyclopedia16 used penalized elastic net regression.

In this Article, we present the EXPRESS (explainable predictions for gene expression data) 

framework to understand the relationship between accuracy and interpretability in biological 

models and build models that are both accurate ‘and’ biologically interpretable. A recent 

approach to understand the patterns learned by biological models involves ‘explaining’ 
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complex predictive models using ‘feature attribution methods’, such as Shapley values17–

20, to provide an importance score for each input feature (here, a gene). The Shapley 

value is a concept from game theory designed to fairly allocate credit to players in 

coalitional games21. By considering input features as players and the model’s output as 

the reward to be allocated17, the most important features can be identified for complex 

models that would otherwise be uninterpretable. Unfortunately, the application of off-the-

shelf feature attribution methods is unlikely to be successful in the context of large cancer 

‘omics data. These methods are known to struggle in the setting of high-dimensional and 

highly correlated features, such as those present in transcriptome-wide gene expression 

measurements22. Furthermore, whereas complex ML models have been shown to achieve 

increased predictive performance when compared to simpler models, recent work has 

raised the concern that models with higher predictive performance do not necessarily have 

higher-quality attributions on the same tasks23,24. Our results investigate the relationship 

between predictive performance and feature attribution quality and demonstrate how a 

simple approach based on model ensembles can improve the feature attribution quality of 

complex ML models in the life sciences.

First, using 240 synthetic datasets, we benchmark both classical and novel approaches 

and demonstrate how nonlinearity and correlation in the data can impede the discovery of 

biologically relevant features. We then demonstrate that under conditions representative of 

typical biological applications, all existing approaches tend to perform poorly and show 

how explaining ensembles of models improves the quality of feature attributions (Fig. 

1a). Finally, we describe EXPRESS, which uses Shapley values to explain an ‘ensemble’ 

of complex models trained to predict drug combination synergy on a dataset of 133 

combinations of 46 anticancer drugs tested in ex vivo tumour samples from 285 patients 

with AML (Fig. 1b and Extended Data Fig. 1). In addition to building highly accurate 

predictive models, our ensemble interpretability approach identifies relevant biological 

signals underlying drug synergy patterns, most notably a gene expression signature related 

to haematopoietic differentiation.

Although individualized treatment for AML based on cancer genomic signatures is already 

becoming an important aspect of clinical practice6, our approach identifies a novel 

‘expression’-based signature that is predictive of synergy across a broad class of drugs and 

their combinations in AML.

Results

Current state-of-the-art explainable AI falls short on correlated features

Explainable AI (XAI) is a recent development in the ML community that attempts to 

provide a human-interpretable basis for the predictions of complex, ‘black box’ models such 

as neural networks. In particular, feature attribution methods are a class of methods that 

identify the relative importance of each input feature (for example, the expression level of a 

gene) for a particular model17,25. One popular feature attribution method involves applying 

Shapley values to interpret these complex models by measuring how much the model’s 

output changes on average when a feature is added to all other possible coalitions of features 

(see Methods).
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Although applying XAI techniques to complex models has become a popular practice in 

the life sciences26–35, applying these methods in the context of gene expression data is 

particularly difficult. Each patient will have a transcriptomic profile with tens of thousands 

of features with a high degree of feature interdependence (for example, see the feature 

covariance matrix for AML transcriptomic data in Fig. 2, top right). This makes the task of 

accurate feature attribution harder for Shapley value algorithms, which ideally would operate 

on statistically independent features17. In the presence of correlated features, many models 

with diverse mechanisms could potentially fit the data equivalently well36,37. Thus, even if 

we could explain a single model perfectly, that model might not correspond well to the true 

biological relationships between features and outcome.

Since these conditions are ubiquitous in biological datasets, it is essential to understand 

how the efficacy of both Shapley value-based attributions and more conventional methods 

will be impacted in the setting of high-dimensional, highly correlated features. Measuring 

this efficacy is difficult, however, as existing benchmarks of feature attribution methods 

are designed to either measure the influence of features on the ‘particular model’ being 

explained18, or to measure the ‘predictive performance’ of selected sets of features38.

We therefore design a simple benchmark for this application (Fig. 2, Methods and Extended 

Data Fig. 2). To evaluate the effects of data correlation and nonlinearity on feature 

attribution, we use 240 unique datasets. As input data, we consider synthetic datasets with 

independent features and synthetic datasets with multivariate normal covariance structure, 

as well as datasets with real gene expression measurements sampled from AML patients7. 

Since the goal of our benchmark is to define how well different methods recover ‘true 

features’, we create synthetic labels, allowing the ground truth to be recovered and 

measured. These labels are created by randomly sampling input features and relating 

them to the outcome using functions ranging from simple linear univariate relationships 

to complex nonlinear step functions with interactions between features (see Methods). For 

our metric of feature discovery performance, we measure how many ‘true features’ are 

found cumulatively at each point in the lists of features ranked by each feature attribution 

method (see Methods and Extended Data Fig. 2; predictive performance of models reported 

in Extended Data Fig. 3). Using this benchmark, we then evaluate five different methods for 

ranking biologically important features, including two complex ML methods (GBMs, neural 

networks) explained using Shapley values, as well as three more traditional linear methods: 

ranking features by their Pearson correlation with the outcome39, ranking features by their 

elastic net coefficients40 and recursive feature elimination using support vector machines41.

When the outcome has a simple linear relationship with the input features, all approaches 

recover the true features well (see the perfect performance across all methods in the top 

left experiment in Fig. 2a). When there is nonlinearity in the data, however (see Fig. 2g–l), 

the complex ML models interpreted with Shapley values substantially outperform the linear 

approaches. For example, neural networks explained with Shapley values attain a higher 

area under the feature discovery curve (AUFDC) than elastic net coefficients when the 

true outcome is multiplicative and the features are independent (two-sided Mann−Whitney 

U-test, P = 3.3 × 10−6, U = 4.65) or in correlated groups (P = 6.3 × 10−8, U = 5.41). Likewise, 

XGBoost models explained with Shapley values attain a higher AUFDC than elastic net 
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coefficients when the true outcome is a pairwise AND function and the features are 

independent (P = 6.5 × 10−7, U = .4.98) or in correlated groups (P = 3.7 × 10−7, U = 5.09). 

Importantly, however, as the correlation between input features increases to the level seen in 

real AML transcriptomic data (Fig. 2c,f,i,l), all methods tend to perform poorly and there is 

a high degree of variance in the performance of each model class.

Ensembling overcomes variability in individual models

Given the observed variability of different models in terms of benchmark performance, a 

natural question that arises is how to select the predictive model that will attain the best 

performance at feature discovery. An intuitive solution is to simply pick the model with 

the best predictive performance. When we examine the relationship between predictive 

performance and feature discovery, however, we see that this is not necessarily a reliable 

strategy. For each of three popular model classes (linear models, feed-forward neural 

networks and GBMs), we train 20 independent models on bootstrap resampled versions 

of the same dataset and measure test set prediction error and feature discovery performance. 

Although there was significant overall correlation between test error and feature discovery 

(step function dataset: two-sided Pearson’s r = − 0.77, P = 1.1 × 10−12, n = 60; multiplicative 

dataset: two-sided Pearson’s r = − 0.82, P = 1.2 × 10−15, n = 60), within each model class, 

test error was ‘not’ significantly correlated with feature discovery performance (elastic 

net + step function dataset: two-sided Pearson’s r = 0.19, P = 0.43, n = 20; neural network 

+ step function dataset: two-sided Pearson’s r = 0.02, P = 0.94, n = 20; XGBoost + step 

function dataset: Pearson’s r = − 0.18, P = 0.45, n = 20; elastic net + multiplicative dataset: 

two-sided Pearson’s r = − 0.11, P = 0.65, n = 20; neural network + multiplicative dataset: 

two-sided Pearson’s r = − 0.22, P = 0.35, n = 20; XGBoost + multiplicative dataset: two-

sided Pearson’s r = 0.13, P = 0.60, n = 20; see Fig. 3a,b). Therefore, although predictive 

performance may help to select a ‘model class’, it will not necessarily help to select which 

model within that class has the most biologically relevant explanations.

Furthermore, when we examine the feature attributions across individual models within a 

single model class, we observe that they vary substantially from model to model (Extended 

Data Fig. 4). This indicates a lack of stability in the attributions: minor perturbations 

to the training set (such as bootstrap resampling) can lead to substantial variability in 

the features identified as most important by the model36, and previous work in machine 

learning applied to human genomics and epigenomics has suggested the necessity of 

considering multiple models when analysing explanations42,43. Likewise, recent work on 

feature selection for black box predictive models in healthcare has pointed out the need to 

select robust features44.

Although ensembling ML models is classically known to increase the accuracy of models 

by increasing stability of predictors, it remains to be demonstrated whether ensembling can 

improve biological hypothesis generation. We therefore created ensembles of models for all 

of the datasets in the original benchmark task, and found that ensembling not only decreases 

the variance in feature discovery performance, but also significantly increases the average 

feature discovery performance of the ensemble models (Fig. 3c; associated statistics in 

Supplementary Dataset 1). Not only does this improvement occur consistently across dataset 
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types and model classes (see Extended Data Figs. 5 and 6 for results on 12 main benchmark 

dataset types and Extended Data Figs. 7 and 8 for results on 25 supplementary benchmark 

dataset types), but this effect is independent of an increase in predictive performance (see 

Extended Data Fig. 9). Furthermore, this effect is greater than that seen by adding explicit 

regularization to models (see Extended Data Fig. 10).

To understand how the ensembled models differed from the individual models, we analysed 

the difference between the attributions attained by a variety of ensembled models and the 

individual models. We see that the variability in attributions across bootstrap resampled 

versions of the dataset decreases, with an average pairwise cosine similarity between 

attributions across models increasing from 0.77 to 0.98 after ensembling (P = 4.87 × 10−63, 

U = 16.76; see Extended Data Fig. 4). Furthermore, when compared to the single models, the 

ensemble models tend to place more weight on a small set of important features and attribute 

less importance to spurious correlates: spurious correlations cancel out over repeated model 

trainings, whereas the true signal remains consistent (Extended Data Fig. 4). In addition 

to carrying out this experiment for the other two ‘true functions’ evaluated in the original 

benchmark in Fig. 2, we also verified that the improvement seen with ensembling holds 

when other feature attribution methods such as DeepLift19 and Integrated Gradients20 are 

used (Extended Data Figs. 5 and 6).

These results suggest a natural approach for applying XAI techniques to complex biological 

datasets (see Fig. 1a). A variety of model classes should be compared in terms of predictive 

performance, and following the selection of the best-performing model class, the set of 

well-performing models from that class should be ensembled for explanation.

Complex GBMs accurately predict drug synergy in AML samples

After determining the importance of model class selection and model ensembling from our 

benchmark, we applied our framework to publicly available data provided by the Beat AML 

collaboration7. These data consist of the gene expression profiles of primary tumour cells 

from 285 patients with AML, as well as drug synergy measured for these cells in an ex vivo 

sensitivity assay for 131 pairs of 46 distinct drugs, spanning a variety of cancer subtypes 

and anticancer drug classes (Extended Data Fig. 1, and Supplementary Datasets 2 and 3). 

The input features of each sample thus comprise ‘gene expression features’ that describe 

the corresponding patient’s tumour’s molecular profile, and ‘drug features’ that describe the 

two drugs in that combination in terms of the gene targets of each of the two drugs (Fig. 

1b and Methods). In addition to literature-derived gene target features, we also investigated 

describing the drug combinations with structural and physicochemical features, but found 

the gene target features to lead to superior predictive performance (see Supplementary Fig. 1 

and Methods).

EXPRESS begins by comparing multiple model classes: elastic net40, deep neural 

networks14, random forests45 and extreme gradient boosting (XGBoost)46, in terms of 

the test error calculated using 5-fold cross-validation tests. To rigorously evaluate the 

predictive performance of the models, we performed comparisons using four different 

schemes for stratifying samples into train and test sets. Each different stratification assesses 
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the generalization performance for a different possible application scenario (see Fig. 4 

and Methods)14,47. Across these four settings, XGBoost shows better performance in 53 

comparisons out of 60 (=4 × 3 × 5) comparisons from four settings, with three alternative 

methods and for five test folds. Elastic net, random forests and deep neural networks show 

better performance in 4, 27 and 30 comparisons, respectively. Our framework therefore 

selects XGBoost as the optimal model class for further downstream interpretive analysis. 

This finding aligns well with contemporary work on machine learning for tabular datasets 

(such as gene expression data), which has empirically demonstrated that tree models such as 

XGBoost tend to outperform deep learning models48.

Ensembled attributions reveal important genes for anti-AML drug synergy

After identifying GBMs as the best-performing model class for our dataset, we ensembled 

individual models until the ensemble model attributions were stable, leading to a final 

ensemble of 100 XGBoost models (see Supplementary Fig. 2 and Methods). We then 

analysed the resultant ensemble model attributions to look for genes with ‘global’ 

importance for drug combination synergy, that is, genes whose expression is related to 

synergy across many different drug pairs in our dataset18. Genes that impact global synergy 

could belong to pathways with outsized importance to cancer biology which are targeted 

by many drugs in the dataset, such as MAPK signalling or PI3K-Akt signalling (see 

Supplementary Dataset 3 for a list of targets for each drug), or could be related to larger-

scale transcriptional changes impacting many pathways simultaneously, such as the degree 

of differentiation of leukaemic cells49.

We first visualize genes with monotonic relationships with synergy across all samples in 

the dataset, measured by the strength of the Spearman correlation between expression and 

attribution values, by plotting these robust attributions in a dependence plot. For example, 

a strong positive correlation between the expression level of MEIS1 (the second strongest 

relationship out of 15,377 genes tested), and its attribution value indicates that patients 

with higher levels of MEIS1 expression are predicted to respond more synergistically to 

the drug pairs tested in this dataset (Fig. 5a). MEIS1 has been shown to be upregulated in 

mixed-lineage leukaemia (MLL)-rearranged AML50, while also driving leukaemogenesis 

independently of MLL-rearrangement51. Recently, high MEIS1 expression has been 

observed within Venetoclax-resistant AML subclones with ‘monocytic’ characteristics52. 

Because AML in different patients may manifest in different developmental stages52, the 

importance of MEIS1 suggests that our model may be learning a differentiation-related 

expression signature underlying the synergistic ability of certain drugs to overcome 

resistance to others.

EXPRESS can identify other genes showing such trends and visualize many of these feature 

attribution relationships at once by assembling the marginal distributions of the expression-

attribution dependence plots into a summary plot. Figure 5c,d shows two summary plots: 

one for the genes where higher expression correlates with higher predicted synergy, and 

another for the genes with negatively correlated relationships (see Supplementary Dataset 

4 for an exhaustive list). One of the top negatively correlated genes was DLL3 (Fig. 5b), 

a member of the Notch signalling pathway, which has been shown to have prognostic 
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importance in patients with AML: patients with higher DLL3 expression have been shown to 

have lower overall survival53. We find that many of the top genes underlying synergy in both 

directions have been related to different stages of haematopoietic development. For example, 

CITED2 (the top positively correlated gene) is known to be essential for the maintenance of 

adult haematopoietic stem cells54. Additionally, CITED2-mediated haematopoietic stem cell 

maintenance has also been shown to be critical for the maintenance of AML55. Other genes 

in this list, such as OSMR, have further been shown to be essential for the maintenance of 

normal haematopoiesis56. Still other top genes, such as SLC7A11 and SLC17A7, have been 

linked to prognosis of AML57–59.

In addition to considering genes whose expression consistently impacts synergy either 

positively or negatively across all drug combinations, we additionally ranked genes by the 

magnitude of their global attribution values. This analysis allows genes that are important 

for multiple combinations to be ranked highly, even if higher expression levels of these 

genes are linked with higher synergy for some combinations and lower synergy for 

other combinations. When EXPRESS ranks all genes by the magnitude of their global 

attribution values (see Methods and Supplementary Dataset 5), we again find genes that 

are related to haematopoietic development and AML prognosis. In particular, IL-4 (top-

ranked gene by non-directional magnitude) is an important cytokine regulating the tumour 

microenvironment that has been shown to be specifically downregulated in AML compared 

with normal myeloid cells60. STAT6 (ranked 31st) is a transcriptional regulator known to be 

a key mediator of cytokine signalling61. It has previously been experimentally demonstrated 

using CRISPR-Cas9 genomic engineering that STAT6 specifically mediates IL-4-induced 

apoptosis in AML62. Furthermore, expression of STAT6 has been shown to be high in 

haematopoietic stem cells, but not in more differentiated progenitors63. Other top genes in 

this list, such as SLC51A and RNF213 (ranked second and sixth overall, respectively), have 

been previously linked to AML and familial myelodysplasia via genome-wide association 

studies64,65.

Pathway explanations identify global importance of a differentiation signature

Although attributions and trends for individual genes are informative, to gain systems-

level insights into the processes important to drug synergy prediction, we can also use 

pathway databases to systematically check whether genes from certain pathways are 

over-represented in EXPRESS’s top-ranked genes. When we test the top-ranked genes 

for pathway enrichment, we find that the top pathway (Fig. 5e) is related to cellular 

metabolism. Expression programmes regulating cancer metabolism have previously been 

linked to resistance to a variety of the drugs tested in this dataset. For example, AML cells 

that are resistant to the tyrosine kinase inhibitor Cabozantinib have been shown to have 

higher glucose uptake, GAPDH activity and lactate production than Cabozantinib-sensitive 

cells66.

Furthermore, consistent with our hypothesis that the importance of MEIS1 for synergy may 

be linked to a differentiation signature, the second most highly enriched pathway contains 

genes that control differentiation along the haematopoietic cell lineage (P = 8.2 × 10−3

from hypergeometric test, false discovery rate (FDR) correction using Benjamini-Hochberg 
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procedure). Previous studies have shown that leukaemic stem cell signatures associate 

with worse clinical outcomes67,68, and cells at different differentiation stages have been 

shown to respond differently to particular combination therapies69,70. The differentiation 

signature and metabolic signature may in fact be related, as previous work has shown 

that less-differentiated leukaemic cells have unique metabolic dependencies71, and has 

even proposed metabolic changes as a mechanism mediating anticancer drug combination 

resistance specifically in stem-like leukaemic cells72.

To further explore the importance of differentiation signatures as a global pattern 

underlying drug combination synergy, we used RNA-sequencing data generated from 

specific subpopulations of haematopoietic cells to create gene lists that are relatively more 

(or less) expressed in either haematopoietic stem cells (HSCs) or leukaemic stem cells 

(LSCs) compared with more differentiated populations, such as monocytes, lymphocytes 

and all fully differentiated blood cells (Methods)73. Considering six pairs of cell types (Fig. 

5f, left) leads to 12 gene lists; six of the gene lists represent more stem-like expression 

states, whereas the other six lists represent more differentiated signatures (see Methods 

for more details). For each gene list, we measured the correlation between the average 

expression of the genes in the list and drug synergy for each drug pair (Fig. 5f, right), and 

plotted correlations that were significant after multiple hypothesis testing correction.

Remarkably, we found two distinct sets of drug combinations: combinations that were 

more synergistic when applied to tumour samples with more stem-like expression profiles 

and combinations that were more synergistic when applied to tumour samples with 

more differentiated expression profiles (Fig. 5f, right). For instance, many combinations 

containing the BCL-2 inhibitor Venetoclax were associated with increased synergy when 

a more differentiated signature was present. Specifically, these were most strongly 

associated with a monocytic expression signature (Signature D1). Recent studies have 

demonstrated that in some patients, AML subclones with a monocytic differentiation 

signature exist next to subclones with a more primitive, stem-like transcriptional profile52,70. 

Monocytic subclones have been shown to be relatively resistant to Venetoclax52,70, raising 

the possibility that the drugs paired with Venetoclax in the identified combinations 

could be helping to overcome this resistance. For example, our approach identifies 

the combination of Ruxolitinib, a JAK inhibitor, with Venetoclax as having more 

synergy in more differentiated cancers. The capacity of Ruxolitinib to synergize with 

Venetoclax, specifically by targeting and overcoming monocytic resistance, has recently 

been demonstrated in several studies70,74. EXPRESS identifies a number of additional 

drugs that may be combined with Venetoclax to the same effect, including the p38 MAP 

kinase inhibitor Doramapimod, the tyrosine kinase inhibitors Quizartinib and Sorafenib, 

the cyclin-dependent kinase 4/6 inhibitor Palbociclib and the BET bromodomain inhibitor 

JQ-1. Interestingly, EXPRESS also identifies a handful of combinations not containing 

Venetoclax for which synergy is also associated with a differentiation signature, including 

the combination of Cabozantinib and Ruxolitinib, as well as the combination of MDM2 

inhibitor Nutlin-3 and the chemotherapeutic cytosine analogue cytarabine. To verify 

the importance of haematopoietic differentiation for AML drug sensitivity, we analysed 

the significance of these differentiation signatures in an additional, external dataset 

(Supplementary Fig. 3). Using the AML cell line expression data and experimentally 
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measured genetic dependency from the DepMap database, we found a significant association 

between the cancer cell line dependency of the genetic targets of the drug combinations in 

Fig. 5 and the expression of our differentiation signatures (empirical P  values 0.001, 0.001 

and 0.026 according to three separate null models).

These results show that the exact position of AML cells on a haematopoietic differentiation 

spectrum predicts the synergy that can be achieved with specific therapy combinations. 

Assessment of an AML stemness (or differentiation) signature may therefore be useful in 

guiding therapy choices in the clinic.

Feature interactions identify drug-specific gene expression signatures

In addition to identifying expression signatures that are generally relevant for drug synergy 

across many combinations, our approach can also identify genes and pathways that are 

relevant for ‘specific’ drugs. To quantify these drug-specific mechanisms, we used an 

extension of the Shapley value called the Shapley interaction index18,75, which extends 

attributions for single features to interactions between pairs of features (see Methods). 

Intuitively, expression of a particular gene may be more important when one of the drugs in 

a combination is specifically targeting that gene. Likewise, expression of a particular gene 

may be less important when neither drug targets that gene. Therefore, to quantify which 

genes were important for specific drugs, we measured the interaction values between each 

drug feature label and all gene features.

By analysing the most important genes for each drug ranked by the average magnitude of 

their interactions (see Methods), EXPRESS can reveal the specific biological processes 

related to synergy for a particular drug. After generating interaction values between 

all genes and drugs, we tested each list of global drug-specific gene attributions for 

pathway enrichment (see Methods). We found that these enrichments aligned with previous 

knowledge of the mechanisms of the drugs in question (Fig. 6).

For instance, EXPRESS pinpoints genes involved in apoptosis as important determinants of 

synergy for pairs of drugs containing Venetoclax (Fig. 6a, right), a drug which functions 

by restoring apoptotic function in malignant cells via inhibition of the gene B Cell 

Lymphoma-2 (BCL-2)76. Examining the individual genes in one of the enriched pathway 

modules for Venetoclax (Fig. 6a left, ‘Regulation of cell death’ term, FDR-corrected 

P = 8.0 × 10−3) reveals Venetoclax’s specific target BCL-2 to be an important predictive 

gene. Measuring the strength and direction of the relationship between BCL-2 expression 

and Venetoclax-specific BCL-2 attribution values, we find that increased BCL-2 expression 

is associated with markedly increased drug synergy in the context of Venetoclax treatment 

(Spearman ρ = 0.156, two-sided P = 4.0 × 10−70). Other genes in this module include 

S100A8 and S100A9, both genes having been previously linked to patient response to 

Venetoclax as well as differential expression in haematopoietic stem cells compared to 

more differentiated populations77,78. Other important biological processes detected by the 

Venetoclax-specific attributions include the MAPK cascade, which has been linked to 

Venetoclax resistance through stabilization of MCL179 and fibroblast growth factor (FGF) 

signalling (see Fig. 6a, right). Interestingly, FGF2 release by dying cells has recently been 
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implicated as a transient, non-heritable mechanism of Venetoclax resistance80, highlighting 

the power of transcriptomic analysis to discover phenomena not observable in mutational 

data alone.

As another example, one of the most enriched biological process terms for cytarabine, 

an organonitrogen compound, is the ‘metabolism of organonitrogen compounds’ (Fig. 6b, 

P = 4.0 × 10−5 from hypergeometric test, FDR correction using the Benjamini-Hochberg 

procedure). The individual genes in this module include CDA and NT5C2, two genes 

responsible for the metabolism of cytarabine that have previously been shown to 

be important genetic factors determining the response to cytarabine therapy81. We 

conducted the interaction drug-specific feature attribution analysis and pathway enrichment 

characterization for all drugs, which can serve as a resource for researchers interested in the 

particular mechanisms underlying AML response to these drugs (Supplementary Datasets 

6–23). This analysis demonstrates that EXPRESS can identify not only expression trends 

important for large sets of combinations, but also for specific drugs.

Discussion

By ensembling complex models, the EXPRESS framework enables accurate predictive 

performance and robust and biologically meaningful explanations. Although previous work 

has been able to attain high accuracy with complex models14, our approach can provide 

explanations to assure patients, clinicians and scientists of the biological soundness of our 

predictions, even when models have high-dimensional input features with a high degree 

of feature correlation. The importance of interpretability in the context of biomedical AI 

is increasingly being recognized. Model explanations can help identify when apparently 

accurate ‘black box’ models may in fact be relying on unreliable confounders (also 

known as ‘shortcuts’82,83). Explanations also allow physicians to communicate the logic 

of algorithmic decisions with patients, which can increase patient trust in the treatment 

process84. Finally, by displaying the logic underlying model decisions, explainable AI 

can enable better collaboration between physicians and AI models. For example, when 

applied to the Beat AML dataset7, our model was optimized without respect to the cost or 

FDA approval status of different drug combinations. Where a ‘black box’ model can only 

provide physicians with a synergy score for drug combinations, the mechanistic explanations 

provided by our model could help a physician to choose combinations with a similar 

predicted mechanism that might be preferable in terms of cost or FDA approval status.

As the application of explainable AI in the life sciences continues to grow, we anticipate that 

our framework will be broadly helpful to researchers. As observed in previous work, model 

prediction and model explanation are not always identical tasks85,86, and understanding how 

to create approaches that work for both of these goals is important given the popularity of 

Shapley value-based explanations for complex models. By demonstrating the high degree of 

variability in explanations within a class of models (Figs. 2 and 3), we hope to discourage 

users from naively selecting a single model to explain, and instead encourage users to 

explain ensembles of models. Although our work focused on transcriptomic data, the high 

degree of feature correlation and dimensionality is also characteristic of many other forms 

of ‘omics data, indicating the broad impact of these results. We envision that future work 
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on more efficient approaches to create ensemble models, which can be computationally 

costly, will be valuable. Currently, applying this approach to very large models, such 

as those used in the field of natural language processing, would not likely be feasible. 

Likewise, further theoretical characterization of the feature attributions of complex models, 

such as deep neural networks and GBMs, will probably be important. Although recent 

work has theoretically characterized the heterogeneity in feature importance across different 

well-performing models from the same model class, this work has thus far been limited to 

a small number of simple model classes (linear regression, logistic regression and simple 

decision trees)37.

In parallel to this work on improving the quality of attributions for black-box models, 

another thread of contemporary research focuses on incorporating previous biological 

knowledge into the modelling process. This includes methods such as MERGE, which 

regularizes the coefficients of linear models using multi-omic previous information87, 

as well as Attribution Priors, which uses an efficient and axiomatic feature attribution 

method to align deep neural network attributions with biological priors during the training 

process88,89. Other methods to incorporate previous biological information focus on 

structurally modifying neural network architectures, limiting interaction to genes that are 

known to share biological processes90,91. Determining the best way to attribute feature 

importance in the context of the structurally modified models will be important future 

work. Similarly, understanding how explainable AI can be optimally combined with the 

‘unsupervised’ deep learning models that have been successful in the context of single-cell 

gene expression data will be another important line of future work92,93.

When applied to a large dataset of ex vivo drug synergy measurements in primary tumour 

cells from patients with AML, EXPRESS can both accurately predict drug synergy, as 

well as uncover a differentiation-related expression signature underlying the predictions for 

many combinations. Although mutational status is increasingly considered in the clinical 

management of AML, our study demonstrates how useful tumour expression data can be 

for the prediction of drug combination synergy. Our experiments show that the extent of 

haematopoietic differentiation of AML cells is an important factor for the prediction of 

the synergy that can be achieved with specific therapy combinations, which has potential 

clinical application. Whereas our approach generated gene-expression feature attributions 

for each individual combination of drugs and patients in the Beat AML dataset, our 

analysis primarily focused on expression markers of synergy that were common over many 

combinations of drugs. Further analysis of important biomarkers for particular subgroups 

will probably represent interesting future work. One limitation of the current study is 

that our approach was applied to a dataset of drug-synergy measurements in bulk tumour 

samples, rather than synergy assayed in specific purified tumour cell populations. As more 

studies come out measuring the specific effects of anticancer drugs on the heterogeneous 

individual cells and subpopulations comprising AML52,70, applying EXPRESS to these 

datasets may yield interesting additional mechanistic insights.
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Methods

Shapley values

The Shapley value is a concept from coalitional game theory designed to fairly distribute 

the total surplus or reward attained by a coalition of players to each player in that 

coalition21. For an arbitrary coalitional game, v(S):P(S) ℝ(where S is the set of players 

and P indicates the powerset), the Shapley value for a player i is defined as the marginal 

contribution of that player averaged over the set of all d! possible orderings R of the d
players in S:

ϕ(i) = 1
d! ∑R

v Si
R ∪ i − v Si

R ,

(1)

where Si
R indicates the set of players in S preceding player i in order R.

To use this value to allocate credit to features in a ML model, the model must first be 

defined as a coalitional game. Deciding exactly how to define a model as a game is 

non-trivial, and a variety of different approaches have been suggested17,25,94,95. The most 

popular, SHAP (SHapley Additive exPlanations)17, defines the game as the conditional 

expectation of the output of a model f for a particular input sample x ∈ ℝd given that the 

features in S have been observed:

v(S) = E f(x) ∣ xS .

(2)

Because modelling an exponential number of arbitrary conditional distributions is often 

intractable, in practice the simplifying assumption that input features are independent is 

often made, allowing the expected value to be calculated over the marginal distributions of 

the features not in each given set, rather than the conditional distributions17.

In our benchmark experiments, because comparable attributions are desirable for both the 

GBM and neural network models, and because we want ‘global’ attributions (features which 

are important across all samples in the dataset), we used the SAGE software package to 

generate attributions. SAGE values define the coalitional game as the average reduction in 

test error l( ⋅ , ⋅ ) when a set of features are included as compared to the base rate prediction 

f∅ X∅ :

v(S) = E ℓ f∅ X∅ , Y − E ℓ f XS , Y .

(3)

Since the SAGE package uses a sampling approach over possible coalitions of features to 

estimate Shapley values, it is important to ensure that the estimates are well-converged. To 
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ensure convergence for the synthetic benchmark experiments, 102,400 permutations were 

used for all experiments (see Supplementary Fig. 4).

For experiments using the full BEAT AML dataset, we explained models using 

TreeSHAP18. TreeSHAP is a model-specific algorithm that leverages the structure of tree-

based ML models (such as XGBoost, the best-performing model class for the problem) 

to quickly calculate SHAP values in polynomial time. TreeSHAP tries to approximate the 

conditional expectations using the conditional distribution defined by the tree structure. In 

instances where we needed global TreeSHAP attributions, we followed ref. 18. and defined 

the global attribution as the average magnitude of the local explanations ϕi over the whole 

dataset D:

Φi(f, D) = Ex ∼ D ϕi(f, x) . 

(4)

In instances where we wanted global attributions that were also directional, we considered 

the correlation between the SHAP attributions for a feature and that feature’s underlying 

value:

ρXi, ϕi = cov Xi, ϕi
σXiσϕi

.

(5)

Other attribution methods for complex models

In addition to Shapley values, we also considered five other feature attribution methods 

in various experiments. Implementations of DeepLift and Integrated Gradients were from 

the Captum library96, whereas implementations of Gain and Cover were default feature 

importance methods in the XGBoost library. Another model agnostic method, LIME97, was 

considered, but ultimately could not be used because of computational efficiency problems. 

For example, explaining even a single sample from the Beat AML dataset (which consists of 

12,362 samples) took over 30 min with LIME. In contrast, explaining ‘all’ 12,362 samples 

(each having 15,535 features) of the same model with TreeSHAP took 5.62 s on our CPU 

server (96 CPUs).

Nonlinear models explained with attributions in benchmark experiment

In our benchmark tests, we evaluated two complex model classes explained using Shapley 

values. The first model class consisted of feed-forward neural networks. To train these 

networks, we used the PyTorch deep learning library98. To tune the models, we did a grid 

search across the following parameters: we used between 2 and 4 fully connected layers 

with either ‘ELU’ or ‘ReLU’ activations; we used a number either 64, 128 or 256 nodes in 

the first hidden layer and considered both a ‘decreasing’ and a ‘non-decreasing’ architecture 

(where ‘decreasing’ reduced the number of nodes in each successive layer by a factor of 2, 

and non-decreasing maintained a constant number of nodes across layers). We then trained 

the networks using the Adam optimizer with a learning rate of 0.001 for a maximum of 

Janizek et al. Page 14

Nat Biomed Eng. Author manuscript; available in PMC 2024 June 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



1,000 epochs. Early stopping was used to stop the training process if the mean squared 

error loss did not improve after 50 epochs. The second model class consisted of GBMs. To 

train these models, we used the XGBoost library46. To tune the models, we again did a grid 

search across several parameters: we considered a max tree depth of either 2, 10, 18, 26, 

34 or 42; we also considered a range of ‘eta’ parameters including either 0.3, 0.2, 0.1, 0.05, 

0.01 or 0.005. All models were boosted for 1,000 rounds, and the saved model with the best 

validation error was used for downstream prediction and explanation.

Classical feature attribution methods

In addition to Shapley values (and methods such as Integrated Gradients and DeepLift) 

applied to neural networks and GBMs, we also compared to a baseline of three more 

classical feature attribution methods used in biological feature discovery. The first involves 

ranking features X according to their Pearson correlation ρ with the outcome of interest Y :

ρX, Y = cov(X, Y )
σX, σY

.

(6)

Ranking features in this way can be viewed as a special case of a family of feature selection 

algorithms known as backward elimination with the Hilbert-Schmidt independence criterion 

(BAHSIC)39. We also ranked features according to the magnitude of their coefficients in an 

elastic net regression, which is a linear regression where both the ℓ1 and ℓ2 norm of the 

coefficient vector are penalized in the loss function40. To train elastic net regression models, 

we used the ElasticNetCV function in the scikit-learn library with number of folds set 

to 5 (ref. 99). Finally, we also tested a procedure known as recursive feature elimination 

using support vector machines (SVM-RFE)41. As an estimator for this algorithm, we 

used the epsilon-Support Vector Regression function in scikit-learn with a linear kernel, 

then used the RFE function from the same library to select features with the parameters 

‘n_features_to_select’ and ‘step’ set to 1.

Benchmark-evaluation metric

To evaluate how well different approaches recover biologically relevant signal, we designed 

a simple benchmark metric to evaluate the concordance between a list of features ranked 

by ML approaches and a ground truth list of features. As contemporary work shows, it is 

essential to evaluate attributions using benchmarks that reflect performance on the desired 

downstream task100. Therefore, it was necessary to design a new benchmark metric because 

existing metrics tend to evaluate how well feature attributions identify the features that are 

important for a particular ML model18. Our feature discovery benchmark measures how 

well each approach recovers biological signal by plotting the number of ‘true features’ 

cumulatively found at each point in the list of features ranked by that approach, then 

summarizing this curve by measuring the area beneath it using the ‘auc’ function in scikit-

learn99 (see Extended Data Fig. 2). A larger AUFDC corresponds to better performance. 

A perfect score for a model with 10 true features out of 100 true features would be 950, 

whereas a random ordering would be expected to achieve an AUFDC of 500 on average. 

To make this score more intuitive, we subtracted the random score of 500 and divided the 
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difference by the maximum possible area greater than random (450) so that the scores are 

scaled between 0 and 1, where 0 now means random performance and 1 means perfect 

performance. Although this metric is not sensitive to differences in ranking ‘within’ the 

set of relevant features, the AUFDC is a good metric in our case because the relevant task 

in biomarker discovery from transcriptomic data is to differentiate relevant features from a 

large number of irrelevant features.

Synthetic datasets

To use our benchmark-evaluation metric to systematically determine how well different 

approaches could uncover underlying biological signal, it was essential to define datasets 

where the ground truth is known101,102. Creating synthetic datasets also gave us the direct 

control needed to gain deeper understanding of the factors impacting the success of these 

algorithms, such as feature correlation, noise and outcome type18. Synthetic and semi-

synthetic datasets are necessary, as this type of systematic quantitative evaluation would 

require having access to ground-truth annotations for each of the roughly 20,000 genes in 

the human genome indicating whether their expression is relevant to the synergy of drug 

response for each of the 133 drug combinations tested in our dataset, which is not currently 

feasible. We tested feature discovery performance on 240 total synthetic or semi-synthetic 

datasets in the main text benchmark, and on an additional 500 synthetic and semi-synthetic 

datasets in the supplementary benchmark experiments. Each dataset comprised a feature 

matrix X ∈ ℝn × d, where n represented the number of samples and d represented 100 input 

features, and an outcome vector y ∈ ℝn which is some function of the original features 

(y = f(X)).

We considered three groups of distributions for the feature matrices in the main text 

benchmark. The first group was 1,000 samples of 100 independent Gaussian features 

randomly generated to have 0 mean and unit variance. The second group was 1,000 

samples of 100 Gaussian features with 10 groups of 5 tightly correlated features (Pearson’s 

ρ = 0.99). The final group involved 223 real patient gene expression samples from the 

Beat AML Dataset, where the gene features were sampled to equal in number to the fully 

synthetic datasets7. We considered two additional feature distributions in the supplementary 

benchmark, using features drawn from real AML patient gene expression samples from The 

Cancer Genome Atlas (TCGA AML) and the Gene Expression Omnibus (GEO AML; for 

more details, see Methods section on Additional benchmark AML datasets).

For the main text benchmark, we considered four different functions f by which the features 

X were related to the outcome y. The first function was a linear function with 10 non-zero 

coefficients,f(X) = Xβ. The second function was the sum of 10 univariate ReLU functions, 

f(X) = ∑i = 0
10  ReLU(xi). The third function was the sum of 10 pairwise multiplicative 

interactions,f(X) = ∑i = 0
10 xixi + 1. The final function was the sum of 10 pairwise AND 

functions,f(X) = ∑i = 0
10 xi > 0 ∧ xi + 1 < 0 . For each of the 12 possible pairwise combinations 

of feature matrices and outcome functions, we created 20 specific datasets meeting the 

specifications, where the only difference was that the features were randomly regenerated 
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(or randomly resampled from the full transcriptome in the case of the AML features), and 

the features selected as true features were re-selected.

In the supplementary benchmark experiments (Extended Data Figs. 7 and 8), we considered 

an additional five functions relating features to outcome. The first was an additive function, 

where the outcome is the sum of quadratic terms of individual features, f(X) = ∑i = 0
10 xi

2

(‘quadratic additive’). The second was a non-additive function, where the outcome was 

the sum of 10 pairwise cosine interactions,f(X) = ∑i = 0
10 cos xi + xi + 1 . The third was an 

additive function, where the outcome was the sum of 10 features transformed by the sine 

function,f(X) = ∑i = 0
10 sin xi . The fourth was a non-additive function (‘sine interactions’), 

where the outcome is of the form f(X) = 10sin πx0x1 + 20 x2 − 0.5 2 + 10x3 + 5x4. This was 

then added to another randomly selected five variables so that the full outcome is the 

function of 10 variables, such as the other datasets. The fifth was a non-additive function 

(‘arctan interactions’), where the outcome was of the form f(X) = arctan x1x2 − 1
x1x3

/x0, which is 

again added to additional sets of randomly selected variables so that the full outcome is the 

function of 10 variables.

Comparing ensembles and individual models

To train ensemble models for comparison in our benchmark experiments, we used the 

method of bootstrap aggregation, or ‘bagging’103. This method involved first bootstrapping 

the data, or resampling the dataset with replacement until the bootstrapped dataset had as 

many samples as the original, then training a model on the bootstrap resampled dataset. We 

repeated the process of bootstrapping and training models 20 times. Since our benchmark 

is a regression problem, the 20 model outputs were then aggregated by a simple mean. 

This method is known to improve predictors by increasing their stability. The number of 

models needed for a particular ensemble to ensure attribution stability can be evaluated by 

measuring the percentage overlap in the final list of top genes and the cumulative list of top 

genes as additional models are added to the ensemble (see Supplementary Fig. 2).

Although deep neural networks can, in general, be slow to train, the architecture 

proposed in ref. 14 is relatively fast to train, making these networks amenable to an 

ensemble approach. According to the original code published to train these models (https://

github.com/KristinaPreuer/DeepSynergy), each epoch for these models takes 13 s, meaning 

the models take 3.5 h in total for 1,000 epochs of training. Creating ensembles of the 

deep learning models in question therefore took 1 week of training on a single graphics 

processing unit (GPU) to create an ensemble of 50 models, or 2 weeks of training on a 

single GPU to create an ensemble of 100 models.

To understand the difference in quality of the individual model attributions and the ensemble 

model attributions, we considered two separate objective metrics. The first was to assess the 

‘stability’ of the attributions. We measured the pairwise cosine similarity of 20 ensemble 

models’ attributions trained on bootstrap resampled versions of each dataset, then measured 

the pairwise cosine similarity of 20 individual models’ attributions trained on bootstrap 

resampled versions of the same datasets:
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cos(θ) = AB
A 2 B 2

.

(7)

The next metric aimed to understand how much importance was put on truly important 

features compared to how much was potentially placed on spurious correlates. We therefore 

measured the Gini index of each global attribution vector to understand how ‘sparse’ of an 

attribution was learned by each model:

G(x) =
∑i = 1

n ∑j = 1
n xi − xj

2n2x
.

(8)

Beat AML dataset

The Beat AML programme comprises a large cohort of AML patient tumour samples for 

which ex vivo anticancer drug sensitivity has been measured. Since our project aimed to 

uncover the transcriptomic factors underlying anticancer drug synergy, we only included 

patients from the cohort whose tumours had been characterized by RNA sequencing, for 

which measurement pairs of anticancer drugs had been tested. Our final dataset contained 

the RNA-sequencing expression data from 285 patients with myeloid malignancy and drug 

synergy measured on a subset of patients for 131 combinations of 46 distinct drugs.

The input features used in modelling each of 12,362 samples (where a sample is one patient 

and one combination of two anticancer drugs) were represented as a vector x ∈ ℝ15535. 

This vector was constructed by concatenating three other vectors. First, we described 

each patient’s tumour sample using a vector of gene expression values (RNA-seq data), 

g ∈ ℝ15377(see RNA-seq pre-processing section for more information). We described each 

drug combination using a feature vector, v ∈ ℝ46, of drug identity labels where each element 

vi was equal to 1 if the i th drug was present in the combination and 0 otherwise. We also 

incorporated drug target information for each drug combination, using information compiled 

from DrugBank plus a supplementary literature search for reliable drug targets, for a total 

set of 146 targets. We then described the drug targets of each combo with a vector, u ∈ ℝ146, 

where each element uj was equal to 2 if the j th target was targeted by both drugs, equal to 1 

if the j th target was targeted by only one of the drugs and equal to 0 if the j th target was not 

targeted by either drug.

To ensure that these drug target features were an adequate representation of the function 

of the drugs in the Beat AML dataset compared to structural or physicochemical features, 

we re-ran our hyperparameter tuning experiment from Fig. 4, comparing the predictive 

performance attained by XGBoost models trained with our drug target featurization to 

XGBoost models trained with a similar physicochemical/structural featurization to that used 

in previous work (see Supplementary Fig. 1). For these physicochemical and structural 

features, we followed ref. 14 and used a much larger feature vector to describe each 
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drug combination (1,838 total features for each 2-drug combination, with 919 features 

for each drug, including both structural toxicophore features and physicochemical features 

generated with ChemoPy, a Python library for generating the commonly used structural and 

physicochemical features). We found that in 17 out of 20 cases, our drug target featurization 

matched or increased predictive performance compared with using physicochemical or 

structural features.

RNA-seq pre-processing

To ensure a quality signal for prediction while removing noise and batch effects, it is 

necessary to carefully pre-process the RNA-seq gene expression data. In this study, the 

RNA-seq data were pre-processed as follows. First, raw transcript counts were converted to 

fragments per kilobase of exon model per million mapped reads (FPKM). FPKM is more 

reflective of the molar amount of a transcript in the original sample than raw counts, as it 

normalizes the counts for different RNA lengths and for the total number of reads. FPKM 

was calculated as follows:

FPKM = Xi × 109
Nli

,

(9)

where Xi represents the raw counts for a transcript, li is the effective length of the transcript 

and N is the total number of counts.

After converting counts to FPKM, we removed any non-protein-coding transcripts from the 

dataset. We also removed transcripts that were not meaningfully observed in our dataset by 

dropping any transcript where greater than 70% of measurements across all samples were 

equal to 0. We then log-transformed the data and standardized each transcript across all 

samples, such that the mean for that transcript was equal to zero and the variance of the 

transcript was equal to one. Finally, we corrected for batch effects in the measurements 

using the ComBat tool available in the sva R package104.

Additional benchmark AML datasets

For the GEO AML dataset, we downloaded all publicly available gene expression datasets 

from the National Center for Biotechnology Information (NCBI) GEO database generated 

by either the Affymetrix GeneChip Human Genome U133 Plus 2.0 (Affy HG-U133 Plus 

2.0) microarray platform or the Affymetrix GeneChip Human Genome U133A 2.0 (Affy 

HG-U133A 2.0) microarray platform105, using the keywords ‘AML’. We then manually 

curated our dataset to look for incorrectly included or excluded samples, such as gene 

expression samples from healthy tissues or patients with cancer types other than AML. 

Additionally, we manually excluded cell line expression samples, which are likely to have 

low expression variance when the same cell line is sequenced across different studies, and 

only used patient samples. This led to a total of 6,534 samples. For each synthetic dataset 

generated using these features, 200 patients were sampled.
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To integrate data from various platforms, we converted platform-specific probe IDs to gene 

symbols using the probe ID to gene symbol conversion lists for each platform available in 

GEO. A study might have different sample batches submitted on different dates indicated 

in the ‘submission_date’ field. We corrected for these potential batch effects within each 

study using the ComBat tool available in the sva R package104, where different batches 

correspond to data subsets submitted at different dates. We log-transformed the expression 

measurements, standardized (that is, 0 mean and unit variance) each gene in each dataset to 

ensure that different input features (that is, gene expression levels) were on the same scale, 

and applied mean imputation to impute missing gene-level measurements. We also excluded 

duplicate samples with the same GEO IDs. We concatenated all datasets and applied batch 

effect correction, once again using ComBat with the same parameters, considering each 

study to be a separate batch to minimize the effect of potential study-specific confounders.

For the TCGA AML dataset, we downloaded RSEM-normalized log2-transformed RNA-seq 

expression matrices for patients with AML from the Broad Institute data v2016_01_28 

(https://gdac.broadinstitute.org/) and generated by the TCGA Research Network (https://

www.cancer.gov/tcga/). We pre-processed the TCGA samples with the same pipeline we 

used for pre-processing GEO expression datasets: we selected the overlapping sets of genes 

and standardized each gene to 0 mean and unit variance.

Drug-synergy metric

The outcome in our model was drug synergy: whether a number of drugs exhibit more 

anticancer activity in combination than would be expected simply by adding their individual 

activities together. We therefore calculated synergy using the combination index (CI) of the 

two drugs:

CI = IC501
combination

IC501
single + IC502

combination

IC502
single ,

(10)

where IC50i
single is the dose of drug i required to reduce cell viability to 50% when used 

alone and IC50combination IC50i
combination is the dose of drug i required to reduce cell viability 

to 50% when used in combination with the other drug we are measuring106. When a drug 

combination is synergistic, the CI will be less than 1 (it will be equal to 1 when the 

combination is additive and greater than 1 when the combination is antagonistic). In our 

model, we log-transformed the CI measure to help manage the skewness of the original 

distribution, and then scaled the measure to make the distribution have 0 mean and unit 

variance. We also multiplied by −1 for ease of interpretation: more synergistic combinations 

thus have a larger score.

Although previous studies have made use of response-surface analysis, which involves 

measuring the volume between an idealized additive response surface and a measured actual 

response surface, these measures could not be applied to the ‘diagonal’ measurements 

present in the Beat AML Dataset. A major drawback to response-surface analyses is that 

they require a ‘checkerboard’ of measurements at different drug concentrations, where the 
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ratios and doses of each drug in a combination is varied. This consumes many more cancer 

cells, which is problematic when using primary cells from patients, as the amount of sample 

that can be collected is more limited than when using cell lines.

Cross-validation and sample stratification

In addition to the model parameters which are learned from data, ML models also rely 

on hyperparameters, which must be tuned to a specific task in question to attain optimal 

predictive performance. To estimate the true generalization error of a model (that is, how 

well that model is likely to perform on unseen data), it is essential that model parameters and 

hyperparameters be learned and chosen on the basis of training data, whereas predictive 

performance is evaluated on a held-out test set that is never used for hyperparameter 

selection or model training. Hyperparameters are typically picked through a cross-validation 

procedure that determines the optimal hyperparameters for the model by validating them 

through a number of internal training and validation fold pairs randomly chosen from the set 

of training samples used for learning the model parameters.

To effectively train our models and evaluate predictive performance, we therefore utilized 

a nested 5-fold cross-validation procedure, whereby the data were split into 5 separate 

test folds. For each of these test folds, we trained our synergy prediction model using 

the four remaining folds and evaluated it on the held-out test fold. To properly tune the 

hyperparameters of the models trained for each test fold, three of the four training folds were 

used as an internal training set, whereas the remaining fold was used as a validation set. 

The hyperparameters were selected by an inner loop, where for each hyperparameter set of 

interest, the model was trained on the internal training set and tested on the validation set. 

The hyperparameters giving the best performance on the validation set were then used to 

train a model on the entire training data, which was then finally evaluated on the held-out 

test fold. The grid of hyperparameters tested for each model type are as follows. For the 

sklearn elastic net implementation, the ‘alpha’ parameter was tuned over values ranging 

from 0.1 to 100, whereas the ‘l1_ratio’ parameter was tuned from 0.25 to 0.75. For the 

sklearn random forest implementation, the ‘n_estimators’ parameter was tuned from 128 

trees to 2,048 trees, whereas the ‘max_features’ parameter was set to be either ‘log2’, 

‘sqrt’ or ‘256’. For XGBoost, ‘max_depth’ was tuned between 4 and 8, ‘subsample’ was 

tuned to values between 0.1 and 0.8, and learning rate was tuned between 0.05 and 0.1. 

For deep neural networks, hyperparameters were tuned following the grid given in ref. 14, 

where an additional data pre-processing step that would optionally transform the RNA-seq 

features with a hyperbolic tangent function in addition to standardization was also included 

as a hyperparameter. Code for tuning these networks can be found at https://github.com/

KristinaPreuer/DeepSynergy. For both deep neural networks and GBMs, early stopping 

based on validation set error was used to choose the number of epochs/estimators.

To evaluate the model’s performance for a variety of hypothetical uses, we stratified our 

data into training and testing sets in four different ways (Fig. 4). Each sample in our dataset 

consists of a synergy measurement for a 2-drug combination tested in a patient’s tumour 

cells. In the first stratification setting, we ensured that any sample (2-drug combination and 

patient) present in the test data would never be present in the training data. The second 
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setting maintains the first setting’s requirement that each sample in the test data be novel, but 

additionally ensures that any combination of drugs in the test data would never be present in 

the training data. The third setting maintains the first setting’s requirement that each sample 

in the test data be novel, but additionally ensures that any patient in the test data would 

never be present in the training data. Finally, the fourth setting maintains the first and second 

settings’ requirements, while additionally ensuring that for any combination of drugs in the 

test data, at least one of the drugs in that combination would never have been present in 

the training data. Each of these settings should be increasingly difficult to predict, as each 

setting requires progressively more generalizable trends in the data to have been learned.

XGBoost model ensembles

After selecting XGBoost as the best-performing model class for the prediction of anti-AML 

drug synergy, we then wanted to account for the full diversity of possible good XGBoost 

models fit to the highly correlated AML gene expression data. We therefore trained 100 

models and explained the ensemble model. Each individual model had both row and column 

subsampling turned on for each additional tree fit, and the difference between the models in 

the ensemble was the random seed given to generate the subsampling.

In practice, instead of explaining the entire ensemble (the average output of each of the 100 

models), we instead explained each individual model and averaged the explanations. This is 

possible due to the linearity property of Shapley values107. This property states that for the 

convex combination of any two coalitional games v and w, the attribution for player i will be 

the convex combination of the attributions that player would attain in each individual game v
and w:

ϕi(αv + (1 − α)w) = αϕi(v) + (1 − α)ϕi(w) .

(11)

Overall pathway analysis

The highest-ranked genes in the lists ordered by global Shapley values were tested for 

pathway enrichments using the StringDB package in R108. The package was initialized using 

the arguments: ‘version’ = ‘10’, ‘species’ = ‘9606’ and ‘score_threshold’ set to the default 

of 400. We used the set of pathways from the Kyoto Encyclopedia of Genes and Genomes 

(KEGG) for enrichment tests. The actual enrichments were calculated by a hypergeometric 

test implemented in the ‘get_enrichment’ method. To ensure that pathway enrichments 

were robust to the threshold used for selecting the highest-ranked genes, we averaged the 

enrichment test results over a variety of different thresholds, ranging from 200 to 800 top 

genes. FDR correction was applied using the Benjamini-Hochberg procedure109.

Generation of differential-expression stemness profiles and measurement of synergy 
correlation

To generate expression signatures related to more or less-differentiated states of cells 

in the haematopoietic cell lineage, we downloaded RNA-seq data from isolated cells 

from particular levels of developmental transitions73. We then used the R package 
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DESeq2, which tests for differential expression in RNA-seq data on the basis of a 

negative binomial model, to generate lists of genes upregulated in particular populations 

of cells as compared to other populations110. The populations we compared were as 

follows: monocytes vs haematopoietic stem cells (HSCs), lymphocytes vs HSCs, all fully 

differentiated cells (which included erythroblasts, T cells, B cells, NK cells and monocytes) 

vs HSCs, monocytes vs leukaemic stem cells (LSCs), lymphocytes vs LSCs, and all fully 

differentiated cells vs LSCs. The immunophenotypes used to sort HSCs and LSCs were 

Lin− CD34+ CD38− CD90+ CD10− and Lin− CD34+ CD38− TIM3+ CD99+, respectively. 

Gene expression profiles for these populations were the same as used in ref. 73. The 

multiple testing-adjusted P  value used as a significance threshold for differentially regulated 

genes was 0.05.

When we tested for association between our differential expression profiles and synergy 

for particular combinations of drugs, we first considered only samples containing the drug 

combination in question. We then averaged gene expression over all genes in the differential 

expression profile. Finally, we measured the Pearson correlation between the average 

expression profile and the drug combination synergy for those samples. Since we had 

many combinations of drugs and many differential expression profiles to test, we corrected 

for multiple testing using the Benjamini-Hochberg FDR correction procedure109. We then 

displayed only correlations that are significant after correction. Additionally, we only 

wanted to consider correlations that are robust to the differences in the particular stemness-

differentiation profiles, so we only plotted correlations for drugs that are significant across at 

least two profiles.

Cancer-dependency-map analysis

To externally validate the importance of the haematopoietic differentiation 

expression signature for the drug combinations identified in Fig. 5f, we used 

data from the Cancer Dependency Map (DepMap) database. Specifically, we 

downloaded the Genetic Dependency CRISPR assays (DepMap 21Q4 Public+Score, 

Chronos, ‘CRISPR_gene_effect. csv’) and the expression data (21Q4 Public, 

‘CCLE_expression.csv’), as well as the metadata in the Cell Line Sample Info file 

(‘sample_info. csv’), from the DepMap portal. After downloading these data, we filtered 

them so that only cell lines with the lineage subtype ‘AML’ were present in the analysis. 

Then, we tested for association between the average expression of the signature with the 

most associated drug combinations from Fig. 5f (S1/D1) and the genetic dependency of the 

targets of the drug combinations listed in Fig. 5f.

To assess the significance of the associations, we designed three null models. First, we 

generated a null distribution by randomizing the genes that were averaged to calculate the 

expression signature 1,000 times, and measuring the average magnitude of the Spearman 

correlation of these random signatures with the genetic dependency Chronos scores of the 

genetic targets of the drug combinations listed in Fig. 5f (‘Randomize Pathway Genes’ 

null). Second, we generated a null distribution by randomly permuting the rows (cell lines) 

in the gene expression matrix 1,000 times, before measuring the average magnitude of 

the Spearman correlation of the average expression of the haematopoietic differentiation 
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expression signature with the genetic dependency Chronos scores of the genetic targets of 

the drug combinations listed in Fig. 5f (‘Permute Pathway Expression’ null). Third, we 

generated a null distribution by leaving the expression matrix unpermuted and unrandomized 

and measuring the average magnitude of the Spearman correlation of the average expression 

of the haematopoietic differentiation expression signature with the genetic dependency 

Chronos scores of random sets of genes (where the random sets were constrained to be 

the same size as the number of true targets of the set of combinations in Fig. 5f; ‘Randomize 

Targets’ null).

Across all three null models, we found that the true expression signature is significantly 

associated with cancer cell line genetic dependency on the drug targets of the drugs in 

Fig. 5f (empirical P  values 0.001, 0.001 and 0.026 for the ‘Randomize Pathway Genes’, 

‘Permute Pathway Expression’ and ‘Randomize Targets’ nulls, respectively).

Drug-specific pathway analysis

To analyse the biological processes relevant for combinations containing specific drugs in 

the dataset, we tested the top-ranked genes in the lists ordered by the average magnitude 

Shapley interaction indices18,75. Following the same procedure described above, we 

calculated pathway enrichments using the StringDB package in R108. We used the set of 

pathways from Gene Ontology (GO) Biological Process terms for enrichment tests. The 

enrichments were calculated by a hypergeometric test implemented in the ‘get_enrichment’ 

method. To ensure that pathway enrichments were robust to the threshold used for selecting 

the highest-ranked genes, we averaged the enrichment test results over a variety of different 

thresholds, ranging from 200 to 800 top genes. FDR correction was applied using the 

Benjamini-Hochberg procedure109.

For Venetoclax, since a large number of biological process terms were significantly 

enriched, and since there is substantial overlap and similarity between these gene sets, we 

clustered the significantly enriched pathways into modules. We defined an adjacency matrix 

where each gene set represented a node in a network, and the Jaccard Index (a measure of 

overlap) between pathways was used to define edges. We binarized the matrix for pathways 

with Jaccard Index greater than 0.4. We then manually annotated all connected components 

in the resultant graph (see Supplementary Dataset 24). To plot the network, we used the 

spring layout functionality in the networkx library in Python111.

Reporting summary

Further information on research design is available in the Nature Portfolio Reporting 

Summary linked to this article.
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Extended Data

Extended Data Fig. 1 |. Descriptive statistics of Beat AML cohort.
Histograms showing the relative density of prior treatment regimens, age, cause of death, 

and prior treatment types in the cohort of 285 patients in our dataset, which consisted of 

12,362 samples with paired gene expression and drug synergy measurements for 133 pairs 

of 46 anticancer drugs.

Extended Data Fig. 2 |. Feature discovery benchmark.
For each synthetic or semi-synthetic dataset (a), we trained a variety of models (b) 

including neural networks, GBMs, support vector machines, and elastic net regression, 

as well as univariate statistics (Pearson correlation). For the machine-learning models, 

we then used SAGE to generate global Shapley value feature attributions (c), ranked the 

features according to the magnitude of their attributions (d), and compared the ranked list 

generated by each method to the binary ground truth importance vector (e). To measure the 

feature discovery quality of each method, we plotted how many “true” features are found 

cumulatively at each point in the ranked feature list (f), then summarized the curve generated 

by this procedure by measuring the AUFDC. This score is then rescaled so that a score of 0 

represents random performance while a score of 1 represents perfect performance.
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Extended Data Fig. 3 |. Predictive performance of models trained with synthetic datasets.
Predictive performance, as measured by the Pearson correlation of the predicted and true 

labels for the models trained in the benchmark presented in Fig. 2.
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Extended Data Fig. 4 |. Ensembling overcomes the variability in attributions present in 
individual models.
To understand why ensemble models were able to attain better feature discovery 

performance than single models, we compared the characteristics of the attribution vectors 

of XGBoost models trained on bootstrap resampled versions of a correlated groups dataset 

with a step-function outcome. a, Heatmap of feature attributions for 20 individual XGBoost 

models. b, Heatmap of feature attributions for 20 ensembles of XGBoost models. c, Pairs of 

attribution vectors from ensembled models are more similar across bootstrap resamples of 
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the dataset than attribution vectors from single models, as measured by cosine similarity. d, 

Attribution vectors from ensembled models place a larger proportion of their importance on 

a smaller set of features than attribution vectors from single models, as measured by the Gini 

coefficient of the attribution vectors, a measure of vector sparseness.

Extended Data Fig. 5 |. EXPRESS improves feature attributions of deep learning models.
Comparison of feature discovery performance between individual deep learning models 

(gray) and ensembles of deep learning models (red) across all 12 dataset types from the 
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synthetic benchmark. Three separate feature attribution methods are tested for each model: 

DeepLift, Integrated Gradients, and SHAP (in this case implemented as global attributions 

using the SAGE software package).

Extended Data Fig. 6 |. EXPRESS improves feature attributions of XGBoost models.
Comparison of feature discovery performance between individual XGBoost models (gray) 

and ensembles of XGBoost models (red) across all 12 dataset types from the synthetic 
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benchmark. Three separate feature attribution methods are tested for each model: a) cover, b) 

gain, and c) SHAP.

Extended Data Fig. 7 |. EXPRESS improves feature attributions of deep learning models on 
additional supplementary datasets.
Comparison of feature discovery performance between individual deep learning models 

(gray) and ensembles of deep learning models (red) across all 25 supplementary dataset 

types (see Methods section on supplementary dataset types). Three separate feature 

attribution methods are tested for each model: DeepLift, Integrated Gradients, and c) SHAP 

(in this case implemented as SAGE). We find that for 73% of comparisons, EXPRESS 

improves feature discovery performance (for associated statistics, see Supplementary 

Dataset 25).

Janizek et al. Page 30

Nat Biomed Eng. Author manuscript; available in PMC 2024 June 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Extended Data Fig. 8 |. EXPRESS improves feature attributions of XGBoost models on 
additional supplementary datasets.
Comparison of feature discovery performance between individual XGBoost models (gray) 

and ensembles of XGBoost models (red) across all all 25 supplementary dataset types 

(see methods section on supplementary dataset types). Three separate feature attribution 

methods are tested for each model: Cover, Gain, and SHAP. We find that for 76% of 

comparisons, EXPRESS improves feature discovery performance (for associated statistics, 

see Supplementary Dataset 26).
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Extended Data Fig. 9 |. EXPRESS improves feature attributions independently of improvement 
in model performance.
For both XGBoost models (a, trained on the Beat AML dataset with the AND function 

outcome; b, trained on the Beat AML dataset with the multiplicative outcome) and deep 

learning models (c, trained on the Beat AML dataset with the AND function outcome; and 

d, trained on the Beat AML dataset with the multiplicative outcome), we see that even 

after controlling for the effect of model ensembles on predictive performance by stratifying 

models (low, intermediate, and high predictive performance), within each stratification 

ensemble models have significantly higher AUFDC. Significance assessed by two-sided 

Mann−Whitney U-test, * represents p < 0.05, ** represents $p < 0.01, *** represents p < 

Janizek et al. Page 32

Nat Biomed Eng. Author manuscript; available in PMC 2024 June 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



0.001, and **** represents p < 0.0001 (full statistics in Supplementary Dataset 27). The 

boxes mark the quartiles (25th, 50th, and 75th percentiles) of the distribution within a given 

predictive performance stratification, while the whiskers extend to show the minimum and 

maximum of the distribution (excluding outliers).

Extended Data Fig. 10 |. Ensembling improves XGBoost attributions more than explicit 
regularization.
Using the synthetic datasets with real AML gene expression features, we compare the 

increase in AUFDC seen with explicit regularization, such as per-tree column dropout 

and L1 regularization, with ensembling. For the synthetic datasets with AML features 

and the AND true function, we see that ensembles improve AUFDC significantly more 

than column dropout (a, two-sided Mann−Whitney U-test, U = 2.83, P = 4.7 × 10−3) and L1 

regularization (c, U = 3.00, P = 2.7 × 10−3). For the synthetic datasets with AML features 

and the multiplicative true function, we see that ensembles improve AUFDC significantly 

more than column dropout (b, U = 4.04, 5.25 × 10−5) and L1 regularization (d, U = 4.87, 

P = 1.12 × 10−6).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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As such, the subset of samples included in this study may differ in sample representation, 
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study describing the full dataset.
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Line Sample Info file (‘sample_info.csv’), all accessible from the DepMap portal (https://

depmap.org/portal). Source data are provided with this paper.
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Fig. 1 |. Overview of the study design.
a–e, Our framework, EXPRESS, for learning reliable explanations of cancer therapeutic 

ML models trained on high-dimensional gene expression data. After training a variety of 

individual models across multiple model classes (a), predictive performance is evaluated 

to select a best-performing model class (b). Multiple models from that class are then 

ensembled (c) to produce more reliable and biologically meaningful explanations (d). We 

apply our pipeline to a dataset of ex vivo anticancer drug synergy measurements for patients 

with AML (e), attaining not only superior prediction performance but also identifying 

biological processes that are important for the determination of drug synergy.
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Fig. 2 |. Benchmark metric reveals the impact of nonlinearity and correlation on feature 
discovery.
Each point in the boxplots represents the benchmark score achieved by one of five 

feature ranking methods applied to one of 240 datasets generated from 12 synthetic or 

semi-synthetic dataset types (each subplot represents one dataset type). The rows (left) are 

sorted from top to bottom by increasing nonlinearity of the true feature-outcome relationship 

(that is, all datasets in the first row (a–c) have a linear relationship between input features 

and outcome, all datasets in the second row (d–f) use ReLU functions, all datasets in the 
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third row use multiplicative functions (g–i), all datasets in the last row (j–l) use AND 

functions), whereas the columns are sorted from left to right by the increasing extent of 

the correlation between features in the dataset (for example, all datasets in the last column 

(c,f,i,l) have real AML bulk RNA-seq features). The metric plotted in each boxplot is the 

AUFDC (see Methods), where a higher score indicates better performance (0 represents 

random performance and 1 represents perfect performance). The boxes mark the quartiles 

(25th, 50th and 75th percentiles) of the distribution, and the whiskers extend to show the 

minimum and maximum of the distribution (excluding outliers). For each dataset type (a 

pair of feature-outcome relationship and inter-feature correlation), 20 independent datasets 

are generated by randomly regenerating features. Although all approaches achieve perfect 

performance on simple linear data with independent features (a), all models have worse 

performance as features become more correlated and outcomes become more nonlinear (l).
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Fig. 3 |. Explaining ensembles helps overcome instability in feature discovery performance for 
single models.
a,b, Relationship between test error and feature discovery performance on bootstrap 

resampled versions of two synthetic datasets. Both datasets had clusters of highly correlated 

features; one had a step function outcome (a) and the second had a multiplicative outcome 

(b). Although there is a high overall correlation between test error and feature discovery 

performance for both datasets, there is no significant correlation after conditioning on 

model class (see Supplementary Table 1 for full statistical comparisons across model 
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classes including XGBoost models (GBMs), multilayer perceptron neural network models 

(MLPs) and elastic net regression). c, Comparison of feature discovery performance between 

individual models and ensemble models using synthetic and semi-synthetic datasets from 

our benchmark. The boxes mark the quartiles (25th, 50th and 75th percentiles) of the 

distribution, and the whiskers extend to show the minimum and maximum of the distribution 

(excluding outliers). Results for the rest of the datasets and for additional feature attribution 

methods can be found in Extended Data Figs. 5 and 6.
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Fig. 4 |. Comparison of predictive performance between model classes across four stratification 
settings.
Each point in the plots on the right represents an evaluation of model performance after a 

different split of the data. To consider a variety of potentially useful application settings, 

samples were stratified in four ways. Each sample comprises primary tumour cells from 

a patient with AML and a pair of anticancer drugs. In a, samples are randomly split into 

5 different train test folds. In b, samples are split on the basis of the drug combinations, 

so that held-out test folds contain novel drug combinations that were not present in the 
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training data. In c, samples are split on the basis of patients, so that held-out test folds 

contain patients that were not present in the training data. In d, samples are split on the basis 

of individual drugs, so that held-out test folds contain drugs that were not present in the 

training data.
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Fig. 5 |. Transcriptomic factors affecting anti-AML drug combination synergy.
a,b, SHAP dependency plots for MEIS1 and DLL3. Each point represents a single sample 

(one patient with a pair of anticancer drugs), the x axis and colour coding represent 

the normalized gene expression values, and the y axis represents the feature attribution 

value (change in predicted drug synergy attributable to that feature). c,d, SHAP summary 

plots for the transcripts with the strongest positive (c) and negative (d) relationships 

with anti-AML drug synergy. Each point still represents a single sample and the colour 

coding still represents normalized gene expression values, but the x axis now represents 
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the feature attribution value (plotted on the y axis in the corresponding analysis in a 

and b). e, Biological pathways most highly enriched in the list of most important gene 

expression features, sorted by their average ranking across several top gene thresholds. 

Red bars indicate pathways discussed further in the text. f, For 12 separate differential 

gene expression profiles created by pairing gene expression measurements from a more 

stem-like haematopoietic lineage cell population (HSCs or LSCs) with a more differentiated 

haematopoietic lineage cell population (monocytes, lymphocytes, or all fully differentiated 

cells), we measured the correlation between the average expression of that profile and the 

synergy for each drug combination. After FDR correction, we plotted all combinations with 

significant correlations across at least two profiles. We find that some combinations of drugs 

tend to have higher synergy in more differentiated cancers, and that some combinations of 

drugs tend to have higher synergy in more stem-like cancers.
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Fig. 6 |. Transcriptomic factors affecting synergy of combinations including specific drugs.
a, The top pathway enrichments in the set of transcripts affecting synergy of drug 

combinations including the drug Venetoclax. Each node in the graph on the right represents 

a single pathway, where the colour indicates the strength of the enrichment, and edges 

indicate significant overlap in terms of the set of genes in each pathway. The zoomed inset 

graph on the left shows the genes in one pathway, ‘Regulation of cell death’, from the cluster 

of apoptosis-related pathways. In the left inset graph, each node is a gene, and the edges 

represent known protein-protein interactions. b, The top pathway enrichments in the set of 

transcripts affecting synergy of drug combinations including the drug cytarabine. The bar 
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plot (left) shows the top pathways, and the inset graph on the right shows the relevant genes 

from one pathway, ‘Organonitrogen compound metabolism’.
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