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Low-frequency ERK and Akt activity
dynamics are predictive of stochastic cell
division events
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Understanding the dynamics of intracellular signaling pathways, such as ERK1/2 (ERK) and Akt1/2
(Akt), in the context of cell fate decisions is important for advancing our knowledge of cellular
processes and diseases, particularly cancer. While previous studies have established associations
between ERK and Akt activities and proliferative cell fate, the heterogeneity of single-cell responses
adds complexity to this understanding. This study employed a data-driven approach to address this
challenge, developing machine learning models trained on a dataset of growth factor-induced ERK
and Akt activity time courses in single cells, to predict cell division events. Themost predictivemodels
were developed by applying discrete wavelet transforms (DWTs) to extract low-frequency features
from the time courses, followed by using Ensemble Integration, a data integration and predictive
modeling framework. The results demonstrated that these models effectively predicted cell division
events in MCF10A cells (F-measure=0.524, AUC=0.726). ERK dynamics were found to be more
predictive than Akt, but the combination of both measurements further enhanced predictive
performance. The ERK model`s performance also generalized to predicting division events in RPE
cells, indicating the potential applicability of these models and our data-driven methodology for
predicting cell division across different biological contexts. Interpretation of these models suggested
that ERK dynamics throughout the cell cycle, rather than immediately after growth factor stimulation,
were associated with the likelihood of cell division. Overall, this work contributes insights into the
predictive power of intra-cellular signaling dynamics for cell fate decisions, and highlights the potential
of machine learning approaches in unraveling complex cellular behaviors.

Mammalian ERK1/2 (ERK) and Akt1/2 (Akt) kinases are ubiquitous reg-
ulators of proliferation, growth and survival1,2. Their activity is typically
controlled by upstreamgrowth factor receptors (or otherpathways affecting
receptors3,4), and deregulated by a variety of oncogenic (e.g. EGFR, HER2,
RAS, BRAF and PI3K) and tumor suppressor (e.g. PTEN and NF1)
mutations5–13. Thus, it is not surprising that these pathways are also
important drug targets for treating cancers and other diseases14–19.

While priorwork (e.g., reviewed by1,2) established associations between
ERK and Akt activity and proliferative cell fates, single-cell signaling and
response heterogeneity makes this understanding more opaque. For
example, it is known that clonal cells exposed to the same conditions can
exhibit markedly different ERK andAkt activity dynamics andmagnitudes,
as well as different proliferative (and other) fates20–30. It has been

hypothesized that temporal differences in kinase activity profiles, such as
transient vs. sustained signaling26,31–33, oscillatory-like pulsing22–25,34–36 and
time-integrals20,27,37–39 are associatedwith cell fate heterogeneity. Suchkinetic
control of cell fate decisions is not limited to the ERKandAkt pathways, but
is also thought to be operative in systems such as p53 and NFκB40–46.
However, a question that remains open is whether any such dynamic fea-
tures of ERK and Akt activity are predictive of proliferative fates in indivi-
dual cells. Answering this question can be facilitated by experiments that
track kinase activities in multiple single live cells with a matched readout of
the cell fate, along with rigorous data science-based modeling that can
robustly assess the links between the two. While the term “cell fate” can
apply tomultiple phenotypes, such as differentiation and transformation, in
this work, we use it to refer to cell cycle progression and cell division fate.
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Our previous study reported a dataset that coupled growth factor-
induced ERK and Akt activity time courses to division events in the same
single cells27. However, the question of predicting if a single, individual cell
will divide ornot basedon suchgrowth factor-induced time courses remains
unexplored. Moreover, the previous study only considered a single cell line
(MCF10A), a single set of growth factors (EGF and insulin), and acute,
synchronized response to growth factors (as opposed to chronic, asyn-
chronous scenarios). In the current work, we analyzed the previously gen-
erated dataset by utilizing time series transformations to extract features47–49,
and predicting cell divisions using effectivemachine learning techniques50–52

for both MCF10A cell data with acute response to growth factors from a
serum-starved state, and retinal pigment epithelial (RPE) cells asynchro-
nously cycling in full growth media53. Models developed from only
MCF10A data performed well on both datasets, and analyses suggested
operational relationships between ERK and Akt dynamics and the prob-
ability of cell division.

Results
Data preparation
We first prepared our previously collected dataset27 for the application of
machine learning (ML) algorithms (Fig. 1a). Briefly, the dataset was gen-
erated from MCF10A cells expressing both ERK and Akt activity
reporters54,55. Serum and growth factor-starved cells were treated with EGF
and insulin (two key components of MCF10A growth media), and imaged
periodically for two days (Fig. 1a). For each cell, image analysis-extracted
kinase activity time course data were collected along with cell fate, the latter
enabling individual cells to be assigned the label of “divided” or “undivided”
that we predicted via supervisedMLmethods56 (Fig. 1a). We produced two
sets of data from a “high-dose” and a “low-dose” experiment, where a
higher/lower dosage of EGF and insulin were used, respectively. To enable
rigorous model training and evaluation, the high-dose data were randomly
divided in an 80:20 ratio into train and test sets, and the “low-dose” data

were used as another test set. Table 1 provides a summary of these training
and test sets.

An important issue in these datasets was that divided cells had shorter
time courses than undivided cells, since the original measurements termi-
nated at the time of cell division27. This difference in time course length
could have caused the downstream cell fate classifiers to trivially predict the
outcome based on this artifact. Therefore, we processed the undivided cell
time courses such that they were not trivially distinguishable from divided
cell time courses (Fig. 1b; details in Methods and Supplementary Material).

Discrete wavelet transforms combined with a heterogeneous
ensemble yielded the most effective classifier of MCF10A cell
division fate
We employed a multi-modal data fusion approach to leverage the possible
complementary information containedwithin ERKandAkt time courses in
order to predict cell fates. We compared a diverse range of integrative
methods for predicting cell fate, and also compared them to predictions
from the individual ERK and Akt time courses. Throughout this paper, we
refer to multi-modal methods as [ERK, Akt], and single modality time
courses by the name of the corresponding kinase.

Extracting structured features that capture important information in
time courses is often an effective method to enable classification57. We
evaluated several established transformation-based feature extraction
techniques: discrete wavelet transforms (DWTs)58, MiniRocket59, tsfresh60

and the amplitude of the Fourier transform (FT)61 (Fig. 2a; details in
Methods). We used the features obtained from each of these transforma-
tions as input to Ensemble Integration (EI), an effective framework to
develop, evaluate and interpret a suite of heterogeneous ensemble-based
classifiers from multi-modal data50. All combinations of transformations
and EI classifiers were compared using a ten-fold cross-validation strategy
on the High-dose (train) dataset in terms of the Fmax score associated with
the minority (divided) class, an appropriate metric for datasets with

Fig. 1 | Overview of input data and their processing. a Experimental workflow of
MCF10A data generation: Initially, cells expressing ERK and Akt reporters were
serum- and growth factor-starved. An hour of baseline images were taken imme-
diately before growth factor treatment. After treatmentwith epidermal growth factor
(EGF) and insulin, cells were imaged every 15 minutes for 2 days, and the resultant
image time courses were analyzed tomeasure kinase activity (cytoplasmic to nuclear
fluorescence ratio of the kinase translocation reporter (KTR) (C/N ratio)). Time

courses were labeled as divided or undivided according to the fate of the corre-
sponding cell. b Pre-processing kinase time course data for machine learning ana-
lyses: Divided cells had a truncated time course at the time of cell division, whereas
undivided cells did not. To address this incompatibility, all undivided cell time
courses were truncated so that the distribution of time series lengths were the same
between the two classes. Each time course was then padded to lengths equal to those
of the undivided cell with the corresponding mean.
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imbalanced classes62,63 and the area under the receiver operating char-
acteristic curve (AUC) score56,64.

The DWT can be applied successively as a cascade of transformations.
We found that the approximation coefficients at level 3 (Supplementary Fig.
3) of the cascade were more predictive than other levels for our cell division
prediction task (Supplementary Fig. 4). These level 3 approximation coef-
ficients corresponded to a low frequency representation of the time courses,
where time points were spaced approximately 2 hours apart. The median
Fmax score of EI classifiers with the DWT was higher than other transfor-
mations for [ERK, Akt] (0.518 vs. 0.481-0.500) and ERK (0.516 vs. 0.478-
0.503), and was a close runner-up for the generally less predictive Akt
modality (Fig. 2b). From this, we concluded that DWT boosted the infor-
mation content of the time courses the most for the prediction of cell
division events using EI.We therefore selected the best DWT+EImethods,
namely stacked generalization (stacking)56 with logistic regression for [ERK,
Akt] (Fmax = 0.542,AUC= 0.757), and stackingwith random forest for ERK
(Fmax = 0.528, AUC= 0.727) and Akt (Fmax = 0.462, AUC = 0.661). We
used these DWT+EI combinations as the representative methods for fur-
ther evaluation and model building from the respective time courses.

Next, we compared the above DWT+EI methods with other estab-
lished prediction methods, namely (1) a deep learning-based long short-
term memory (LSTM) network65 and (2) XGBoost51 on all processed time
courses in the same cross-validation setup. The DWT+EI methods pre-
dicted cell fate more accurately than both the established methods in terms
of both evaluation measures, especially for the more predictive [ERK, Akt]
and ERK time courses (Fig. 2c). Thus, for each time course (ERK, Akt and
[ERK, Akt]), we trained one final model using the corresponding repre-
sentative DWT+EI method for predicting cell division on the entire High-
dose (train) set, and proceeded with their evaluation on the test sets
(Table 1).

Performance on the High-dose (test) set was close to that observed
during training for each of the time courses in terms of both F-measure and
AUC (Fig. 2d), indicating that the models were able to generalize to unseen
data drawn from the same sample as the training data. For instance, the
[ERK, Akt] model performed almost as well on theHigh-dose (test) dataset
(F-measure = 0.524, AUC= 0.726) as it did on the training data (Fmax =
0.542, AUC = 0.757). The models also performed comparably on the Low-
dose (test) data from a separate experiment using lower growth factor
concentrations (Fig. 2d; e.g., for the [ERK, Akt] model, F-measure=0.400
and AUC= 0.695). These results indicated that DWT+EI models were
suitable for predicting cell division fates from ERK and Akt activity time
course data in MCF10A cells.

Combined time courses of ERK and Akt activity were the most
predictive of MCF10A cell division fate, but ERK was individually
substantially more predictive than Akt
Throughout our results, ERK was substantially more predictive of cell fate
than Akt (Fig. 2). Furthermore, the still higher performance of the [ERK,
Akt] DWT+EI model consistently showed that combined information
fromboth time courses could improve predictive performance as compared

to the individual time course classifiers (Fig. 2). This suggested com-
plementary information among the ERK and Akt time courses, which we
examined further.

ERKandAkt activities across the timecoursewere important for
predicting MCF10A cell fate, albeit to different extents
As described above, a long-standing question in signal transduction, par-
ticularly with ERK signaling, is how signaling dynamics may relate to cell
fate determination20–35,37,39. To assess if our [ERK, Akt] model could help
shed light on this phenomenon, we applied an EI-associated interpretation
algorithm (Supplementary Material) to identify the time points that were
the most important for predicting whether a cell would divide or not. The
algorithm measured importance by quantifying the change in Fmax of the
resultant multi-modal model when a given time point was removed from
the DWT`ed sequence.

This algorithmgenerated an importance score for eachpoint in the low
frequency ERK and Akt time course representation, which showed that the
most predictive points (high values of the importance score in Fig. 3a) were
distributed throughout the time courses. These scores were generally higher
for ERK (median = 0.773) than Akt (median = 0.675), consistent with the
relative predictive ability of the two reporters. Furthermore, the importance
scores of time points in the ERK modality were correlated with the corre-
sponding differences in median C/N ratio between the cell fate classes,
though this was not really the case for the less predictive Akt (Fig. 3b;
Spearman’s rank correlation coefficient=0.449 and 0.093, respectively).
These results show thatERK, and to a lesser extent,Akt activities throughout
the cell cycle are associated with the likelihood of a cell division event, as
opposed to directly after growth factor stimulation.

A potential confounder of this interpretation was if multiple sub-
populations of cells were progressing through the cell cycle at different rates.
To evaluate this, we analyzed the distribution of division times (Fig. 3c),
which showed that theywere localized towards the endof the 48hourperiod
in a relatively narrow window. Two important observations that follow are
that the distribution of division times was much narrower than those pre-
dicted to have importance for predicting cell division, and that most cells
that divided were progressing through the cell cycle at similar rates. These
observations suggest that the interpretation of kinase activity being
important throughout the cell cycle was likely not affected substantially by
variability in cell cycle progression in dividing cells.

The ERK model generalized to predicting cell divisions in retinal
pigment epithelium (RPE) cells
Our analyses thus far focused only on MCF10A cells stimulated to divide
froma serum-starved condition, andERKactivitymeasuredusing a specific
KTR. This raises the question of whether the models developed from this
context apply to other cell types and experimental setups. To begin to
answer this question, we analyzed data from a study on retinal pigment
epithelium (RPE) cells containing the EKAREN5 FRET-based ERK
reporter53. In this study, RPE cells were not serum-starved and then treated
with growth factors, but rather were asynchronously cycling in full growth

Table 1 | Summary of the datasets used in our study

Name Treatment Serum-starved? Reporter Number of cells Cell type Kinase(s) (modalities)

Divided Undivided Total

High-dose (train) 20 ng/mL EGF + 10 μg/mL
Insulin

Yes KTR 246 756 1002 MCF10A ERK, Akt

High-dose (test) 20 ng/mL EGF + 10 μg/mL
Insulin

Yes KTR 62 189 251 MCF10A ERK, Akt

Low-dose (test) 2 ng/mLEGF+1μg/mL Insulin Yes KTR 246 1148 1394 MCF10A ERK, Akt

RPE (test) 62.5 nM ERKi No FRET 123 102 225 RPE ERK

Treatment was either epidermal growth factor (EGF)+ Insulin in the case of serum-starved cells, or ERK inhibitor (ERKi) in the case of cells asynchronously cycling in full growth medium. Reporters were
either kinase translocation reporters (KTR)-, or fluorescence resonance energy transfer (FRET)-based.
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medium. Applying the MCF10A-derived ERK model to this dataset (pro-
cessing details inMethods) yielded F-measure andAUC scores of 0.677 and
0.694, respectively, which were comparable to those observed for the ERK
time course in theHigh-dose (test)dataset (F-measure=0.494,AUC=0.717).
Note that the higher F-measure value for the RPE (test) dataset was a result
of themorebalanced class distribution in this dataset,whichwasnot the case
in the other datasets we considered (Table 1). These results indicated the

applicability of this model in a different biological context, as well as the
utility of the DWT+EI method for model development for similar
problems.

Discussion
While the biological associations between the ERK and Akt pathways
and proliferative phenotypes are established, the precise differences
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between the activities of these pathways in cells that do or do not pro-
liferate are inadequately understood. In this study, we employed a data-
driven approach to better understand the contributions of ERK andAkt
kinase activities to growth factor-induced, single cell division fates by
leveraging the natural cell-to-cell heterogeneity in these processes. To
achieve this, we constructed supervised machine learning models to
classify division events based on individual and combined ERK and Akt
activity time courses measured by live-cell imaging of non-transformed
breast epithelial MCF10A cells, a model system that is commonly used
to study epithelial signaling biology and cell division control3,24,66–70. The
results indicated that ERK andAkt activity time courses were predictive
of cell division fate, especially when both the activities were considered
together in the multi-modal Ensemble Integration (EI) framework50.
ERK and Akt activities were somewhat correlated (r = 0.3-0.5), and this
could partially explain the less than additive effects on predictive cell
division fate27. Application of this model developed fromMCF10A data
to a different cell line (RPE), with a different experimental and biolo-
gical context (asynchronously cycling cells in full growthmedium), also
showed that low-frequency ERK dynamics were predictive of cell
division events.

We observed that processing the time courses with discrete wavelet
transforms (DWTs)58 prior to classification via heterogeneous ensembles
yielded the best performance among the evaluatedmethods. Specifically, we
applied a low-frequency DWT approximation to the time courses (Sup-
plementary Fig. 3). Our finding suggested that effective classification may
not require the complete detail present in the non-transformed 15-minute
interval time courses, but rather the overall trend of kinase activity described
by a low-frequency representation.Moreover, an inevitable characteristic of
the experimental procedure used to generate the kinase activity data used in
our studywas the presence of noise.Due to the ability ofDWTs to effectively
remove noise of different frequencies, their application proved to be parti-
cularly advantageous in mitigating its impact on classification (Supple-
mentary Fig. 4). Our results and this analysis indicate that DWTs can be a
flexible, multi-resolution method to extract features from kinase activity
time courses, allowing combinations of different frequency components
representing variables such as cell and kinase type, as well as differences in
experimental setup.

Our results also indicated that ERK dynamics were substantially more
predictive of cell fate than Akt dynamics. This is consistent with the general
view of the PI3K/Akt pathway being involved with growth, metabolic

Fig. 2 | Cross-validated performance and testing of cell fate classification
methods. a High-level overview of the machine learning analyses used. Processed
data were subjected to time course transformations to enhance the signal in the ERK
and Akt time courses individually, before being used as input to several machine
learning classification algorithms. bBox plots showing the performance distribution
of a family of ensembles developed by Ensemble Integration (EI) in combination
with various transformations, as well as the multi-modal [ERK, Akt] time course.
Centre lines and bounds of boxes correspond to the median and upper/lower
quartiles, respectively. Whiskers denote maximum/minimum values within 1.5
times the interquartile range above/below the upper/lower quartile, with values
outside this range (points) denoting outliers. cPerformance of themost predictive EI
algorithm combined with the Discrete Wavelet Transformation (DWT) named in

bwith arrows, as well as other established classification algorithms, namely Extreme
Gradient Boosting (XGBoost) and deep learning-based Long Short Term Memory
(LSTM). Both sets of results are presented in terms of the Fmax and AUC evaluation
measures. To calculate the Fmax score, we maximized the F-measure on the training
set, and then applied this threshold to discretize the test set predictions and calculate
the F-measure value there. Note that the classifier with the best Fmax score does not
necessarily also have the best AUC score. The performance of a random classifier is
shown for reference. d F-measure and AUC scores of the final DWT+EI classifi-
cation models on the MCF10A train and test sets. The performance of a random
classifier is shown for reference. These results show that ERK is substantially more
predictive thanAkt across all datasets, but utilizing both ERK andAkt time courses is
even more predictive.

Fig. 3 | Interpretation of the multi-modal [ERK, Akt] cell fate prediction model.
a The respective predictive importances of ERK and Akt activities, demonstrating
that time points of high importance (higher values on the Y-axis) exist throughout
the time course, in particular for ERK. b A scatter plot showing the importance
scores of ERK and Akt activities against the differences between the median C/N
ratios of the corresponding reporter for the cell fate classes (dividing and non-

dividing) during the same time course, with a larger point size indicating a later time
point. Themost predictive/important time points in awere generally consistent with
large differences in the median C/N ratios between cell fate classes. cDistribution of
cell division times in theHigh-dose (train) dataset, showing that the division times of
dividing cells were localized towards the end of the 48 hour period.
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regulation and survival, as opposed to direct cell cycle regulation like
ERK2,71–74. Furthermore, the multi-modal model combining ERK and Akt
dynamics to predict division events was more predictive than ERK alone.
This indicates that Akt dynamics had information about cell division
complementary to that in ERK, which may reflect Akt`s hypothesized
regulation of some aspects of initial cell cycle entry and progression2,75,76, but
may also suggest growth and metabolic roles.

We also found that the ERK-based model developed from the starved
and growth-factor induced experimental setup was predictive of division
fates from chronically growth factor treated, asynchronously cycling con-
texts in an independent dataset53. This independent dataset was from a
different cell line, RPE cells, which although still of epithelial origin like
MCF10A, provides further evidenceof the potential generality of themodels
developed. Recent live-cell imaging studies of ERK signaling in epithelial
cells have instead looked at confluent cells in chronic growth factor treat-
ment conditions, arguing that such a setup is closer to the epithelial biology
that would be observed in tissues23,24. Large annotated datasets linking ERK
dynamics to cell division events in confluent, chronic growth factor contexts
would be needed to understand how different such scenarios truly are.
While obtaining the imaging data themselves is relatively straightforward,
high-quality annotated datasets like ours still often require substantial
manual effort. Advances inmachine learning for image analysismay be able
to help generate such datasets more efficiently77–79.

Another question we were able to address using the developedmodels
waswhich timepoints of signaling dynamicswere themost predictive of cell
division events. As discussed above, there are multiple hypotheses for such
relationships, including transient versus sustained signaling, the frequency
and/ormagnitudes of pulsing and time-integrated activities20,22,25–27,34,37,38. In
the data analyzedhere, therewasnot substantial evidence of pulsing, but this
does not mean it might not be predictive in other contexts. Based on a
systematic model interpretation algorithm, our results suggested that no
single time point in the ERK and Akt time courses was solely more useful
than others for predicting cell division events. This ismore consistent with a
time-integrator model, whereby the amount of time the pathway is on
dictates the probability of cell division20,27,37–39. Recent studies in MCF10A
cells have suggested such a relationshipbetweenERKsignaling and cell cycle
progression38. However, proving such a relationship to be causal is chal-
lenging, since cell cycle progression depends on the activity of the ERK
pathway. Optogenetic approaches are a suitable tool for such examinations,
and have been used to establish relationships between ERK signaling and
cell fates in other contexts3,20,25,35.

There are multiple considerations for experimental design that could
have a bearing on interpretation. Foremost, while the trained models were
shown to be predictive, they were not 100% accurate, implying that other
biological sources of noise, such as p53 / DNA damage40, play operational
roles inpredicting cell division fate.Wedidnot see any evidenceof apoptosis
in our experiments, but others have observed high vs low ERK activity
leading to survival vs apoptosis, respectively39. InourMCF10Acell studies of
Akt dynamics, large, saturating doses of insulin were used, because that is
the standard forMCF10A growthmedia. Insulin is a strong activator of the
Akt pathway80–82. If Akt activity was consequently very high, its fluctuations
over time in a single cell may not dip below thresholds that interfere with its
ability to drive cell cycle progression. Thus, growth factor conditions that do
not as strongly activate the Akt pathway may lead to a different conclusion
about the relative importance of ERK activity versus that of Akt for driving
cell division events. Yet, we did also test the predictive models on a dataset
with 10-fold lower growth factor doses, but the conclusions were similar.
This could mean that insulin concentrations remained high, but it could
suggest that the original interpretation of Akt activity dynamics being less
predictive are more likely to be true.

There are several growth factors that induceboth cell division andERK
and Akt activities. Whether the predictive relationships between ERK and/
or Akt dynamics and cell division change depending on what activates the
pathways remains an open question. Besides growth factor dose and type,
there are other important experimental elements to consider in the context

of our results. In theMCF10A experiments, somewhat sparsely seeded cells
were serum- andgrowth factor-starvedprior to the experiment, treatedwith
growth factors, and then observed for 48 hours. Observing cells for longer
could have revealed more division events, but also confounded results, as
cells dividing early in the time course could have gone through the same
process again. Thus, our results may be more strictly interpreted as most
effective for predicting the fates of cells most likely to divide (relatively)
quickly. While serum and growth factor starvation is a long-established
mode of studying cell signaling83, chronic treatment with growth factors
may create a different relationship between signaling dynamics and cell
division fates4,12,24. Yet, themodels developed fromstarvation experiments in
MCF10A cells were found to be predictive for RPE cells asynchronously
cycling in full growth media, providing at least one example of generality.

In summary, our results suggest that discrete wavelet transforms of cell
signaling dynamics data, combined with ensemble-based classification
models, showpromise as a tool for cell fate prediction. Further validation on
other biological systems would be needed to establish the broader utility of
this approach. Our particular application to cell division associated with
ERK and Akt dynamics suggested some generality of the relationship
between these dynamics and cell division for epithelial cell lines in both
acute and chronic growth factor conditions.Model interpretation suggested
that the time-integratormodel of how these pathways influence cell division
fate ismore likely in the studied contexts. The availability ofmore annotated
datasets would enable a more expansive study to understand how general
such relationships are in different cell types, growth factors, doses and other
experimental setups.

Methods
Dataset processing
MCF10A datasets. The MCF10A datasets were generated as described
in detail previously27. Briefly, cells expressing reporters were seeded,
allowed to attach overnight, and serum- and growth factor-starved for
24 hours. An hour of baseline images were taken before applying growth
factor treatment, after which, images were taken every 15 minutes over
the next 48 hours, giving a total of 49 hours of measurements. The
resultant image time courses were analyzed to measure kinase activity
(cytoplasmic to nuclear fluorescence ratio of the kinase translocation
reporter (KTR) (C/N ratio)). Experiments in this study included biolo-
gical replicates for reproducibility.

ERK and Akt KTR plasmids were obtained and used as previously
described29,55. At least two biological replicates in each condition were
performed. The imaging and image processingwas performed as previously
detailed27, and is briefly described as follows. Imaging was performedwith a
15minute interval using an InCell 2200 (GE). Images were subjected to (i)
flatfield correctionandbackground subtractionusingCellProfiler; (ii) nuclei
identification using Ilastik; (iii) cell tracking through time usingCellProfiler;
(iv) cytoplasmic tonuclearfluorescence extractionusing customscripts; and
(v) the identification of cell division events through KTR activity dips and
manual validation.

It is appreciated that M-phase CDK activity (CDK1/CyclinB) can
induce ERK-KTR responses84–86. We do not expect this non-specific beha-
vior to impact our findings becauseM-phase is a relatively short time period
in the cell cycle. Additionally, our analyses removed most time points
flanking mitosis already as previously described. Specifically, cell mor-
phology substantially changes during mitosis, which resulted in inaccurate
estimates of cytoplasmic-to-nuclear fluorescence intensity ratio-a large dip
not related to kinase activity.

To prepare sufficiently sized sets of examples of labeled cells to train
and test machine learning methods/models, we merged the data across
replicate experiments from the original study after confirming that there
were no batch effects (principle component analysis; Supplementary Fig. 1).
In the resultant data, experiments with a high-dose of growth factors
induced more divisions, resulting in a less severe cell fate class imbalance
than that in low-dose settings (24.6% divided cells for high-dose data
compared to 16.6% for low-dose). To have sufficient representation of the
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divided class in the data, we used the high-dose data only for both the
assessment of candidate methods for cell fate classification and the sub-
sequent finalmodel training.We thenperformed an 80:20 train/test split on
the high-dose data, yielding one training and two test MCF10A datasets
(Table 1).

Processing steps (see SupplementaryMaterial) were performed on the
training set, and any processing parameters derived were then applied
during processing of the test sets. The resulting data is summarized in
Supplementary Fig. 5.

RPEdataset. The RPE experiments (part of a larger study53), in addition
to using a different cell line, only measured ERK activity with the EKA-
REN5 reporter (and not Akt, or with a KTR reporter), had cells asyn-
chronously cycling in full growth media (not initially serum-starved),
and included measurements over a 4 day period with a 10 minute fre-
quency andmultiple division events along the time course (versus 2 days,
15 minute frequency, and the first division event in the MCF10A data-
sets). Key differences are summarized in Table 1. This study contained
multiple experimental setups with different combinations of treatments.
The RPE (test) dataset used in our study was generated from the
experimentwith noDOXand 62.5nMERK inhibitor (ERKi), because this
was the only condition where cell division fate heterogeneity was
observed in the last 49 hours of the time course.

To be able to test the ERKmodel developed from theMCF10A dataset
in this different setup, we labeled the RPE cells as divided/undivided
according to whether a division occurred in the last 49 hours of their
respective time courses. This also allowed us to remove cells whose division
events early in their time courses reflected those committed to division prior
to treatment with ERKi. We linearly interpolated each time course in RPE
(test) to match the 15minute measurements of the MCF10A datasets. We
then applied the same processing steps as those described above for the
MCF10Adatasets. To account for different reporters,we scaledERKactivity
in the resultantRPE (test) dataset tomake it as consistent aspossiblewith the
measurements in the High-dose (train) dataset (details in Supplementary
Material; Supplementary Fig. 5).

Classification methods and their evaluation
We evaluated a number of classificationmethods using a stratified, ten-fold
cross-validation procedure87 applied to the High-dose (train) dataset. We
addressed class imbalance in this process by undersampling the majority
(undivided) class during training, and evaluated the performance of the
tested methods using the Fmax score associated with the minority (divided)
class62,63. This measure is defined as the maximum value of the F-measure
across all classification score thresholds, allowing each classificationmethod
to achieve their most effective performance. We also report the area under
the receiver operating characteristic curve (AUC) score56,64.

We compared several approaches for classifying cell division fate in
the above evaluation setup (details of the approaches in Supplementary
Materials). The first approachwas to extract features using a time course
transformation (next subsection) prior to building predictive ensembles
using the Ensemble Integration framework50, which is designed to
flexibly and effectively integrate multi-modal data like the ERK and Akt
time courses. Secondly, we considered a deep learning-based Long
Short Term Memory (LSTM)88 classification method whose archi-
tecture was specifically developed to handle sequential dependencies in
the time courses. Finally, we considered eXtreme Gradient Boosting
(XGBoost;51), which has been found to be the most effective performer
in many classification tasks89–91.

A particular interest of our study was to compare multi-modal
methods/models that utilized information from both ERK and Akt time
courses to those built only using the information in the individual time
courses. Thus, we evaluated all the classification methods considered on all
three modalities, i.e, ERK, Akt and [ERK, Akt], with the aim of building
three different final models. For each of the modalities, we calculated the
median Fmax scores of the EI methods tested for each transformation. In

addition to analyzing the performance trends across the transformation+EI
method combinations, we also selected the best-performing combination
for eachmodality forfinalmodel building.TheLSTM-basedneural network
and XGBoost performances were similarly evaluated and compared.

Time course transformations
Tomore effectively extract information from the ERK andAkt time courses
prior to cell fate classification, we applied a selection of transformations57 to
them before evaluating their predictive capabilities using EI.We give a brief
summary of the selected transformations below.

Discrete Fourier transform. The Discrete Fourier Transform (DFT; see,
for example,61) transforms a signal from the time domain into the fre-
quency domain. We computed the (real-valued) amplitudes of the DFT
to use as features for classification.

Discrete wavelet transform. Discrete wavelet transforms (DWTs)
decompose time series into both time and frequency components
simultaneously58. TheDWTdecomposes the signal into “approximation”
and “detail” coefficients. The former represent the coarse, low-frequency
components of the signal, while the latter capture high-frequency
information. DWTs can be applied successively as a cascade (Supple-
mentary Fig. 3), where each level of the transformation removes pro-
gressively more high frequency detail.We used the PyWavelets package92

to compute the approximation coefficients of a DWT, resulting in a
denoised, low-dimensional representation of the signal. We used the
Haar wavelet because it is the simplest wavelet, and is effective at
detecting sudden transitions. This transformation yielded a set of 25 time
points spaced roughly 2 hours apart for our time courses.

Minirocket. Minirocket is a time course transformation that generates
features through convolutionwith a predefined set of kernels59. The result
is a set of binary features indicating the presence or absence of certain
patterns identified by the kernels over specific time intervals. Temporal
and frequency domain characteristics are therefore not explicitly
retained. We used the Sktime package93 to implement Minirocket with
default parameters to generate features.

Tsfresh. We also used the tsfresh package60 to generate hundreds of
statistical features characterizing the time courses. These features range
from simple statistics, such as mean and maximum value, to more
complex ones, such as descriptive statistics of the autocorrelation. We
used all available features for classification.

Ensemble Integration
We utilized Ensemble Integration (EI)50,94 to compare several interpretable
ensemblemethods and train our final models based on the best performers.
Within the EI process for each modality, we trained a selection of base
classifiers, and combined their predictions via an ensemble classifier. The
specific ensemble classifier was selected from a variety of ensemble algo-
rithms via a nested cross validation. Although EI is able to build ensembles
from single data modalities (i.e. ERK or Akt alone), it is especially effective
for data frommultiple sources (multi-modal data), the [ERK,Akt]modality
in this study. The exact base and ensemble predictor algorithms and para-
meters thatwere used in this study can be found in SupplementaryMaterial.

Interpretation algorithm for EI models
We calculated an importance score for the time points of the discrete
wavelet-transformed time courses constituting the best performing [ERK,
Akt] model (Fig. 3), i.e., stacked generalization with logistic regression
(Results). The algorithm used for this calculation utilized a randomized
permutation procedure95 to calculate feature ranks of each base classifier
algorithm, before applying a weighted average over all the time points based
on the learnedweights of the logistic regression stacker (SupplementaryAlg.
1). The output of this algorithmwas an importancemeasure between 0 and
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1 for each time point, where values closer to 1 indicate higher importance
(more details in Supplementary Material).

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

Data availability
MCF10A datasets used in this study were the dual-reporter datasets pre-
sented in a previous paper27, and are freely available at the repository
mentioned therein. The RPE datasets were produced independently53, and
were obtained by contacting the authors. With permission, we have shared
all the relevant data related to this study within the following GitHub
repository: https://github.com/GauravPandeyLab/predicting-cell-division.

Code availability
Our analysis is reproducible by following the instructions at https://github.
com/GauravPandeyLab/predicting-cell-division.git. The code for the image
analysis pipeline that produced theMCF10A datasets is available at https://
github.com/birtwistlelab/Predicting-Individual-Cell-Division-Events-
from-Single-Cell-ERK-and-Akt-Dynamics.
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