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Abstract

Clear cell renal cell carcinoma (ccRCC) is a common and aggressive subtype of kidney

cancer. Many patients are diagnosed at advanced stages, making early detection cru-

cial. Unfortunately, there are currently no noninvasive tests for ccRCC, emphasizing

the need for new biomarkers. Additionally, ccRCC often develops resistance to treat-

ments like radiotherapy and chemotherapy. Identifying biomarkers that predict treat-

ment outcomes is vital for personalized care. The integration of artificial intelligence

(AI), multi-omics analysis, and computational biology holds promise in bolstering

detection precision and resilience, opening avenues for future investigations. The

amalgamation of radiogenomics and biomaterial-basedimmunomodulation signifies a

revolutionary breakthrough in diagnostic medicine. This review summarizes existing

literature and highlights emerging biomarkers that enhance diagnostic, predictive,

and prognostic capabilities for ccRCC, setting the stage for future clinical research.
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1 | INTRODUCTION

Renal cell carcinoma (RCC), originating in the epithelium of kidney

tubules, stands out as a prevalent malignant tumor within the urinary

system, accounting for around 3% of adult malignancies.1 Among

RCCs, clear cell renal cell carcinoma (ccRCC) emerges as the predomi-

nant and aggressive histological subtype, encompassing 75%–85% of

all RCC cases.2 Over the past two decades, there has been a twofold

increase in the global incidence of ccRCC, accompanied by a yearly

1% rise in mortality rates.3

Following early diagnosis and effective surgical intervention,

patients can attain a 5 year survival rate of up to 93%.4 Regrettably,

the lack of typical early clinical symptoms leads to the diagnosis of

nearly 40% of ccRCC patients during the advanced stages of the dis-

ease, when tumors are already sizable and/or have metastasized. At

this juncture, offering effective therapeutic strategies becomes chal-

lenging, resulting in an unfavorable prognosis, with a 5 year survival

rate of below 20%.5,6 Biomarkers stand as pivotal tools within can-

cer research, particularly for ccRCC. These indicators are extensively

present in blood and urine, enabling the facile collection of speci-

mens and offering a minimally invasive or noninvasive, convenient,

sensitive, and efficient means of monitoring.7 They wield substantial

significance in the early diagnosis of ccRCC, identifying patients at

heightened risk of disease recurrence or progression,8 and augment-

ing patient survival. Beyond their role in elucidating cancer diagnosis

and determining patient prognosis, biomarkers also serve as predic-

tive factors for anticipating patient responses to therapies or

interventions.9

Given the distinct sensitivities of patients with renal clear cell car-

cinoma to targeted or immunotherapy drugs, instances of drug
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resistance are frequent (primary and secondary drug resistance). Fur-

thermore, the efficacy of radiotherapy and chemotherapy remains

suboptimal. Thus, the identification of biomarkers to forecast the

therapeutic effectiveness of drugs and to assess patient prognoses

assumes paramount importance. This endeavor is vital for devising

personalized treatment plans.10 Enhancing the early diagnostic rate of

ccRCC, mitigating metastasis in RCC, and elevating survival rates for

advanced patients are pressing objectives. Thus, urgent efforts are

needed to explore early diagnostic markers of ccRCC.11 Equally

important are the identification and development of molecular bio-

markers linked to drug treatment sensitivity, enabling the prediction

of therapeutic outcomes for renal clear cell carcinoma and prognosis

assessment.11

Within this article, we have comprehensively outlined established

biomarkers, along with potential ones, and elucidated new research

avenues focused on diagnosing, predicting, and prognosticating renal

clear cell carcinoma. This compilation serves as a cornerstone for

forthcoming clinical investigations (Figure 1 and Table 1).

F IGURE 1 Illustration of the spectrum and variability of biomarkers involved in the diagnosis, prognosis, and prediction of clear cell renal cell
carcinoma.

TABLE 1 Summary of the main roles of commonly used biomarkers.

Biomarker Diagnostic Prognostic Predictive Clinical Specimen References

ccRCC1-4 � � ccRCC tissue 12,13

TLR3 � � ccRCC tissue 14,15

IL-6/IL-8 � ccRCC tissue and serum 16–21

PD-L1 � Plasma, peripheral blood, and ccRCC tissue 22–28

BIRC5/survivin � ccRCC tissue 29–31

Immune Response and

Inflammatory Markers

� Plasma 32,33

NNMT � ccRCC tissue, plasma, and kidney tissues 34–37

Exosomes Urine, blood, and ccRCC tissue 38,39

DNA Methylation � kidney tissues, urine 40–47

CAIX/CA9 � Serum and ccRCC tissue 48–52

CTCs � Blood and peripheral blood 53,54

3p 55–68

microRNAs Serum, plasma, and urine 69–84
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2 | BIOMARKERS

2.1 | Predictive role

2.1.1 | ccRCC1-4

An analysis of The Cancer Genome Atlas (TCGA) dataset identified

four distinct molecular subgroups within ccRCC, designated as m1–

m4.12 Prognostically, ccRCC1 and ccRCC4 tumors exhibited a lower

response rate, reduced overall survival (OS), and shorter progression-

free survival (PFS) compared to ccRCC2 and ccRCC3 tumors. Through

unsupervised transcriptome analysis, four robust ccRCC subtypes

(ccRCC1–ccRCC4) were discerned, each demonstrating varying

responses to sunitinib treatment. Specifically, ccRCC2 and ccRCC3

tumors displayed significantly improved median OS (p = .0003) and

PFS (p = .0001) compared with ccRCC1 and ccRCC4 tumors.13 These

molecular subtypes emerged as the only significant covariates in a

multivariate Cox regression model for both PFS and OS. Collectively,

these findings suggest that molecular subtypes of ccRCC serve as pre-

dictive markers for sunitinib treatment response in patients with met-

astatic disease. In this context, it is important to note that the

ccrcc1-4 molecular subtyping, proved to be related to older

therapies.85

2.1.2 | TLR3

TLR3 (toll-like receptor 3) is a critical component of the innate

immune system, responsible for mediating antiviral responses through

the recognition of viral elements such as double-stranded RNA and

polyinosinic–polycytidylic acid poly (I:C).14 It also induces the produc-

tion of type I interferons, particularly IFN-λ. Previous studies have

shown that TLR3 is abundantly expressed in ccRCC tumors.15 In a

sub-analysis of the AXIS trial, which compared the efficacy of axitinib

and sorafenib in ccRCC patients, it was observed that higher expres-

sion levels of TLR3 (≥ median) in axitinib-treated patients were associ-

ated with longer PFS (HR: 0.4, 95% CI: 0.2–0.9; p = .023). Conversely,

lower expression levels of TLR3 (< median) in sorafenib-treated

patients correlated with both longer PFS (HR: 3.9, 95% CI: 1.4–10.7;

p = .005) and OS (HR: 3.0, 95% CI: 1.1–8.0; p = .022).86

2.2 | Prognostic and predictive role

2.2.1 | IL-6/IL-8

Interleukin-6 (IL-6) and interleukin-8 (IL-8) have been identified as sig-

nificant molecular events in the late stages of ccRCC pathogenesis.

These cytokines have been suggested as both predictive and prognos-

tic biomarkers for patients diagnosed with ccRCC.16–19 Huang et al.

demonstrated that resistance to sunitinib, a tyrosine kinase inhibitor

(TKIs), is mediated through a mechanism that circumvents antiangio-

genic effects. Specifically, they observed that neovascularization could

potentially be reactivated via a VEGF/VEGFR-independent path-

way.16 In their study, 89 factors were screened, revealing elevated

plasma levels of IL-8—a potent proangiogenic chemokine—in mice

with sunitinib-resistant tumors compared to those with sunitinib-

sensitive tumors.

In a separate study, Petillo et al. elucidated that the activation of

the transcription factor STAT3 by IL-6 promotes angiogenesis. This is

achieved through the induction of vascular endothelial growth factor

(VEGF) and fibroblast growth factor (FGF) expression in tumor cells.16

Patients exhibiting elevated baseline serum levels of IL-6 and IL-8

are correlated with reduced PFS and/or OS when treated with pazo-

panib or sunitinib.19–21 Studies by Huang et al. showed that increased

plasma levels of IL-8 were detected in the plasma of mice with

sunitinib-resistant tumors compared to mice bearing sunitinib-

responsive tumors and treatment with IL-8 neutralizing antibodies

reinstated sensitivity to sunitinib; Huang et al. further substantiated

this by revealing that mice with sunitinib-resistant tumors exhibited

increased plasma levels of IL-8 compared to those with sunitinib-

responsive tumors. Importantly, the administration of IL-8 neutralizing

antibodies restored sunitinib sensitivity in these resistant models.16

2.2.2 | PD-L1

PD-L1, a ligand for programmed death-1 (PD-1), plays a crucial role in

inhibiting T-cell-mediated immune responses. As an immunosuppres-

sive molecule, PD-L1 attenuates the activation of T cells, thereby

facilitating tumor progression. In clear ccRCC, PD-L1 protein is pre-

sent in 10%–25% of tumor cells and has been identified as a bio-

marker indicative of a poorer prognosis.22 A meta-analysis further

supports the utility of PD-L1 expression as a valuable prognostic tool

in ccRCC patients.23 Montemagno et al. reported that the levels of

sPD-L1 (soluble forms) and sPD-1 (soluble forms) were correlated to

clinical parameters and PFS. High levels of sPD-1 or sPDL1 were not

correlated to PFS under bevacizumab while they were independent

prognostic factors of PFS in the sunitinib group.24

In a complementary study by Larrinaga et al. the authors advocate

for the clinical utility of a sPD-L1 level exceeding 793 ng/mL as an

independent and novel prognostic indicator for ccRCC patients.25

They also observed that sPD-L1 levels increased across International

Metastatic Renal Cell Carcinoma Database Consortium (IMDC) prog-

nostic groups among patients with metastatic ccRCC. This elevation

was further correlated with the clinical response of these patients to

systemic therapy.

Intriguingly, a multivariate analysis revealed that high expression

levels of AXL in conjunction with PD-L1 were associated with a trend

toward reduced OS, with a hazard ratio (HR) of 2.01 (95% CI, 1.18–

3.44, p = .084).26 These findings suggest AXL as a potential factor

contributing to resistance against PD-1 blockade. They provide strong

evidence supporting the screening of both AXL and PD-L1 expression

for the effective management of advanced ccRCC. Additionally, the

co-expression of HHLA2 and PD-L1 was found to have a detrimental

impact on the prognosis of ccRCC patients.27
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Lastly, in the context of localized ccRCC, the presence of infiltrat-

ing CD8 + PD-1 + Tim-3 + Lag-3+ exhausted tumor-infiltrating lym-

phocytes (TILs) alongside ICOS Treg cells has been associated with an

unfavorable prognosis for patients one. This subset of patients could

potentially derive benefit from adjuvant therapy involving agents that

modify the tumor microenvironment (TME) and employ checkpoint

blockade strategies.28

2.2.3 | BIRC5/Survivin

The BIRC5 gene, a member of the inhibitor of apoptosis (IAP) family,

encodes the Survivin protein. Prior in vitro studies have established

that Survivin expression serves as an independent predictor for the

progression and mortality associated with ccRCC.29 This suggests that

Survivin may offer a novel target for the development of adjuvant

therapies. In a separate in vitro study, Linehan et al. demonstrated

that the co-expression of Survivin and B7-H1, a ubiquitous anti-

apoptotic receptor, offers an enhanced predictive value for assessing

ccRCC tumor aggressiveness.30

Moreover, Krambeck et al. conducted an extensive analysis of

1,994 ccRCC specimens and reported that patients with high Survivin

(SurvivinHi) and positive B7-H1 (B7-H1+) expression in their ccRCC

tumors are at an elevated risk of mortality due to the disease.31 The

prognostic and clinicopathological significance of Survivin expression

in determining renal cancer patient outcomes has thus been further

corroborated.

2.2.4 | Immune response and inflammatory markers

RCC is one of the most immune-infiltrated tumors.87–89 Emerging evi-

dence suggests that the activation of specific metabolic pathway have

a role in regulating angiogenesis and inflammatory signatures.90,91

Features of the TME heavily affect disease biology and may affect

responses to systemic therapy.92–95

Inflammation is an important component of both the progression

of carcinogenesis and antitumor response. O'Brian et al. reported that

the C-reactive protein and the neutrophil/lymphocyte (NLR) ratio are

independent prognostic factors of poor survival in patients with

ccRCC. High CRP is also associated with numerous poor prognostic

indicators including larger tumor size, higher grade and stage, lym-

phatic involvement, microvascular invasion, and aggressive histopath-

ological findings such as spindle morphology and sarcomatoid

morphology.32 In a study by Eduard Roussel, elevated baseline CRP

and NLR predict worse OS and PFS on nivolumab in m-ccRCC

patients. Including baseline CRP in the IMDC pro gnostic model

improves its discriminatory power to predict OS and PFS since the

start of nivolumab.

Similarly, in another study by Yano et al., OS for patients

with CRP >1 mg/dL was significantly shorter than those with

CRP <1 mg/dL in both ccRCC (58 patients: p = .009) and nccRCC

(16 patients: p = .008).33

2.3 | Diagnostic and prognostic role

2.3.1 | NNMT

Nicotinamide N-methyltransferase (NNMT) is responsible for catalyzing

the N-methylation of nicotinamide, utilizing S-adenosyl-L-methionine as

the methyl donor. Notably, NNMT has been assessed both as a diagnostic

marker and a prognostic indicator for survival in patients diagnosed with

ccRCC.34 A comprehensive proteotranscriptomic analysis unveiled NNMT

as a dependable biomarker for detecting ccRCC2, particularly in

advanced-stage cases.35 In RCC, NNMT protein expression was signifi-

cantly heightened, particularly within clear cell RCC (82.8%).36

Through univariate survival analysis, it was established that

heightened levels of NNMT enzyme activity correlated with an unfa-

vorable prognosis. This notion was reinforced by Kaplan–Meier

curves, which illustrated prolonged survival periods among patients

with tumors showcasing low NNMT expression, whereas the opposite

was observed for those with high NNMT expression.37

2.3.2 | Exosomes

Exosomes, extracellular vesicles stemming from cells, exhibit diame-

ters ranging from 40 to 160 nm. These vesicles harbor an assortment

of biomarkers, encompassing disease-specific DNA, RNA, metabolites,

signaling molecules, and cell-surface proteins.38 Remarkably, cancer

cells excrete exosomes at a rate 10 times greater than that of normal

cells. Scrutiny of exosomes derived from tumors yields pivotal insights

into tumor-related profiles.39

Investigations into exosomal miRNA as a plausible ccRCC bio-

marker have revealed the communicative role of miRNA in intercellu-

lar processes.96 Employing next-generation sequencing (NGS), it was

uncovered that exosomal miR-30c-5p holds promise as a diagnostic

biomarker for early-stage ccRCC. Furthermore, this miRNA may

modulate the expression of HSPA5, a protein linked to ccRCC pro-

gression.97 Notably, miR-126-3p, when combined with miR-449a or

miR-34b-5p, exhibits significant potential in distinguishing ccRCC

patients from healthy individuals. The diagnostic prowess of this com-

bination was evident (miR-126-3p-miR-449a: area under the curve

AUC = 0.84; 95% confidence interval CI: 0.7620–0.9151; p < .001;

miR-126-3p-miR-34b-5p: AUC = 0.79; 95% CI: 0.7013–0.8815;

p < .001).96 Notably, exosomes from cancer stem cells (CSCs) intro-

duce bioactive miR-19b-3p of epithelial-mesenchymal transition

(EMT) by inhibiting PTEN expression in cancer cells through CSC exo-

somes. CD103 facilitates the targeting of CSC exosomes to cancer

cells and organs, thereby conferring enhanced lung metastatic capac-

ity to ccRCC, and highlighting CD103 exosomes as potential diagnos-

tic indicators of metastatic potential.98

In ccRCC patients, Tsuruda et al. observed a significant elevation

in the protein expression levels of RAB27B within sunitinib-resistant

ccRCC cell lines. As a central participant in exosome secretion,

RAB27B may play a role in drug resistance through the MAPK and

VEGF signaling pathways.99
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Moreover, exosome-associated long noncoding RNAs (lncRNAs)

have emerged as pertinent to anti-tumor immunity and ccRCC prognosis.

Through the deployment of Bayesian spike-and-slab lasso regression, a

prognostic model was constructed, exhibiting enhanced reliability in pre-

dicting 1, 3, and 5 year survival. Consequently, Kaplan–Meier curves

unveiled a bleaker prognosis in the high-risk score cohort (p < .001).100

2.3.3 | DNA methylation patterns

DNA methylation is a process orchestrated by DNA methyltransferase

(DNMT) enzymes, leading to the alteration of cytosine residues through

the addition of a methyl side group, resulting in the formation of

5-methylcytosine.40 This phenomenon is a significant component of the

molecular machinery governing cancer evolution and prognosis. DNA

methylation fosters the progression of malignant cells by activating

oncogenes and deactivating tumor suppressor genes.41 For over two

and a half decades, the hypermethylation of CpG islands, which leads to

the suppression of tumor suppressor gene expression, has been exten-

sively studied in the context of ccRCC.42 An independent validation of

a set of 11 CpG sites within The TCGA data have demonstrated an

association with roughly 90% or higher sensitivity and 80% specificity

in distinguishing between kidney cancer and normal tissues or ccRCC.43

In a similar vein, a panel composed of ZNF677, FBN2, PCDH8,

TFAP2B, and TAC1 has been linked to approximately 82% sensitivity

and 96% specificity. Remarkably, the hypermethylation of ZNF677

and PCDH8 within tissue samples exhibited significant associations

with various unfavorable clinicopathological parameters. For the pur-

pose of detecting ccRCC through urine samples, the highest diagnos-

tic accuracy was observed with a panel involving ZNF677 and PCDH8

(with or without FBN2 or FLRT2), yielding sensitivities ranging from

69% to 78% and specificities from 69% to 80%.44 Zhou et al. intro-

duced a novel prognostic model based on six methylation-driven

genes (SAA1, FUT6, SPATA18, SHROOM3, AJAP1, and NPEPL1) that

enables the prediction of OS in individuals diagnosed with ccRCC.

Moreover, they identified enhanced drug sensitivity to sorafenib, axi-

tinib, gefitinib, erlotinib, cediranib, ZM447439, RO-3306, and cytara-

bine within the low-risk group, whereas the high-risk group exhibited

greater sensitivity to cisplatin and camptothecin.45 Additionally, pro-

moter methylation of HOXA9 and OXR1 was observed in 73% and

87% of renal cell tumors, respectively. A two-gene methylation panel

consisting of OXR1 and MST1R demonstrated the ability to identify

ccRCC with an impressive 90% sensitivity and 98% specificity.46

An analysis of promoter-methylated genes within ccRCC patients

unveiled a notable reduction in survival among patients with more

than 12 hypermethylated genes compared with those with fewer than

12 hypermethylated genes.47

2.3.4 | Carbonic anhydrase IX (CAIX/CA9)

Carbonic anhydrase IX (CAIX), one of the 14 isoforms of carbonic

anhydrase enzymes present in humans, is found to be significantly

upregulated in various cancer types. In RCC, CAIX stands out as a

well-characterized enzyme. Its expression is modulated by hypoxia-

inducible factor 1 alpha (HIF-1α), and it is known to impact processes

related to hypoxia. As part of the histological subtype diagnosis,

immunohistochemistry analyses play a pivotal role. These analyses pri-

marily rely on three immunomarkers: cytokeratin 7 (CK7), α-methyl

acyl-CoA racemase (AMACR), and CAIX. Together, these markers

form an initial panel for diagnosis.48 Zhu et al. discovered that CAIX

aptamer-functionalized targeted nanobubbles have the potential to

enhance ultrasound molecular imaging of tumor cells, thereby elevat-

ing the accuracy of early diagnosis.49 Similarly, Minn et al. synthesized

64Cu XYIMSR-06, a dual-motif CAIX ligand, which has demonstrated

the capability to visualize ccRCC using positron emission tomogra-

phy.50 This suggests that molecular imaging agents targeting CAIX

hold promise for enhancing diagnostic precision.

In the ccRCC patient cohort as a whole, the Kaplan–Meier sur-

vival analysis demonstrated a notable correlation between elevated

serum levels of carbonic anhydrase IX (CAIX) and abbreviated OS

(HR = 2.65, 95% CI = 1.19–5.92, p = .0136). Similarly, within the

major subgroup of patients subjected to temsirolimus and bevacizu-

mab treatments, the Kaplan–Meier survival curve showcased a pro-

nounced link between elevated serum CAIX levels and diminished OS

(p = .0006). Notably, diminished CAIX staining (≤85% staining)

emerged as an independent adverse prognostic factor for survival.51

However, in contrast, Büscheck et al. conducted a retrospective

examination of 1809 cases of RCC, adhering to the 2016 World

Health Organization (WHO) classification criteria. Their investigation

revealed a noteworthy association wherein heightened CAIX expres-

sion within the ccRCC group corresponded with lower Fuhrman grade

and ISUP classification, decreased tumor stage, and the absence of

distant metastases. Furthermore, this heightened CAIX expression

was aligned with improved recurrence-free survival and OS

outcomes.52

2.3.5 | Circulating tumor cells

Circulating tumor cells (CTCs) have been explored as both diagnostic

tools and prognostic indicators of survival in patients diagnosed with

ccRCC.53,54 However, isolating CTCs poses a challenging endeavor,

and previous methodologies to assess CTCs in the context of ccRCC

have yielded limited clinical utility due to either low detection rates or

elevated false positives.53 Nonetheless, a breakthrough emerged

when Bade et al. identified renal-specific markers expressed by ccRCC

CTCs through the application of flow cytometry. They further har-

nessed a remarkably sensitive CTC microfluidic platform to validate

the presence of distinct subsets of CTCs exhibiting diverse combina-

tions of cytokeratin (CK), epithelial cell adhesion molecule (EpCAM),

CAIX, and/or carbonic anhydrase XII (CAXII). The utilization of

receiver operating characteristic (ROC) curve analysis for two CTC

groups (CAXII S+ vs. CK+ either CK S+ or dual-positive (DP))

revealed a significant correlation between the number of CK+ CTCs

(with an optimal cutoff of 2.6/mL) and radiographic progression
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(p < .05). In contrast, the number of CAXII S+ CTCs did not exhibit a

significant correlation (p > .05). This finding underscores the signifi-

cance of acknowledging CTC heterogeneity in the context of ccRCC

CTC diagnostics.53 Furthermore, an immunohistochemistry analysis

unveiled a heightened likelihood of detecting CTCs with an increase

in tumor size, particularly in cases of ccRCC.54

2.4 | Diagnostic, prognostic, and predictive role

2.4.1 | Genes on chromosome 3p

The loss of chromosome 3p and inactivating mutations within the

tumor suppressor genes situated on chromosome 3p constitute

pivotal oncogenic driver events in ccRCC. Evidently, over 90% of

sporadic ccRCC cases exhibit a deletion of chromosome 3p, poten-

tially leading to the loss of heterozygosity concerning the tumor

suppressor genes located on this chromosome. Predominantly

affected are VHL, PBRM1, BAP1, and SETD2 genes. Hence, chro-

mosome 3p alterations-based fluorescence in situ hybridization

(FISH) emerges as a suitable diagnostic tool for renal mass assess-

ment. Furthermore, the four mentioned tumor suppressor genes

demonstrate a high frequency of mutations within the ccRCC con-

text.55,56 Among these genes, the Von Hippel–Lindau (VHL) tumor

suppressor gene stands out as the most commonly mutated gene

in ccRCC pathogenesis. Central to its function is the orchestration

of ubiquitylation and proteasomal degradation of hypoxia-

inducible factor (HIF). Disruption of VHL through deletion or inac-

tivating mutations culminates in HIF accumulation and subsequent

elevation of downstream target genes, including erythropoietin

(EPO), VEGF, glucose transporter-1 (GLUT-1), and transforming

growth factor-α (TGF-α). This cascade bears immense significance

for cellular proliferation, angiogenesis, and tumorigenesis.57–60

Recent investigations into the VHL–HIF pathway's oncogenic

mechanism have catalyzed the advancement of targeted therapies

for ccRCC. The emergence of TKIs like Belzutifan and monoclonal

antibodies such as bevacizumab has significantly enhanced patient

survival and prognosis.59–62 Despite VHL's critical role in the

molecular pathogenesis of ccRCC, its exact prognostic and predic-

tive implications remain uncertain. A recent meta-analysis, how-

ever, suggests that VHL gene alterations appear to lack prognostic

and predictive value for patients with ccRCC.63

PBRM1, BAP1, and SETD2 are additional genes functioning as

epigenetic regulators, instrumental in the orchestration of gene tran-

scription and commonly implicated in chromosome remodeling.

PBRM1, standing as the second most frequently mutated gene in

ccRCC, appears altered in approximately 45% of ccRCC cases and is

often co-deleted alongside the VHL gene.58 Notably, PBRM1 has

emerged as a noteworthy prognostic and predictive marker for

early-stage ccRCC. Diminished expression of PBRM1 has been sig-

nificantly linked to unfavorable clinical outcomes, amplifying the

likelihood of reduced patient tolerance and inferior prognosis in

response to immune checkpoint inhibitors.64,65 Within the same

context, BAP1 and SETD2, also situated on chromosome 3p, register

mutations in 10%–15% of ccRCC patients each, with both mutations

correlating with adverse patient prognosis.58 Tumors harboring

BAP1 mutations exhibit heightened Fuhrman grading and mTORC1

activation status, enabling the prediction of patient response to

mTORC1 inhibitors. This underscores the favorable prognostic and

predictive value of BAP1.66,67 Furthermore, SETD2 mutations and

reduced expression are associated with compromised cancer-

specific survival. These alterations elevate the risk of disease recur-

rence or metastasis, imparting additional impetus for their prognos-

tic relevance.68

2.4.2 | microRNAs

MicroRNAs (miRNAs/miRs) constitute a class of small endogenous

noncoding RNAs, spanning 19–22 nucleotides, that proficiently

modulate gene expression through translation repression and accel-

eration of recognized messenger RNA (mRNA) degradation. This

regulatory action transpires via target recognition at the 30 untrans-

lated region (UTR) of the intended gene, ultimately governing pro-

tein expression.69,70 This distinctive functionality has spurred their

detection within diverse bodily fluids, encompassing saliva, serum,

breast milk/colostrum, urine, and peritoneal cavity fluid. Signifi-

cantly, miRNAs have recently ascended as prospective cancer

biomarkers.70,71

Winter et al. substantiated that ccRCC tissue boasts a distinct

miRNA expression profile, enabling its differentiation from normal tis-

sue.72 Additionally, Shu et al. accomplished a multi-phase study

design, culminating in the identification of a 17-miRNA signature

capable of accurately discerning over 95% of tumor/adjacent samples.

This remarkable precision arises from the inherent stability and func-

tionality of the identified miRNA panel. Furthermore, within the same

investigation, miR-204-5p and miR-139-5p were identified as linked

to poor survival outcomes.73

Liang et al. contributed a panel of three miRNAs, namely miR-21,

miR-584, and miR-155, manifesting noteworthy diagnostic perfor-

mance in ccRCC. This panel exhibited both high sensitivity (98.3%)

and specificity (97.2%), and emerged as an independent prognostic

factor for OS, substantiated by both univariate and multivariate Cox

regression analyses.

Several studies have also furnished compelling evidence attesting

to the prognostic potential of miRNAs. For instance, heightened

expression of miR-630, miR-210-3p, miR-210, miR-141, and miR-

146a-5p has consistently been linked to the prediction of adverse

prognosis in ccRCC patients.74–78 In contrast, downregulation of miR-

30a-5p, miR-194, miR-217, miR-129-3p, miR-178, miR-204-5p, miR-

139-5p, and miR-124-3p has been correlated with inferior survival

outcomes.79

However, MicroRNAs as biomarkers of ccRCC have been recently

reviewed in some literatures.101,102 It is necessary to conduct large

clinical trials in the future to verify whether these tools are effective

in clinical decision-making.
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3 | METABOLOMICS

RCC is essentially a metabolic disease characterized by a reprogram-

ming of energetic metabolism.103–107 In particular the metabolic flux

through glycolysis is partitioned,108–110 and mitochondrial bioenerget-

ics and OxPhox are impaired, as well as lipid metabolism.111–113 These

studies explored many metabolic biomarkers with diagnostic and

prognostic role in ccRCC.

Similarly, ccRCC has emerged as a metabolic disease, with meta-

bolic reprogramming recently acknowledged as a pivotal and promi-

nent hallmark. This reprogramming is orchestrated by the loss of

tumor suppressor genes and activation of oncogenes.114 Gene muta-

tions involved in this process lead to substantial metabolic alterations,

encompassing glucose, lipid, and amino acid metabolism. Notably, can-

cer cells meet their augmented energy and building block require-

ments by reshaping their metabolism, effectively fueling tumor

growth.115 A prime example is the Warburg effect, a hallmark of met-

abolic reprogramming in cancer cells that furnishes the requisite

energy for tumor proliferation and fosters a lactate-enriched milieu

pivotal for tumor progression.116 In this context, emerging evidence

underscores the prognostic potential of lactate-related genes, includ-

ing HADH, FBP1, and TYMP.117 Crucial to tumor cellular energy

metabolism, glucose metabolism undergoes essential adaptations in

ccRCC to ensure ample energy generation. Recent investigations high-

light HK2, among the upregulated key enzymes in this process, as

associated with immune cell infiltration and prognostic indicators in

kidney cancer patients.118 Furthermore, the formation of lipid droplets

and dysregulated lipid metabolism constitute key features of ccRCC.

Dysregulation of lipid metabolism, driven by lipogenic genes, corre-

lates with inferior clinical outcomes in ccRCC patients.119 Notably,

adipokines and lipid species have emerged as potential diagnostic and

treatment monitoring biomarkers, and targeting fatty acid metabolism

holds promise as a therapeutic strategy for ccRCC.120 Amino acid

metabolism, including glutamine, tryptophan, and arginine pathways,

significantly influences tumor progression. Critical enzymes in the

arginine pathway, argininosuccinate lyase (ASL) and argininosuccinate

synthase-1 (ASS1), are essential in this context. The downregulation

of these enzymes correlates with chemotherapy drug resistance and

adverse prognosis.121 In summary, advances in tumor metabolomics

have unveiled these modifications or reprogramming of metabolic

pathways, laying the foundation for early and effective tumor diag-

nostic methods, identification of potential biomarkers, and the explo-

ration of novel therapeutic targets and strategies.

4 | NOVEL CELL DEATH MECHANISMS

Cell death serves as a physiological or pathological mechanism in mul-

ticellular organisms for the elimination of superfluous or detrimental

cells. This process is crucial for the development and homeostasis of

multicellular organisms, as it facilitates normal cellular renewal and

sustains the structural and functional integrity of various tissues. Tra-

ditionally, apoptosis was considered the primary form of regulated cell

death. However, emerging research over recent decades has identi-

fied multiple forms of regulated necrosis, such as ferroptosis, cuprop-

tosis, and pyroptosis, which have implications in pathological

conditions like cancer and inflammation. These discoveries have

paved the way for new therapeutic interventions targeting regulated,

nonapoptotic cell death pathways.122 Here, we describe the regula-

tory pathways of ferroptosis, cuproptosis, and pyroptosis.

Ferroptosis is a recently identified form of cell death character-

ized by the accumulation of iron-dependent lipid peroxides, primarily

induced by iron overload and the generation of reactive oxygen spe-

cies (ROS)-dependent lipid peroxides. Notably, RCC tissues exhibit

elevated iron levels compared to solid tumors in other organs, includ-

ing the liver, prostate, and stomach. Furthermore, lower intratumoral

iron concentrations and elevated renal epithelial iron levels are associ-

ated with significantly reduced metastasis-free survival in ccRCC

patients.123 Consequently, the modulation of iron metabolism and the

subsequent induction of ferroptosis may serve as promising therapeu-

tic strategies for mitigating the progression of RCC.

Cuproptosis is another recently identified form of cell death, char-

acterized by an imbalance in copper ion homeostasis. This process is

mediated through the direct interaction between copper ions and the

fatty acid components of the tricarboxylic acid cycle (TCA cycle),

resulting in the aggregation of acylated proteins and the subsequent

depletion of ferritin. This cascade of events culminates in protein tox-

icity stress, ultimately leading to cell death. In ccRCC, two distinct

subtypes based on copper poisoning scores—CPCS1 (high score) and

CPCS2 (low score)—exhibit unique clinical and biological characteris-

tics. Notably, the CPCS2 subtype is associated with a more advanced

clinical stage and poorer prognosis, potentially due to its role in regu-

lating keratinization and epidermal cell differentiation, thereby accel-

erating cancer progression.124

Pyroptosis is another form of programmed cell death, distinct for

its reliance on inflammasome-dependent mechanisms mediated by

the GASD family of proteins. This process occurs more rapidly than

apoptosis and is typically accompanied by the release of a plethora of

pro-inflammatory cytokines. These cytokines, such as IL-1 β and IL-

18, are released through plasma membrane pores formed by

caspase-1 activation, leading to cell lysis. In a seminal clinical study, Fu

et al. systematically investigated the transcriptional variations and

expression patterns of necroptosis- and pyroptosis-related genes

(NPRGs). Utilizing a necrotic pyroptosis gene (NPG) score, they con-

structed and validated a prognostic model, providing the first compre-

hensive evidence for a significant interplay between the TME defined

by necrotic pyroptosis and the prognostic outcomes in ccRCC.125

5 | CANCER STEM CELLS

CSCs are a subset of tumor cells endowed with stem cell-like prop-

erties, offering significant therapeutic targets and foundational

research avenues for the treatment of various malignancies. They

hold the potential for achieving complete tumor eradication. How-

ever, research on renal CSCs has been relatively nascent compared
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to investigations into stem cells within other urological

malignancies.

The expression of some stem cell markers in different RCC cell

lines is a controversial issue.126,127 For example, Galleggiante et al.

described and characterized a population of resident CD133+/

CD24+ cancer cells in patients with clear cell RCC.128 In addition

Varna et al. identified a larger number of CD133/CXCR4–co-

expressing cells in perinecrotic versus perivascular areas in RCC tis-

sue.129 The use of CD105 as a renal CSC marker was questioned in

many studies that showed how other putative subpopulations of cells

with CSC-like properties are CD105.130,131 Moreover, Canis et al

showed that stable transfection of CD133 in the human embryonic

kidney 293 (HEK293) cell line induced tumor-initiating properties in

these cells. In addition, HEK293 CD133high transfectants, when

injected into SCID (Severe combined immunodeficiency) mice, gener-

ated tumors with at least a 1000-fold increased frequency as com-

pared with CD133low cells.132 CD133 and CXCR4 have been

proposed as potential markers for identifying renal CSCs.133 The util-

ity of these markers as specific identifiers for renal CSCs awaits vali-

dation through further experimental studies.

6 | CHALLENGES AND FUTURE
DIRECTIONS

Despite significant advancements in technology, the underlying biol-

ogy and nature of ccRCC remain incompletely understood by both cli-

nicians and researchers. One of the primary challenges lies in the

identification of reliable biomarkers for early diagnosis. Although a

plethora of potential proteomic markers has been identified, only

a few have demonstrated robust scientific and clinical utility. The low

prevalence of ccRCC, coupled with the lack of specific early-stage

symptoms that could prompt diagnostic testing, makes the identifica-

tion of an ideal surrogate marker for population-wide screening partic-

ularly challenging.

Additionally, ccRCC is characterized by high malignancy and resis-

tance to conventional chemotherapy and radiotherapy.134 Emerging

approaches, such as artificial intelligence and multi-omics analyses, in

conjunction with computational biology, offer the potential for

enhanced detection accuracy and robustness. Radiogenomics, in par-

ticular, represents a paradigm shift in diagnostic medicine, showing

promise in small-scale retrospective studies. However, further

research is imperative for the identification and validation of bio-

markers prior to their integration into clinical practice.135 Momin et al.

observed that the attachment of cytokines to the collagen-binding

protein lumican resulted in a reduction of systemic toxicity and side

effects, coupled with an extension of local retention.136 Cytokine col-

lagen anchoring represents a straightforward and tumor-agnostic

approach to augment systemic immunotherapy safely, particularly

when its efficacy might otherwise be limited. The utilization of bioma-

terials to enhance immune modulation through this strategy is a bur-

geoning area of interest.137 Nevertheless, additional research is also

imperative to explore and validate its clinical applications.

7 | CONCLUSIONS

ccRCC represents an escalating global public health concern.138

Inaccurate test results contribute to delayed diagnoses and, conse-

quently, poorer prognoses. Although various pharmaceutical

agents are available for the clinical management of ccRCC, the

majority lack high sensitivity and specificity, rendering current

screening methods suboptimal. There is an urgent need for more

effective biomarkers to enable early diagnosis and timely

intervention.

Advancements in genomics, proteomics, and metabolomics

have led to the identification of a diverse array of biomarkers in

tumor tissues, serum, and urine. These biomarkers hold promise

for applications in early diagnosis, prognosis, and the molecular

characterization of predictive features, offering potential diagnos-

tic, prognostic, and predictive utility. Diagnostic panels that amal-

gamate known biomarkers present a cost-effective and time-

efficient avenue for the discovery of new markers. These panels

can incorporate biomarkers from either the same or different bio-

logical specimens.

In conclusion, multi-institutional collaborations are indispensable

for ensuring adequate sample sizes when evaluating the efficacy of

any new biomarker or diagnostic panel.
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