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The Absence of Intra-Tumoral Tertiary Lymphoid Structures
is Associated with a Worse Prognosis and mTOR Signaling
Activation in Hepatocellular Carcinoma with Liver
Transplantation: A Multicenter Retrospective Study

Jianhua Li, Li Zhang, Hao Xing, Yan Geng, Shaocheng Lv, Xiao Luo, Weiqiao He, Zhi Fu,
Guangming Li, Bin Hu, Shengran Jiang, Zhe Yang, Ningqi Zhu, Quanbao Zhang,
Jing Zhao, Yifeng Tao, Conghuan Shen, Ruidong Li, Feng Tang, Shusen Zheng, Yun Bao,*
Qiang He,* Daoying Geng,* and Zhengxin Wang*

Tertiary lymphoid structure (TLS) can predict the prognosis and sensitivity of
tumors to immune checkpoint inhibitors (ICIs) therapy, whether it can be
noninvasively predicted by radiomics in hepatocellular carcinoma with liver
transplantation (HCC-LT) has not been explored. In this study, it is found that
intra-tumoral TLS abundance is significantly correlated with recurrence-free
survival (RFS) and overall survival (OS). Tumor tissues with TLS are
characterized by inflammatory signatures and high infiltration of antitumor
immune cells, while those without TLS exhibit uncontrolled cell cycle
progression and activated mTOR signaling by bulk and single-cell RNA-seq
analyses. The regulators involved in mTOR signaling (RHEB and LAMTOR4)
and S-phase (RFC2, PSMC2, and ORC5) are highly expressed in HCC with low
TLS. In addition, the largest cohort of HCC patients is studied with available
radiomics data, and a classifier is built to detect the presence of TLS in a
non-invasive manner. The classifier demonstrates remarkable performance in
predicting intra-tumoral TLS abundance in both training and test sets,
achieving areas under receiver operating characteristic curve (AUCs) of 92.9%
and 90.2% respectively. In summary, the absence of intra-tumoral TLS
abundance is associated with mTOR signaling activation and uncontrolled cell
cycle progression in tumor cells, indicating unfavorable prognosis in HCC-LT.
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1. Introduction

Hepatocellular carcinoma (HCC), the most
common form of primary liver cancer, is the
leading cause of cancer-related deaths.[1]

Approximately fifty percent of such fa-
talities transpire in the realm of China,
wherein 80% of afflicted individuals bear
the burden of HBV infection, with an over-
whelming 85% of the demographic being of
the male persuasion.[2,3]

Liver transplantation emerges as the cu-
rative therapy for HCC with cirrhosis, ef-
fecting a dual remedy by eradicating both
tumors and the conducive microenviron-
ment fostering carcinogenesis. Neverthe-
less, the pronounced prevalence of recur-
rence and metastasis following liver trans-
plantation for HCC (HCC-LT) has impeded
the attainment of sustained long-term sur-
vival. The median overall survival period
stands at 13 months following the initi-
ation of tumor recurrence and metasta-
sis, underscoring the critical imperative to
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accurately discern high-risk cohorts susceptible to such
metastatic resurgence.[4]

Despite the numerous criteria proposed for predicting progno-
sis and selecting beneficiaries for HCC-LT, there remains a short-
age of biomarkers capable of accurately predicting outcomes
and responses to pre-transplant treatments. This gap is partic-
ularly evident in patients beyond Milan criteria, where tumor
burden is insufficient to predict recurrence-free survival, and yet
pre-transplant therapy is necessary defining the population that
would benefit from such therapy proves challenging. Other fac-
tors such as tumor heterogeneity, circulating tumor cells and
tumor-infiltrating immune cells play a significant role, but the
effectiveness lacks validation in multicenter, large cohort stud-
ies of HCC-LT.[5,6] Moreover, the effective way to predict it is
still unclear, incorporating biological and morphological markers
of response to pre-transplant treatments during the waiting pe-
riod, especially considering that systemic therapies like immune
checkpoint inhibitors (ICIs) treatment is increasingly used for
downstaging or bridge therapy before HCC-LT.

In recent years, TLS, defined as the group of immune cell ag-
gregates formed in non-lymphoid tissues, has attracted particu-
lar interest, as classification based on TLS states could efficiently
stratify patients into subgroups with distinct clinical outcomes in
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multiple malignancies[7–9] In HCC, the presence of either intra-
tumoral TLS or peri-tumoral TLS is found to be associated with
improved survival and enhanced immune responses,[10] giving
us a hint that TLS may also be a promising biomarker for the pre-
diction of prognosis and drug response in HCC-LT. It is well rec-
ognized that the TLS plays an impressive part in the adaptive an-
titumor immune response as they resemble secondary lymphoid
organs (SLOs) in both anatomical and functional aspects.[11]

However, the molecular characteristics of cancer cells and the
tumor microenvironment (TME) in HCC without TLS have not
been fully clarified.

Given that TLS is a promising biomarker for predicting cancer
prognosis and drug response, accurate detection is essential in
clinical practice. The histopathological measurement is a golden
standard for TLS detection; however, biopsies could trigger ad-
verse events such as pain, bleeding, tumor metastasis, and, on
infrequent occasions, mortality.[12] By contrast, radiomic is ex-
pected to be an auxiliary tool to assist diagnosis and surveillance
in a non-invasive manner. A previous study has demonstrated the
predictive potentials of a CT-based nomogram in predicting the
presence of intra-tumoral TLS in HCC,[13] suggesting a possibil-
ity to infer TLS states through image-derived morphometrics.

To assess the prognostic implications of TLS in the context
of hepatocellular carcinoma after liver transplantation (HCC-LT),
we conducted a retrospective compilation of clinical data, digital
representations of tumors of hematoxylin and eosin (HE) stain-
ing for HCC-LT patients across four distinguished medical cen-
ters. The objective was to elucidate the correlation between intra-
tumoral and peri-tumoral TLS abundance and the prognostic tra-
jectory of HCC-LT. Additionally, we quantified intra-tumoral TLS
prevalence within the Cancer Genome Atlas (TCGA) cohort us-
ing digital pathology HE staining and probed the molecular at-
tributes of HCC devoid of TLS manifestation.

Our findings were subsequently corroborated through com-
prehensive validation in single-cell sequence datasets and
matched tissue samples derived from the Huashan cohort. Lever-
aging radiomic CT data, we constructed a radiomic model of
considerable efficacy in predicting TLS abundance. This non-
invasive approach, circumventing the necessity for liver biop-
sies, amalgamates histological observations garnered through
imaging modalities with molecular analyses. It holds promise
in furnishing precise prognostic classifications and therapeutic
stratagems for individuals undergoing HCC-LT, thereby advanc-
ing the landscape of personalized therapeutic interventions.

2. Results

2.1. Baseline Characteristics of Patients in Three HCC Cohorts

A total of 666 patients (302 patients from Huashan cohort, 119
from Chaoyang cohort, 40 from Hangzhou cohort, and 205 from
Youan cohort) who underwent HCC-LT were enrolled in this
study. Due to the regional features of eastern China and relatively
restrictive sample size, the Huashan and Hangzhou cohorts were
merged into one cohort, namely the HSHZ cohort. Overall, 602
(90.4%) patients were men, and 144 (21.6%) patients were over
60 years old. The median follow-up time was 27.9, 25, and 29.5
months for cohorts Huashan and Hangzhou (HSHZ), Chaoyang,
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and Youan, respectively. Among those demographic characteris-
tics, blood type, sex, alpha-fetoprotein (AFP) levels, hepatitis B
and hepatitis C virus infection, total bilirubin (Tbil) are not dif-
ferent among the centers (Table 1). However, the proportions
of patients beyond Milan and UCSF criteria, with microvascu-
lar invasion (MVI) presence, with portal vein tumor thrombus
(PVTT), with tumor diameter over 5 centimeters were higher in
the HSHZ cohort.

Table 1. The demographic and clinical characteristics of HSHZ, Chaoyang
and Youan HCC-LT cohorts.

Variables HSHZ (n = 342) Chaoyang (n = 119) Youan (n = 205) P value

Blood type

A 78 (26%) 27 (22.7%) 57 (27.8%) 1.97E-01

AB 27 (9%) 17 (14.3%) 32 (15.6%)

B 93 (31%) 40 (33.6%) 63 (30.7%)

O 102 (34%) 35 (29.4%) 53 (25.9%)

Gender

Female 30 (8.8%) 12 (10.1%) 22 (10.7%) 7.39E-01

Male 312 (91.2%) 107 (89.9%) 183 (89.3%)

Age

≤60 269 (82.8%) 80 (67.2%) 156 (76.1%) 1.75E-03

>60 56 (17.2%) 39 (32.8%) 49 (23.9%)

AFP

≤200 201 (67.2%) 88 (73.9%) 138 (67.3%) 3.68E-01

>200 98 (32.8%) 31 (26.1%) 67 (32.7%)

PT

≤13 138 (41.7%) 33 (27.7%) 80 (39%) 2.63E-02

>13 193 (58.3%) 86 (72.3%) 125 (61%)

HBsAg

Negative 62 (20.5%) 43 (36.1%) 45 (22%) 2.38E-03

Positive 240 (79.5%) 76 (63.9%) 160 (78%)

HCV

Negative 294 (97.4%) 115 (96.6%) 192 (93.7%) 1.06E-01

Positive 8 (2.6%) 4 (3.4%) 13 (6.3%)

Tbil

≤23 159 (49.8%) 47 (39.5%) 87 (42.4%) 8.51E-02

>23 160 (50.2%) 72 (60.5%) 118 (57.6%)

Alb

≤35 93 (29.2%) 62 (52.1%) 86 (42%) 1.64E-05

>35 226 (70.8%) 57 (47.9%) 119 (58%)

PLT

≤100 157 (49.5%) 74 (62.2%) 36 (17.6%) 1.35E-17

>100 160 (50.5%) 45 (37.8%) 169 (82.4%)

AJCC

T1-T2 233 (68.1%) 104 (87.4%) 163 (79.5%) 3.32E-05

T3-T4 109 (31.9%) 15 (12.6%) 42 (20.5%)

Milan criteria

No 236 (69%) 56 (47.1%) 115 (56.1%) 2.72E-05

Yes 106 (31%) 63 (52.9%) 90 (43.9%)

UCSF criteria

No 187 (54.7%) 27 (22.7%) 99 (48.3%) 1.21E-08

Yes 155 (45.3%) 92 (77.3%) 106 (51.7%)

(Continued)

Table 1. (Continued)

Variables HSHZ (n = 342) Chaoyang (n = 119) Youan (n = 205) P value

Tumor Number

>1 168 (49.1%) 44 (37%) 123 (60%) 2.81E-04

1 174 (50.9%) 75 (63%) 82 (40%)

Max tumor diameter (cm)

≤5 216 (63.2%) 91 (76.5%) 143 (69.8%) 2.04E-02

>5 126 (36.8%) 28 (23.5%) 62 (30.2%)

MVI

No 89 (26%) 50 (42%) 145 (70.7%) 1.78E-23

Yes 253 (74%) 69 (58%) 60 (29.3%)

PVTT

No 257 (75.1%) 107 (89.9%) 183 (89.3%) 8.29E-06

Yes 85 (24.9%) 12 (10.1%) 22 (10.7%)

Differentiation

G1-G2 177 (63.9%) 92 (78.6%) 105 (61%) 4.62E-03

G3-G4 100 (36.1%) 25 (21.4%) 67 (39%)

Intra-tumoral TLS

High 170 (49.7%) 60 (50.4%) 79 (38.5%) 2.50E-02

Low 172 (50.3%) 59 (49.6%) 126 (61.5%)

Peri-tumoral TLS

High 220 (64.3%) 106 (89.1%) 150 (73.2%) 1.41E-06

Low 122 (35.7%) 13 (10.9%) 55 (26.8%)

AFP, 𝛼-fetoprotein; PT, Prothrombin time; PLT, Platelet; AJCC, American Joint Com-
mittee on Cancer; UCSF, University of California San Francisco; MVI, microvascular
invasion; PVTT, Portal vein tumor thrombus.

2.2. Intra-Tumoral TLS Abundance has a Higher Prognostic Value
than Its Peri-Tumoral Abundance

The TLS abundance in intra-tumoral and peri-tumoral regions
was rated according to our scoring system (Figure 1A, See Ex-
perimental Section). The intra-tumoral TLS abundance was sig-
nificantly reduced compared to the peri-tumoral TLS abundance
in all three cohorts (Figure 1B, Wilcoxon test, P < 0.05). Further-
more, the TLS abundance across intra-tumoral and peri-tumoral
regions exhibited little consistency in HSHZ and Chaoyang
HCC-LT cohorts (Figure 1B, Chi-square test, P > 0.05). In con-
trast, it showed consistency in Youan cohort (Figure 1B, Chi-
square test, P < 0.05). To investigate why there was a difference
in the consistency of TLS abundance between intra-tumoral and
peri-tumoral regions among the three cohorts, we divided the
HCC samples into three groups based on the extent of decrease
in TLS between intra-tumoral and peri-tumoral regions: signifi-
cantly decreased (SD, difference < −1), not significantly changed
(NS, difference between −1 and 1), and significantly increased
(SI, difference >1). It is evident that the proportion of SD indi-
viduals in the Youan cohort was the lowest (Figure S1A, Support-
ing Information). Additionally, SD group had a higher proportion
of MVI-positive patients (Figure S1B, Supporting Information),
while the Youan cohort had the lowest proportion of MVI-positive
cases (Figure S1C, Supporting Information). Therefore, we spec-
ulated that the higher consistency of the TLS abundance across
intra-tumoral and peri-tumoral regions in Youan cohort might be
associated with a lower proportion of MVI positivity rate.
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Figure 1. The tertiary lymphoid structure (TLS) scoring system. A) Representative whole slide images of different TLS abundances (TLS scores from 0
to 3). B) Significant associations were found between the intra-tumoral and peri-tumoral TLS scores for cohorts HSHZ (n = 342) and Chaoyang (n =
119) and Youan (n = 205), (P < 0.05). The p-values were calculated by chi-square test.
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To investigate the prognostic value of TLS in intra-tumoral
and peri-tumoral regions, we built a univariate Cox model to
explore the association between intra-tumoral and peri-tumoral
TLS abundance and recurrence-free survival (RFS) or overall sur-
vival (OS). Specifically, we first divided the samples into TLS-high
(TLS score = 1, 2, or 3) and TLS-low groups (TLS score = 0) based
on their TLS scores. For HSHZ cohort, patients of high intra-
tumoral TLS group had a prolonged RFS and OS (Figure 2A, log-
rank test, P < 0.01), while a rather weak correlation was observed
between high peri-tumoral TLS abundance and an improved OS
(Figure 2B). Similarly, intra-tumoral TLS abundance was also
positively correlated with both RFS and OS in both Chaoyang
and Youan cohorts, the correlation between the peri-tumoral TLS
abundance and RFS or OS was consistently significant in the two
cohorts (Figure 2C–E), while a rather weak correlation was ob-
served between peri-tumoral TLS abundance and OS in Youan co-
hort (Figure 2B). These results indicated that intra-tumoral TLS
abundance had a higher prognostic value than peri-tumoral TLS
abundance and might serve as a possible prognostic factor in
HCC-LT.

2.3. Intra-Tumoral TLS Abundance is an Independent Prognostic
Factor in HCC-LT

The intra-tumoral TLS score was closely correlated with RFS and
OS in HCC, we investigated whether it was a prognostic factor
independent of clinical prognostic indicators. Specifically, AFP
level, Milan criteria, PVTT, MVI, maximal tumor diameter, and
American Joint Committee on Cancer (AJCC) stage were corre-
lated with RFS or OS in all the three HCC-LT cohorts by univari-
ate Cox regression analysis (Table S1, Supporting Information,
log-rank test, P < 0.05). The prognostic values of these clinical
factors were consistent for the HCC-LT cohorts, which indicated
a high quality of the obtained clinical data.

Taking those prognostic variables and TLS scores significantly
correlated with RFS or OS, we built RFS- and OS-based multivari-
ate Cox models for each cohort. In HSHZ cohort, intra-tumoral
TLS abundance and PLT were statistically significant in both RFS
and OS-based multivariate Cox models (Figure 3A,B, log-rank
test, P < 0.05). Moreover, the intra-tumoral and peri-tumoral
TLS abundance levels were the significant variables in both RFS-
and OS-based Cox models for Chaoyang cohort (Figure 3C,D,
log-rank test, P < 0.05). Furthermore, the intra-tumoral TLS
abundance was the only significant variable in both RFS- and
OS-based Cox models for the Youan cohort (Figure 3E,F, log-
rank test, P < 0.05). These results indicated that intra-tumoral
TLS abundance could be an independent prognostic factor in
HCC-LT.

2.4. Clinical Relevance of Intra-Tumoral TLS Abundance in HCC

Intra-tumoral TLS abundance could serve as an independent
prognostic factor in HCC-LT, and we investigated its association
with 18 clinical or pathological factors in HCC-LT. Notably, pos-
itive HBsAg was significantly associated with intra-tumoral TLS
abundance, and the rate of positive HBsAg was higher in the tu-
mors with low TLS (Figure 4, Chi-square test, P < 0.05). How-

ever, some prognosis-related factors such as AFP, AJCC, max tu-
mor diameter, MVI, PVTT, tumor number, and Milan and UCSF
criteria were insignificant, further suggesting that intra-tumoral
TLS was independent of those factors.

2.5. Transcriptomic Characterization of HCC Tissues with High
and Low TLS Abundance

To characterize the transcriptomic signatures in HCC tissues
displaying high and low TLS abundance (TLS-high and TLS-
low groups), we analyzed the gene expression profiles between
high intra-tumoral TLS and low intra-tumoral TLS groups in
TCGA cohort. Interestingly, we identified 2543 signature genes
in TLS-high group and 1215 in TLS-low group (Figure 5A, ad-
justed P < 0.25 and P < 0.05). Consistently, the upregulated
genes in intra-tumoral TLS-high group (COL1A1, TGFB1, SPP1,
CCR8, CCR3, CCL8, TNFRSF4, TNFRSF8, TNFRSF9, CD3D,
IL2RG, CIITA, PDCD1, CTLA4, and ICOS) were highly enriched
in tumor microenvironment-related pathways (Figure 5B,C, ad-
justed P < 0.05). In contrast, genes upregulated in intra-tumoral
TLS-low group were enriched in several hallmarks of cancer,
such as protein translation (EIF3B, EIF2B4, EIF2B5), DNA repair
(ERCC2, NME1, and POLR1C), oxidative phosphorylation (ND-
UFA1, NDUFA2, and NDUFA4), and mTOR signaling (RHEB,
LAMTOR2, and MTOR) (Figure 5B,C, adjusted P < 0.05). These
results suggested that the biological characteristics of HCC tu-
mor cells were closely associated with reduced TLS abundance.

As TLS abundance was related with immune cell infiltration,
we evaluated and compared immune infiltrations in patients
from intra-tumoral TLS-high and TLS-low groups. Consistently,
enhanced infiltrations of immune cells, including CD8+ T cells,
M1 macrophage, and resting dendritic cells (DCs), were observed
in TLS-high group (Figure 5D). Of note, CD8+ T cells and M1
macrophage were pro-inflammatory immune cells, which played
key roles in anti-tumor effect. In contrast with TLS-high group,
higher proportions of resting natural killer (NK) cells, monocytes,
activated mast cells were observed in TLS-low group (Figure 5E).
These results suggested that increased infiltrations of those im-
mune cells involved in anti-tumor activities might contribute to
favorable prognoses in TLS-high group.

As the hallmarks of cancer cells characterized the intra-
tumoral TLS-low group, we then verified the biological charac-
teristics of this group by a public single-cell RNA-seq data[14]

(GEO accession: GSE156625). Specifically, a total of 57254 cells
from 14 HCC tumor samples were clustered into seven cell types
(Figure 6A), including cancer cells, fibroblasts, endothelial cells,
cycling cells, natural killer (NK), T cells, myeloid cells, and B cells,
which were characterized by the marker genes (Figure 6B). By
excluding the samples with percentage of cancer cells <1%, we
successfully predicted four tumor samples (P4, P7, P8, and P14)
as intra-tumoral TLS-low cluster, and another 3 (P5, P9, and P13)
as intra-tumoral TLS-high cluster by Nearest Template Prediction
(NTP) algorithm (FDR< 0.25 and P< 0.05) (Table S2, Supporting
Information). The analysis of the cell type proportions revealed
that intra-tumoral TLS-low group had a higher proportion of can-
cer cells, while the intra-tumoral TLS-high group had a higher
proportion of immune cells, such as B cells, NK/T cells, and
myeloid cells (Figure 6C). The module scores for the pathways
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Figure 2. Kaplan-Meier estimates of recurrence-free survival and overall survival according to intra-tumoral and peri-tumoral TLS abundance. A, B) The
Kaplan–Meier curves and number of cases at risk for the high (scores 1–3) and low (score 0) intra-tumoral/peri-tumoral TLS groups of the discovery
cohort HSHZ (n = 342). The Kaplan–Meier curves and number of cases at risk for the high (scores 1–3) and low (score 0) intra-tumoral/peri-tumoral
TLS groups of the two validation cohorts Chaoyang C,D) (n = 119) and Youan E,F) (n = 205). The p-values were calculated by log-rank test.
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Figure 3. The forest plots for clinicopathological factors in RFS- and OS-based multivariate Cox models. A,B) The hazard ratios, as well as the 95%
confidence intervals and statistical significances, in RFS- and OS-based multivariate Cox models for the discovery cohort HSHZ (n = 342). C–F) The
hazard ratios, as well as the 95% confidence intervals and statistical significances, for the validation cohort Chaoyang (n = 119) and Youan (n = 205).
RFS: recurrence-free survival, OS: overall survival.
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Figure 4. The associations of TLS group with clinicopathological factors in HCC-LT. The bars represent the percentages of subjects in high (yellow) and
low (blue) intra-tumoral TLS groups (n = 666). The association was assessed by Chi-square test.
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Figure 5. Transcriptomic characteristics of HCC tissues with high and low intra-tumoral TLS. A) The differentially expressed genes in TLS-high (orange,
n = 179) and TLS-low (blue, n = 180) groups. B) The pathways enriched by the differentially expressed genes in TLS-high and TLS-low groups. Fisher’s
exact test assessed the significance. The orange and blue circles represent the pathways for TLS-high and TLS-low groups, respectively. C) The repre-
sentative genes of intra-tumoral TLS-high and TLS-low groups. The immune cells highly infiltrated in the intra-tumoral D) TLS-high and E) TLS-low. The
statistical significance was calculated by Wilcoxon rank sum test.
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Figure 6. The biological characteristics of cancer cells of intra-tumoral TLS-low group by scRNA-seq data analysis. A) The UMAP dimensional reduction
of the single-cell gene expression profiles. B) The gene expression levels of top-5 marker genes in the seven cell types. C) The cell proportions of the seven
cell types between TLS-high (n = 179) and TLS-low (n = 180) groups. D,E) The module scores for the cancer hallmark-related pathways and expression
of regulators involved in mTOR signaling between TLS-high and TLS-low groups. The node size and color represent the percentage of cells expressed
and average expression levels, respectively.
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that upregulated in intra-tumoral TLS-low group by bulk RNA-
seq analysis were also upregulated in the cancer cells of that
group by scRNA-seq data (Figure 6D). Particularly, the key reg-
ulators of mTOR signaling such as LAMTOR2, LAMTOR5,
YWHAB, LAMTOR1, FKBP1A, and RHEB were also upregulated
in the cancer cells of intra-tumoral TLS-low group. These results
further demonstrated that the cancer hallmark-related pathways,
especially mTOR signaling, were significantly activated in cancer
cells with low TLS abundance.

2.6. Genomic Alterations are Associated with Intra-Tumoral TLS
Abundance

As the intra-tumoral TLS-related clusters showed significantly
different gene expression patterns, we then investigated whether
the two clusters had distinct genomic signatures. Upon inspect-
ing somatic mutations, we successfully identified four types of
mutational signatures, including exposure to aristolochic acid,
exposure to tobacco (smoking) mutagens, defective DNA mis-
match repair, and unknown etiology, in TCGA cohort (Figure 7A).
Specifically, a relatively higher proportion of mutations at-
tributed to defective DNA mismatch repair were observed in
intra-tumoral TLS-high group than TLS-low group (Figure 7B,
Wilcoxon test, P = 0.095), suggesting that high TLS abundance
might result from defective DNA mismatch repair in cancer cells.
Notably, higher frequencies of DCHS2 and KEAP1 mutations
were found in intra-tumoral TLS-high group than TLS-low group
(Figure 7C, proportion test, P < 0.05), suggesting that two genes
might promote the tumorigenesis in TLS-low group.

Furthermore, we also tested whether the copy number alter-
ations (CNAs) in cancer cells were frequently observed in any
of the TLS-related clusters. Surprisingly, the amplifications, es-
pecially those located within 7q, were more commonly observed
in intra-tumoral TLS-low group (Figure 7D, Fisher’s exact test,
adjusted P < 0.05). The regulators involved in mTOR signaling
(RHEB and LAMTOR4) and S-phase (RFC2, PSMC2, and ORC5)
were more frequently amplified/gained and highly expressed in
intra-tumoral TLS-low group (Figure 7E). These results indicated
that events like chromosomal instability, mTOR signaling activa-
tion, and cell cycle progression occurred more frequently in TLS-
low HCC tissues.

To further verify the anti-correlation between mTOR signaling
activation and TLS abundance, we measured the protein expres-
sion of RHEB, which was frequently amplified in TLS-low HCC
tissues and acted as a key regulator of mTOR signaling activa-
tion. We observed that RHEB was upregulated in TLS-low HCC
tissues by tissue microarray assay (TMA) (Figure 8, Wilcoxon test,
P < 0.05). These results further indicated that mTOR signaling
activation was closely associated with low TLS abundance in HCC
tissues.

2.7. The Radiomic Model can Accurately Detect Intra-Tumoral
TLS Abundance

To achieve non-invasive detection of intra-tumoral TLS abun-
dance in HCC patients, we built a classifier based on radiomics
data to distinguish high TLS samples from low TLS ones. After

excluding 45 scans from 291 recipients’ scans from Huashan and
Chaoyang cohorts, we retained 246 eligible scans for downstream
analysis (Figure 9A). Based on Spearman’s correlation matrix,
1674 radiomic features were extracted from arterial- and venous-
phase CT images for each patient (Figure 9B). Subsequently, the
246 cases were randomly divided into training (n = 206) and test
sets (n = 40) (See Experimental Section), and the final radiomics
model was built based on the training set using the RBF-SVM
algorithm. After applying this model to both datasets, AUC val-
ues of 0.929 and 0.902 were observed in the training and test
sets (Figure 9C), respectively. Furthermore, we also found that
the subjects with predicted low intra-tumoral TLS abundance had
a worse prognosis than those with predicted high intra-tumoral
TLS abundance (Figure 9D, Log-rank test, P < 0.05). These re-
sults suggested that radiomic model could accurately detect intra-
tumoral TLS status and might serve as a promising approach for
the detecting of intra-tumoral TLS abundance in clinical applica-
tion.

3. Discussion

The prognosis of HCC-LT is affected by tumor recurrence
and metastasis. The main contributing factors include tumor
heterogeneity, tumor load, and morphological characteristics.
The tumor immune microenvironment is an important source
of tumor heterogeneity due to its complex components and
function.[15] Immune cells in the tumor immune microenviron-
ment have a significant impact on the biological behavior of tu-
mors, including tumor occurrence, progression, drug response,
and recurrence and metastasis.[16]

TLS characterized by immune cell aggregates within nonlym-
phoid tissues, have been recurrently associated with favorable
prognoses in HCC. Nevertheless, the potential significance of
TLS in the context of HCC after liver transplantation remains
largely unexplored. In the course of our investigation, we dis-
cerned an absence of correlation between TLS abundance within
the intra-tumoral and peri-tumoral regions.

Upon deeper inquiry, our study posits that the genesis of TLS
within intra-tumoral domains may be intricately governed by a
confluence of factors, including tumor cells, immune cells, and
stromal cells. Moreover, our findings suggest that the interplay
and communication among these cellular entities within the in-
tricate tapestry of the tumor microenvironment orchestrate the
formation of TLS. This aligns with existing literature, which con-
sistently underscores the contributory roles of intra-tumoral im-
mune cells and stromal cells in the initiation and sustenance of
TLS. The nuanced interplay between these cellular components
sheds light on the regulatory dynamics underpinning TLS for-
mation and underscores the complexity of immune responses
within the tumor milieu.[17–19]

The association between intra-tumoral TLS abundance and
patients’ prognosis and their response to anti-tumor treatment
in resected HCC has been demonstrated.[20–22] By contrast, we
found that the utilization of intra-tumoral TLS abundance in the
prognostic prediction of HCC-LT may help improve model per-
formance for the first time. Specifically, in univariate Cox models,
intra-tumoral TLS abundance was significantly correlated with
both RFS and OS in three HCC-LT cohorts. Moreover, it was the
intra-tumoral TLS abundance, not the peri-tumoral one, that was
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statistically significant in the multivariate Cox models, which em-
ployed intra-tumoral and peri-tumoral TLS abundance as vari-
ables and prognostically relevant clinical factors as co-factors.
These results indicated that intra-tumoral TLS might serve as
a potential prognostic factor in HCC-LT. Considering that the
diseased livers have been completely resected from HCC-LT pa-
tients and the residual tumor cells survived in the form of mini-
mal residual diseases (MRDs) or circulating tumor cells (CTCs),
we speculated that the highly specific correlation between intra-
tumoral TLS abundance and RFS/OS and the weak correlation
between peri-tumoral TLS abundance and RFS might be related
to the intrinsic biological characteristics of tumor cells and their
cellular interactions with immune cells.

In general, the TLS in tumors is accompanied by high infiltrat-
ing levels of immune cells, as shown in human lung cancer and
breast cancer.[23,24] Consistently, we found that tumor tissues in
the TLS-high group of TCGA cohort, in which a higher TLS abun-
dance was detected, were characterized by inflammatory signa-
tures and high infiltration of immune cells. In contrast, the im-
pact of tumor cells on TLS formation remains comparatively lit-
tle known. For instance, FOXP1 expression in breast cancer cells
negatively regulates tumor-infiltrating lymphocyte migration by
inhibiting lymphoid chemokine expression.[25] Accordingly, en-
hanced cancer-cell-intrinsic characteristics, such as protein trans-
lation (EIF3B, EIF2B4, EIF2B5), DNA repair (ERCC2, NME1,
and POLR1C), oxidative phosphorylation (NDUFA1, NDUFA2,
and NDUFA4), and mTOR signaling (RHEB, LAMTOR2, and

MTOR) were observed in TLS-low group. By this finding, the
regulators involved in mTOR signaling (RHEB and LAMTOR4)
and S-phase (RFC2, PSMC2, and ORC5) were more frequently
gained and highly expressed in TLS-low group, indicating that
mTOR signaling activation and cell cycle progression in tumor
cells might result in reduced TLS abundance in HCC tissues
and unfavorable prognosis in HCC-LT. Of note, genes involved in
mTOR signaling, such as TSC1 and TSC2, were frequently mu-
tated in HCC,[26,27] and mTOR signaling was considered as one
of the potential therapeutic targets for HCC-LT with the absence
of TLS.[28,29] Previous studies have shown that mTOR inhibitors
is effective in improving survival, as well as reducing recurrence
for HCC patients following LT,[30,31] suggesting that HCC-LT with
the absence of TLS might be a potential benefit group of mTOR
inhibitors.

Another key feature of this study is that we studied the largest
cohort of HCC patients with available radiomics data and built
a classifier to detect TLS abundance in a non-invasive manner.
Surprisingly, the classifier achieved a higher performance in de-
tecting intra-tumoral TLS abundance in both training and test
sets, compared with an earlier CT-based model.[13]

However, considering the large proportions of HBV-infected
patients, our study is exclusively valuable for eastern HCC-LT pa-
tients, which may be different from Western countries. And over
90% of transplant male patients is another factor, recently sex-
ual disparity is more considered both in liver cirrhosis and trans-
plant prognosis.[32] Should the sample size further increase, we

Figure 7. Genomic characteristics of HCC tissues with high and low intra-tumoral TLS. A) The etiologies identified by the mutational signatures in TCGA
HCC. B) The differential contribution of defective DNA mismatch repair between TLS-high (n = 179) and TLS-low (n = 180) groups. The p-value was
calculated by Wilcoxon rank sum test. C) The differential frequencies of DCHS2 and KEAP1 mutations between TLS-high and TLS-low groups. The p-value
was calculated by Chi-square test. D) The genes preferentially amplified or deleted in TLS-high or TLS-low group. The color bands on the left represent
the cytobands that the genes located within. The red and blue colors in the heatmap represent highly amplified and deleted, respectively, and the white
represents the copy number neutral. The color bands on the top represent the TLS-high and TLS-low groups. E) The differential frequency and expression
levels of amplified genes between normal and TLS-high and TLS-low HCC-LT groups. The significances of differential frequency and expression levels
were assessed by Chi-square test and Wilcoxon rank sum test, respectively.

Figure 8. RHEB protein expression in HCC-LT. A) The differential RHEB protein expression levels between HCC-LT tissues with high (n = 108) and
low (n = 105) intra-tumoral TLS abundance by tissue microarray assays (TMA). The p-value was calculated by Wilcoxon rank sum test. B) The RHEB
expression in the two representative patients with low (patient #A) and high (patient #B) intra-tumoral TLS abundance.
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Figure 9. The radiomics-based model for TLS abundance prediction. A) The workflow for the construction of radiomics-based model (n = 246). B)
The spearman correlation between the features was calculated from the radiomic data. C) The model performance in the training (top) and validation
(bottom) sets was assessed by the ROC curve/AUC value. D) The Kaplan–Meier curves and the number of cases at risk for the high and intra-tumoral
TLS groups predicted by the radiomic model (top: the training set, bottom: the test set).
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envisage that the classifier will become a promising approach for
TLS detecting in clinical applications, thereby assisting prognos-
tic prediction and therapeutic strategies for HCC-LT.

4. Conclusion

In summary, reduced intra-tumoral TLS abundance is associated
with enhanced mTOR signaling activation and uncontrolled cell
cycle progression in tumor cells, and can serve as an indicator of
unfavorable prognosis in HCC-LT.

5. Experimental Section
Patients and Postoperative Follow-Up: From January 2016 to Decem-

ber 2021, 666 patients (302 patients from Huashan Hospital, Fudan Uni-
versity, 119 patients from Beijing Chaoyang Hospital affiliated to Capital
Medical University, 40 patients from Shulan (Hangzhou) Hospital, Zhe-
jiang Shuren University School of Medicine, and 205 patients from Bei-
jing Youan Hospital, Capital Medical University) who underwent DDLT
were enrolled into this study. All transplanted livers were matched by the
China Organ Transplant Response System (COTRS) and obtained through
Organ Procurement Organizations (OPO) from cardiac or brain death
donors. The study protocol was designed and written informed consents
were obtained in accordance with the Helsinki Declaration and approved
by the ethical committee of the Huashan Hospital. The patients were en-
rolled based on the inclusion criterion: hepatocellular carcinoma diag-
nosed by postoperative pathological examination. The exclusion criteria:
1) The presence of extrahepatic tumor metastasis; 2) Death within three
months after liver transplantation; 3) Incomplete clinical data. The clinical
and pathological information of the enrolled patients, such as laboratory
examination data, tumor pathology, postoperative long-term drug use, in-
cluding immunosuppressants and targeted drugs, and TNM staging, was
collected from the medical records. The follow-up was performed regu-
larly after discharge from the hospital. A postoperative follow-up review
of blood routine, AFP, PIVKA-II, liver function and kidney function, blood
glucose level, blood lipids level, and blood immunosuppressant concen-
tration was performed. The ultrasound examination was performed every
month. Lung Computed Tomography and liver-enhanced MRI were per-
formed every three months during the first three years, and once half a
year three years afterward. A bone scan of Emission Computed Tomogra-
phy or a PET-CT was conducted to confirm the recurrence and metastasis
if necessary.

Treatment before the Transplantation: Patients with long expected wait-
ing times for transplantation and tumors beyond Milan criteria were rec-
ommended to receive interventional therapy such as TACE, PEI, and RFA
to control tumor progression. At the same time, targeted therapy such
as sorafenib and lenvatinib and ICIs, were individually or jointly admin-
istered as systemic treatment. Supportive treatment was administered to
patients with decompensated liver function. Patients who met the Milan
criteria were subjected to routine antiviral and supportive treatment.

Immunosuppressants: All patients were treated with a conventional
triple regimen including tacrolimus, mycophenolate mofetil (MMF), and
methylprednisolone. An interleukin 2 antagonist was administered on the
day of the operation and the fourth postoperative day. The methylpred-
nisolone was withdrawn one month after LT and MMF was withdrawn
within 6 months after LT. Transplant patients beyond the Milan criteria
were recommended to take sirolimus instead of tacrolimus as an im-
munosuppressant one month after transplant. Adjuvant targeted ther-
apy such as sorafenib or lenvatinib were given in patients with high AFP
level (>200 ng ml−1), beyond Milan criteria or poor differentiation. Im-
munosuppressant blood concentration was monitored weekly during the
first three months and twice a month between 3–6 month and monthly 6
months after transplant.

Post-Transplant Antiviral Therapy: HBV DNA-positive patients were
treated with a conventional antiviral DAA (tenofovir or entecavir). Hep-
atitis B immunoglobulin was administered to hepatitis B antigen-positive

patients to maintain adequate hepatitis B surface antibody concentrations.
Patients with positive hepatitis C were treated with standard anti-hepatitis
C therapy of Sofosbuvir and Velpatasvir.

Characterization and Quantification of TLS: To spatially quantify the
TLS abundance, the whole slide images were divided into two subregions:
intra-tumoral and peri-tumoral regions.[33] The TLS scoring for the intra-
tumoral region included four categories: 1) score 0 indicated no TLS de-
tected, (2) score 1 indicated 1 or 2 TLS, (3) score 2 represented the region
with 3 TLS, and (4) score 3 indicated 4 or more TLS. Similarly, the TLS
abundance in peri-tumoral region could be graded into four categories:
1) score 0 represented no TLS, 2) score 1 indicated TLS detected in the
minority of the regions (<25%), 3) score 1 indicated TLS detected in the
majority of the regions (25%−75%), 4) score 3 represented TLS detected
in almost the entire region (>75%).[34]

Bulk RNA-Seq Data Analysis: UCSC Xena database was used to down-
load gene expression data from 359 HCC tumor samples and 50 adjacent
normal samples from TCGA (https://xena.ucsc.edu/), and the expression
levels were logarithmically transformed. R limma package was used to an-
alyze differential gene expression.[35] The immune cell proportions were
estimated based on the gene expression data by CIBERSORT.[36]

Single-Cell RNA-Seq Data Analysis: A single-cell RNA-seq dataset was
downloaded from Gene Expression Omnibus (GEO) with accession
GSE156625.[14] The unique molecular identifier (UMI) count was prepro-
cessed by Seurat[37] with mitochondrial percent<20%, the number of RNA
features between 500 and 5000. The samples were merged and batch effect
was corrected by R Harmony package.[38] The study selected 3000 most
variable features for principal component analysis (PCA). For the Uniform
Manifold Approximation and Projection (UMAP) dimensional reduction
and nearest-neighbor graph construction, Harmony was used.

Functional Inference for Gene Sets: To infer functionality of identified
gene sets, the well-annotated gene sets grouped according to signaling
pathways from MSigDB were obtained using R msigdbr package.[39] The
hyper-geometric test was used to measure the significance of enrichment.
This analysis was implemented in R cluster Profiler package[40] (enricher
function).

Somatic Mutations and Copy Number Alterations: The somatic muta-
tions and copy number alterations (sCNAs) were obtained from UCSC
Xena database (https://xena.ucsc.edu/). A total of 55276 somatic muta-
tions from 346 HCC samples were first annotated using ANNOVAR, and
then converted to Mutation Annotation Format (MAF). The analysis of so-
matic mutations was implemented in R maftools package. 220823 CNV
segments from 377 HCC samples were investigated to identify the aber-
rant CNV regions using GISTIC 2.0[41] (confidence level = 0.99, q-value
threshold= 0.25, refgene file: human hg38). Significant differences in CNV
frequency between TLS-high and TLS-low groups were identified using Chi-
square test (P < 0.05).

Tissue Micro-Array and Immuno-Histochemistry: The tissue samples
were fixed in formaldehyde, paraffin embedded, and mounted on 3-
aminopropyltrioxysilane-coated slides. A pressure-cooking procedure in
0.08% citrate buffer for 20 min was used to obtain representative tumor
sections from FFPE specimens. Before using the antibodies on the tissue
section, the dilution that rendered optimal sensitivity and specificity was
determined by tittering the antibodies against the normal tissues. In order
to visualize the staining results, sequential incubations were carried out.
The same method was used for the negative controls without adding the
primary antibody. Using Image Pro-Plus software, two pathologists inde-
pendently evaluated immunohistochemical staining without knowing the
characteristics of the patient. Image-Pro Plus 6.0 was used to judge the
positivity of all immunohistochemistry pictures using the same clay-bank
color. The cumulative integrated optical density (IOD) of positive signals
was calculated for each picture.

CT Data Acquisition and Analysis: A total of 246 patients with liver tu-
mors were recruited from 2016 to 2021 at two hospitals in this study (138
patients from Huashan hospital and 108 patients from Chaoyang hospi-
tal). For the following machine learning analysis in this study, the patient
data was split into a training set and a test set with a ratio of 5:1, using
stratified sampling based on sex, age, TLS level, and hospital in R soft-
ware (Version 3.6.2, https://www.r-project.org/). The 246 patients were
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grouped into the training set and the test set with a 5:1 training-to-test
ratio, by stratified sampling according to sex, age, TLS level, and hospital
using R software (version 3.6.2, https://www.r-project.org/). Thus, a train-
ing set consisting of 206 patients and a test set of the other 40 patients
were obtained. All patients or their guardians gave their informed con-
sent for the utilization of their anonymized CT images and clinical data
for research purposes. All the CT images used in this study were acquired
using 256-slice MDCT scanners (Brilliance iCT, Philips, Netherlands) with
128 detector rows, 30 mA tube current, 100 kV tube voltage, 0.9 mm slice
thickness, 0.45 mm slice spacing, 0.4 mm pixel size and matrix size of
512 × 512. The injection rate of contrast agent was set at 4.5 mL s−1. Fi-
nally, CT images taken in arterial and portal venous phases of each patient
were obtained. The CT data analysis flowchart is presented in Figure 9A.

Tumor Segmentation: The tumor segmentation, which incorporated
the regions of interest (ROI) that were manually delineated slice-by-slice
in both arterial-phase and venous-phase liver tumor CT images of each pa-
tient, was accomplished by two radiologists blinded to the diagnoses using
MITK software (Version 2016.3.0, https://www.mitk.org) (Dr. Bin Hu and
Dr. Yan Geng), and then reviewed and modified by a senior radiologist (Dr.
Daoying Geng).

Radiomics Analysis:

(a) Radiomic features were extracted from both arterial-phase and
venous-phase images. According to guidelines from the Image
Biomarker Standardization Initiative (IBSI).[42] For images from
each phase, a total of 1781 radiomics features, which consist
of 14 shape-based features, 18 first-order statistics features, 75
texture features and 1674 transformed features from images fil-
tered by Laplacian of Gaussian filters with five sigma levels,
wavelet filters with eight decompositions, and square, square root,
logarithm, exponential, and local binary pattern filters, were ex-
tracted with the PyRadiomics (https://pyradiomics.readthedocs.io/
en/latest/index.html#). Texture features employed gray-level ma-
trixes to represent the spatial heterogeneity of intensities within the
tumor ROI, with the bin width of intensity being set to 10. The details
of all features are described online (https://pyradiomics.readthedocs.
io/en/latest/features.html).

(b) A correlation-matrix-based hierarchical clustering method was em-
ployed to reduce the dimensionality of input feature space. Specif-
ically, all 3562 radiomics features extracted from both phases were
standardized and Spearman’s correlation matrix of these features was
calculated. Then, features were clustered according to the correlation
matrix, to select representative ones and remove irrelevant and re-
dundant features that would diminish the predictive power in further
model-building process, and to control the number of features re-
maining to within 1/10 of the number of cases to reduce the risk of
model overfitting.

(c) The selected features were input to the radial basis function-support
vector machine (RBF-SVM) to build a radiomics model.[43] By in-
putting the values of each set of single-lesion radiomics features into
this model, a radiomics-based score was calculated that reflected the
output of the RBF-SVM model for each patient, and referred it as rad-
score.

(d) Patients were labeled as TLS-high or TLS-low according to their rad-
scores, and the predictive performance of the proposed radiomics
model was assessed using ROC curve analysis. The cut-off for TLS
classification was determined using R cutpointr package[44] by maxi-
mizing the odds ratio, which was calculated as (true positives/ false
positives)/ (false negatives/ true negatives). The corresponding area
under ROC curve (AUC), accuracy, sensitivity, and specificity values
of the model were evaluated in both training and test datasets using
R ROCR package.[45]

Statistical Analysis: All graphical and statistical analyses were per-
formed using R 4.1.0. Unpaired Wilcoxon rank-sum tests were used for
two-sample or pairwise mean comparisons. In order to examine the prog-
nostic significance of TLS abundance, as well as other cofactors, the uni-

variate and multivariate Cox models were applied. In the multivariate Cox
models, variables with infinitely estimated coefficients were excluded. Chi-
square test was used to test the association between qualitative variables.
p < 0.05 was considered statistically significant. (*p < 0.05, **p < 0.01,
***p < 0.001).

ROC curve analysis was used to describe the discriminative power of
the radiomics model. Accuracy was calculated by labeling subjects with
high TLS as positive cases. Python packages scikit-learn (https://scikit-
learn.org/) were used for feature selection and model development and
validation (Version 3.8.0, https://www.python.org).
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the author.
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