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Abstract

In growing populations, the fate of mutations depends on their competitive ability against the 

ancestor and their ability to colonize new territory. Here we present a theory that integrates 

both aspects of mutant fitness by coupling the classic description of one-dimensional competition 

(Fisher equation) to the minimal model of front shape (KPZ equation). We solved these equations 

and found three regimes, which are controlled solely by the expansion rates, solely by the 

competitive abilities, or by both. Collectively, our results provide a simple framework to study 

spatial competition.

Propagating fronts are a ubiquitous feature of spatially extended systems. Examples include 

the spread of an invasive species in an ecosystem [1], the spread of a ferromagnetic phase 

across a magnet [2], the spread of a high fitness allele through a population [3], or even the 

propagation of a flame front [4]. These and other applications have stimulated a sustained 

effort to construct and analyze coarse-grained models of traveling reaction-diffusion waves 

[1, 5–8]. By now, we have a general understanding of one-dimensional waves, but two and 

higher dimensions pose numerous challenges because of the interplay between the dynamics 

along the wave front and the shape of the wave front itself.

Growing microbial colonies provide an excellent experimental system to study the two-way 

coupling between the shape of the colony edge and the spatial distribution of different 

genotypes in the population [9–11]. At the same time, microbial colonies also serve as useful 

model systems for tumor growth and geographic expansions of plants and animals [12]. 

Hence, the spatial competition between two different genotypes has garnered much recent 

attention [13, 14].
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Although many approaches have been put forward to describe how microbes colonize 

surfaces, we are still lacking a simple, but general framework to describe competition 

during colony growth. Most computational studies rely on numerical simulations of complex 

microscopic models, and therefore can draw few general conclusions about possible 

outcomes of spatial competition [15–17]. To a certain extent, this challenge has been 

recently addressed by theoretical studies using either field-theory [18] or geometric-optics 

[11, 13, 19] approaches to describe morphologies of colonies with two competing species. 

These theoretical models, however, are agnostic to the mechanism of competition and 

assume the knowledge of emergent properties, such as the invasion velocity of the mutant. 

In consequence, their utility is rather limited because they cannot, for example, predict the 

winner of the competition given the microscopic qualities of the mutant and the ancestor. 

Thus, there is a need for a tractable model that can integrate the microscopic dynamics with 

the changes in the colony shape during spatial competition.

To construct such a model, we focused on growth on rich solid media so that one can neglect 

nutrient diffusion [20] and complex hydrodynamics [21, 22]. Under these assumptions, the 

state of the colony is well-described by two quantities: the spatial extent or “height” of the 

colony ℎ x, t  and mutant fraction f x, t , which change along the colony front (x-coordinate) 

and with time [18]. For simplicity, we consider only planar fronts, where ℎ is simply the 

distance by which the colony expanded from the inoculation site. Thus, we treat the colony 

edge as a thin interface. This is a reasonable approximation because the growth region 

extends only a few cell widths into the colony, and any successful mutant has to emerge near 

the colony edge; otherwise it is crowded out of the growth zone and remains trapped in the 

colony bulk [23].

The dynamical equations for ℎ x, t , and f x, t  emerge naturally as generalization the well-

studied limits of the Fisher-Kolmogorov-Petrovsky-Piskunov (FKPP) equation [3, 7] for one 

dimensional competition (no variation in ℎ) and the Kardar-Parisi-Zhang (KPZ) equation 

[24] for interface growth (no variation in f).

The KPZ equation is a continuum limit of the classic Eden model of colony growth [25]. 

It has been quite successful at describing both deterministic and stochastic patterns in 

microbial colonies [26] including those observed during two-species competition [23]. The 

KPZ equation can also be viewed as a phenomenological model based on gradient expansion 

similar to its justification for surface growth phenomena [24, 26]. The dynamical equation 

for ℎ x, t  reads

∂ℎ
∂t = v0 + v0

2
∂ℎ
∂x

2
+ Dℎ

∂2ℎ
∂x2 + αf,

(1)

where the first two terms express the isotropic expansion of the colony with velocity v0 along 

the local normal to the front, the third term encodes curvature relaxation, and the fourth term 

accounts for the difference in the expansion velocities of the mutant and the ancestor [18]. 

We used a linear interpolation between the two velocities because most of our result are 
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obtained “to the first order” in the differences between the two competitors. Higher order 

terms (such as αf ∂ℎ/ ∂x 2) are similarly ignored.

Assuming that the mutant has a selective advantage s f , the dynamics of the mutant fraction 

f is described a modified FKPP equation [3, 7]:

∂f
∂t = s f f 1 − f + Df

∂2f
∂x2 + v0

∂ℎ
∂x

∂f
∂x ,

(2)

where the first term accounts for differences in local reproduction rates, the second accounts 

for spatial rearrangements due to motility or population fluxes generated by the expansion 

dynamics, and the third is our addition to describe “passive” changes in f due to the motion 

of a tilted interface [18, 27, 28]. Indeed, a tilted front advances along its normal, so it moves 

both vertically and horizontally. The horizontal velocity −v0 ∂ℎ/ ∂x advects f t, x , which 

manifests in the term proportional to ∂f / ∂x in the equation above; see Fig. 2 in the SI [29] 

for an illustration.

Without the coupling to ℎ, the FKPP equation is the classic model of spatial competition 

between two genotypes in one dimension. Its asymptotic solutions are known as traveling 

waves because they have the form f x, t = f x − ut , where u is the invasion velocity of 

the mutant. In the following, we determine how the coupling between ℎ and f affects 

u by solving Eqs. (1) and (2) numerically using MATLAB’s pdepe (for codes, please 

visit [38]). We then develop an analytical theory that not only quantitatively matches the 

simulations, but also provides deep insights into the existence of three distinct regimes of 

spatial competition.

The solutions of the FKPP equation are broadly classified into so-called “pulled” and 

“pushed” waves depending on how the selective advantage s depends on mutant frequency 

f. Pulled waves are dominated by the dynamics at leading edge, and the invasion velocity 

can be obtained by linearizing the FKPP equation for small f; the resulting ‘Fisher velocity’ 

is given by uF = 2 Dfs 0  (see Refs. [1, 3, 7, 8]). In contrast, the velocity of pushed waves 

depends on the values of s at all f, and cannot be, in general, computed analytically except 

for some exactly solvable models such as with s f = s1 f − f0  [30, 31]. For this model, 

pushed waves occur for f0 ∈ − 0.5, 0.5  with u = Dfs1/2 1 − 2f0 ; the waves are pulled for 

f0 < − 0.5. Behavior for f0 > 0.5 is analyzed by changing variables from f to 1 − f.

We assume that the mutant has a local fitness advantage s f > 0, and first consider pulled 

waves with s f = s0 > 0. The emergence of a traveling wave of f x, t  is apparent in Fig. 

1(a). The corresponding ℎ x, t , however, is not a simple traveling wave (Fig. 1(b)). The 

colony front is composed of a curved portion dominated by the ‘mutant’ and a flat front 

dominated by the ‘ancestor’. While the transition point between these two regimes advances 

with the same velocity u, the overall shape of the curved portion depends on both time and 
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the co-moving coordinate x − ut  because the growth dynamics encoded by α persist even 

after the mutant displaces the ancestor.

To understand how the invasion velocity u is affected by the coupling to height, we 

computed it numerically at different values of α. For α = 0, the equations are effectively 

decoupled because genetic variation along the front does not create any disturbances in the 

front shape, which remains ℎ = v0t for all x. Mutant is faster than the ancestor when α > 0
and slower otherwise. While the latter case may seem paradoxical, it has actually been 

observed experimentally [19].

Simulation results are shown in Fig. 2, with different markers denoting different values of 

s0. We immediately observe that the data falls into two regimes: For small α, the invasion 

velocity is a constant, which depends on s0. For large α, the situation is reversed: the velocity 

depends on α, but not on s0. Thus, there appears to be two distinct regimes: one mediated by 

local competition described by the FKKP equation, and one mediated by the expansion rates 

in the KPZ equation.

We tested this hypothesis by comparing solutions of the uncoupled FKKP and KPZ 

equations to the results in Fig. 2. For small α, there is perfect agreement between the 

observed values of u and the expected Fisher velocity uF = 2 Dfs0. In hindsight, this may 

not be too surprising since pulled waves are controlled by the dynamics at the leading 

edge, where ℎ is flat and the coupling term is the FKPP equation vanishes. However, the 

influence of growth velocity differences manifests dramatically in the shape of the front, 

which changes from a V-shaped dent at negative α to a composite bulge for positive α; see 

Fig. 2.

For large α, the simulations match

u = 2α v0 + α ≈ 2αv0,

(3)

which can be obtained from the KPZ equation by analogy with the equal-time argument in 

Ref. [11] and the geometric theory in Ref. [19]. In this regime, the mutant forms a circular 

bulge [39] of radius v0 + α t, while the ancestor has a flat front at height v0t. These two 

curves intersect at point whose x-coordinate moves with velocity u = 2α v0 + α ≈ 2αv0. 

The transition between the s0–dependent and α–dependent invasion velocities occurs at a 

critical value of αc = 2s0Df /v0 when the velocity of the circular bulge exceeds the Fisher 

velocity. This agrees with the general observation that a faster moving solution typically 

controls the behavior of a traveling wave [8].

The above results for pulled waves are surprising from both mathematical and biological 

perspectives. Mathematically, it is surprising that the invasion velocity u is controlled by 

only one of the equations, i.e. there is no two-way coupling. Biologically, it seems counter-

intuitive that, no amount of disadvantage in the expansion velocity α < 0  can overcome the 

competitive advantage s0 . To see whether these conclusion hold more generally, we carried 
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out equivalent simulations for pushed waves with s f = s1 f − f0 . The results are shown in 

Fig. 3.

Compared to pulled waves, there are three regimes. One regime occurs for large α and 

corresponds to a mutant assuming a circular bulge morphology invading at u = 2αv0. This 

regime is completely analogous to what we described for pulled waves above.

In addition, there are two new regimes at α near zero and at large negative α. The dynamics 

in the latter regime depends on whether Eq. (2) describes propagation into an unstable 

state (s 0 < 0, the mutant has a competitive advantage at any f) or into a metastable state 

(s 0 > 0, the mutant needs a critical density to out-compete the ancestor).

For s 0 < 0 (f0 > 0, f = 0 is stable), the invasion speed u changes sign when α becomes 

sufficiently negative. In this case, the ancestor invades a more competitive mutant s1 > 0
because it has a much larger expansion velocity. The invasion proceeds with a circular bulge 

of the ancestor which must advance with velocity u = − 2 α v0.

When s 0 > 0 (f0 < 0, f = 0 is unstable), the invasion velocity remains positive for all 

values of α, and eventually becomes constant. The value of this limiting velocity matches 

2 Dfs 0 = 2 −Dfs1f0, which is the velocity that one would obtain by linearizing Eq. (2). 

This behavior is identical to what we found for pulled waves, in Fig. 2, so, in effect, the 

slower expansion rate of the mutant converted its invasion of the ancestor from pushed to 

pulled.

The other new regime occurs for α near zero. In contrast to pulled waves, the invasion 

velocity u exhibits a dependence on both s1 and α. We will now analyze this new dynamics 

using perturbation theory.

To find how u depends on both s f  and α, we will treat the coupling between the dynamics 

of f and ℎ, i.e. the term v0 ∂xℎ∂xf in Eq. (2), using an approach detailed in Refs. [32–35]. The 

scale of the perturbation is thus set by the maximal front slope which we denote σ.

The perturbative scheme proceeds as follows: In the absence of coupling, the invasion 

profile of a mutant fraction (f z = x − ut  is f 0 z ) is the solution of the standard one-

dimensional Fisher equation, which are known exactly for certain s f . We can use the 

solution of the standard one-dimensional invasion problem to obtain the correction to u due 

to nontrivial morphological changes associated with mutant sectors. Substituting f 0 z  into 

Eq. (1) leads to a non-linear differential equation whose solution provides the first order 

profile ℎ 1 z = x − ut . As described in the SI [29] the non-linear equation can be solved 

exactly via a Cole-Hopf transformation, resulting in a complicated form for ℎ 1 z = x  that 

depends on v0, Dℎ and α. Qualitatively, this height profile is a sigmoidal curve that changes 

from v0t in the region f 0 ℎ′ 0 , to v0t + σz as f 1 ℎ′ σ . The limiting slope can be 

obtained from Eq. (1) by setting f = 1 (see [29] for details).
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−uσ = α + v0σ2/2 .

(4)

After substituting ℎ′ 1 z  into Eq. (2), the methodology described in Refs. [32–36] can be 

used to compute the first order correction to the invasion velocity, leading to the correction

u = u0 − κv0σ + O v0
2σ2 ,

(5)

where u0 is the unperturbed velocity for α = 0.

To coefficient κ in Eq. (5) is a ratio of integrals that depend on the function ℎ 1 z  (see SI 

[29]). In general, the solution is complex, but it can be simplified in two limiting cases.

By setting Dℎ = 0, equation for ℎ 1 z = x  becomes first order, and its solution simplifies the 

evaluation of all downstream integrals. This limit corresponds to the geometric description 

in which the profile simply advances along the local normal without further relaxation, 

yielding κgeom. = 1
4 1 + 2f0 . The Dℎ = 0 case captures the qualitative changes in κ including 

the transition to pulled waves at f0 = − 0.5, where κ must vanish. Thus, our theory 

recapitulates the finding that the invasion speed becomes insensitive to the morphology 

when the wave becomes pulled.

The insensivity of pulled waves to morphology is a general finding of our perturbative 

approach. To demonstrate this, consider the dynamics of the tail of any pulled wave (with 

arbitrary s f ), which follows a linearized Eq. (2) about f = 0 in the co-moving frame:

−uf′ ≈ s 0 f + Dff″ + v0f′ℎ′ .

(6)

The zeroth order solution travels at a speed u0 = 2 s 0 Df and the profile has a tail which is 

asymptotic to e− s 0 /Dfz as z ∞. The correction to the invasion velocity (see SI) is a ratio 

of integrals, with the denominator being ∫−∞
∞ f 0 ′ 2eu0z/Dfdz. Substitution of the asymptotic 

profile shape immediately shows that this integral diverges, and thus the correction to the 

invasion speed vanishes for any pulled wave.

Another useful approximation is obtained by neglecting the nonlinear term in Eq. (1), which 

is justified for small α because ∂ℎ/ ∂x ∝ α. In this case, we have to evaluate the downstream 

integrals numerically, but obtain a perfect agreement with the simulations at least when α is 

small; see Fig. 4. Our perturbation theory, as well as the model described in this work, rests 

on the assumption of small slopes in the height field σ ≪ 1  allowing a gradient expansion 

description of the colony expansion. In terms of our three velocities, this requires α ≪ u0 ≪ v0
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We can use perturbation theory to estimate the location of the transition from a right-moving 

wave (mutant taking over) to the left-moving wave (ancestor taking over). This occurs 

when u = 0, i.e for α = − u0
2/ 2v0κ2 . Beyond this point, simulations show that u jumps 

discontinuously (when f0 > 0) from u = 0 to the value corresponding to a left-moving 

circular arc as discussed above.

Although we have not studied stochastic versions of Eqs. (1) and (2), we anticipate no 

major qualitative changes due to noise. Our focus is largely on sector morphologies formed 

by selective forces between strains, which have characteristic lengths scaling linearly with 

time, overshadowing noise-induced, sublinearly scaling fluctuations. As such, long-term 

ballistic sector motion should render noise corrections irrelevant, though it may cause minor 

quantitative alterations to invasion velocity values [36, 37]. For pulled waves, noise might 

also induce qualitative changes, such as a non-zero κ reflecting noise strength.

Microbes, cancer cells, and invasive species often spread across space forming a continuous 

two-dimensional populations. Here, we couple a model of surface growth (KPZ equation) 

to a model of competition (generalized FKPP equation). The combined model faithfully 

describes recent observations of nontrivial colony morphologies near emerging mutants [11, 

19]. Moreover, it elucidates how colonization rate and local competitive strength affects the 

fate of the mutation. We find that mutant takeover relies on whether the FKPP equation 

allows for pulled waves, driven by growth dynamics at low mutant densities, or pushed 

waves, influenced by growth dynamics across the entire mutant-ancestor interface.

For pulled invasions, we found that the mutant with a positive selective advantage s 0 > 0
always wins regardless of the value of α. For small α, the invasion velocity depends only on 

s 0 , while for large α, it is given by the geometric theory and depends on α only. For pushed 

waves propagating into an unstable state s 0 > 0, the mutant always wins as well, but its 

invasion velocity could depend on both s f  and α. The competitive outcome, however, could 

be different for pushed waves propagating into a metastable state. If s 0 < 0, the mutant that 

would invade in a strictly one-dimensional population, i.e. without coupling to morphology, 

could lose during colony expansion. Specifically, a large negative α reverses the direction of 

invasion. Simulations with a different selection coefficient s f = s3 f3 − f0  further suggest 

invasion reversal is only possible when f = 0 is an unstable fixed point - see SI [29].

These intricate interplay between local competition and global expansion rates are supported 

by numerical simulations and analytical perturbation theory. Taken together our results not 

only elucidate many subtleties associated with mutant establishment, but also pave the way 

for a more parsimonious and universal description of evolutionary and ecological processes 

in growing populations that is also very amenable to theoretical analyses.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIG. 1: 
Sample simulation results generated by solving Eqs. (1) and (2) numerically in the pulled 

wave regime s f = s0. (a) Profiles of mutant frequency f x, t  at five equally-spaced time 

slices labeled by color. (b) Height profiles ℎ x, t  taken at the same five time points as in 

panel (a) with the same color convention. Starting from a flat initial condition, the height 

field develops a nontrivial morphology through a dependence of the growth rate of ℎ on 

the mutant frequency f. (c) The spatial distribution of the two competitors is visualized by 

plotting successive solutions of the height field ℎ and coloring each point according to the 

value of f at the corresponding x and t.
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FIG. 2: 
Invasion dynamics in pulled waves. (Top): Invasion velocity shows two regimes with 

dependence on either α or s. The horizontal dashed lines are the predicted ‘Fisher velocities’. 

The curved dashed line is u = 2αv0, as predicted by Eq. (3). For each value of s0 the filled 

in circle shows the location of the transition point αc between the composite and circular 

arc morphologies. (Bottom): Depending on α, there are three distinct colony morphologies. 

When α < 0 the front shape is a V-shaped dent. When 0 < α < αc the morphology is a 

composite bulge consisting of a central circular arc transitioning to a constant slope at 

the bulge edges. When α > αc the front is entirely a circular arc. The red arrow shows the 

invasion velocity u, which is the speed of the mutant-wildtype boundary along the horizontal 

axis. Parameters used are v0 = 10, Df = Dℎ = 1.
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FIG. 3: 
Invasion dynamics in pushed waves. Symbols show the measured invasion velocity from 

simulations as a function of the expansion velocity difference α. The dashed curves show 

the result of the perturbation theory discussed in the text, and the horizontal dashed-dotted 

lines are the invasion velocity predicted from simple linearization of Eq. (2). When α is large 

and positive, all invasion velocities match the solid black line, the speed of the invading 

circular arc. The behavior for α sufficiently negative (corresponding to a mutant growing 

much slower than the wildtype), depends on the sign of f0. When f0 < 0, the invasion 

speed approaches a value predicted by the linearized equations u = 2 −s1f0Df. For f0 > 0, 

the invasion velocity changes sign at large negative α, reversing the competitive outcome. 

The negative invasion speed is that of a leftward-moving circular arc u = − 2 α v0  which 

is depicted by the solid black line. Inset in the figure is a sample morphology which arises 

when the mutant is invaded by the wildtype u < 0 . The simulation shown is initialized as a 

half-space where the left half is occupied by mutant and the right by wildtype. Parameters 

are v0 = 20, s1 = 4, Df = Dℎ = 1.
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FIG. 4: 
Numerical results showing the dependence of the coefficient κ as defined in Eq. (5) on f0. 

The numerical values of κ were obtained by fitting measured invasion velocities as functions 

of α in the limit α 0. The best-fit slope is then used to obtain κ in Eq. (5). The red dashed 

line is the theoretical prediction of our perturbative analysis for the value of Dℎ used in 

simulation at small α. The yellow dashed line is the theoretical value of κ when Dℎ = 0. 

Parameters are v0 = 10, Dℎ = Df = 1, s1 = 2.
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